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ABSTRACT Short-term load forecasting (STLF) with excellent precision and prominent efficiency plays
a significant role in the stable operation of power grid and the improvement of economic benefits. In this
paper, a novel model based on data mining and deep learning is proposed. Firstly, the preprocessing of data
includes normalization of historical load, and fuzzification of influencing factors (meteorological factors,
date types and economy) based on Pearson correlation coefficient (PCC). Secondly, kernel fuzzy c-means
(KFCM) modified by particle swarm optimization (PSO-KFCM) algorithm clusters the daily load curve.
In the clustering experiments, the within-cluster sum of squared error (SSE) index is presented to determine
the number of clusters and the clustering validity has a 31.9% enhancement compared with the traditional
FCM algorithm. Thirdly, the cosine similarity establishes the resemblance between the prediction date and
each cluster, and the similar cluster is determined according to the principle of maximum similarity. Finally,
a multivariate and multi-step hybrid model MMCNN-LSTM based on convolution neural network (CNN)
and long short-term memory (LSTM) neural network is proposed to forecast the load in following 24 hours,
in which similar cluster data is applied to training set. To demonstrate the effectiveness of proposed integrated
technique, the accuracy has been verified in three predictive experiments. The fruitful results indicated that
the average mean absolute percent error (MAPE) in the entire test set was only 1.34%, a 3.02% reduction
compared to a single LSTM.

INDEX TERMS Short-term load forecasting, Pearson correlation coefficient, PSO-KFCM, cosine similarity,
CNN, LSTM.

I. INTRODUCTION
Power load forecasting is to forecast the future load data with
historical data as the key component [1]. The level of power
load forecasting has become a remarkable sign to measure
whether the management of an electric power enterprise is
going towards modernization. Accurate power load forecast-
ing plays a significant role in realizing the modernization
and scientific management of power grid [2]. Power load
forecasting can be divided into long-term load forecasting
(LTLF), medium-term load forecasting (MTLF), short-term
load forecasting (STLF) and very short-term load forecast-
ing (VSTLF) according to the forecast duration. Among
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them, STLF refers to the prediction of the future daily load
or weekly load, which is mainly worked for power system
operation dispatching, guaranteeing the safety of power grid
process and improving the operational efficiency. Therefore,
it is a substantial task of power system from the perspective
of security, economy and development [3].

The traditional forecasting model takes historical load data
as the whole basis. For instance, the trend extension method
usually deduces its future trend and state according to the
gradient law. Similarly, methods of regression analysis is
to adjust the parameters and extrapolate the prediction [4].
Time series method is one of the most customary forecasting
methods, whose core is to establish a mathematical model by
analyzing the metabolic law between historical data and time
information. The ordinally adopted time series models are:
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autoregressive moving average (ARMA)model [5], autore-
gressive integrated moving average (ARIMA)model [6], sea-
sonal autoregressive integrated moving average (SARIMA)
model [7], auto regressive integrated moving average models
with external input (ARIMAX) model [8]. However, the con-
ventional prediction methods require a minor transformation
in development trend, and the relationship between historical
data and forecast data is relatively simplistic. Obviously,
the traditional method with inferior accuracy caused by the
tremendous alterations in tendency has a fatal shortcoming.

In recent decades, with the rapid progression of machine
learning, experts and scholars all over the world have con-
ducted in-depth research on STLF and put forward numerous
effective forecasting models. Despite the dilemma in iden-
tifying the optimal parameters, kernel function parameter
σ and penalty factor c, Hua et al. introduced a supervised
learning model called support vector machine (SVM) into
STLF [9]. The addition of the optimization-seeking algorithm
to SVM was proposed to alleviate the underlying prob-
lem, such as SVM optimized by particle swarm optimiza-
tion (PSO-SVM) [10], genetic algorithm (GA-SVM) [11],
fruit fly algorithm (FF-SVM) [12], dragonfly algorithm (DA-
SVM) [13]. Because inequality constraints are changed into
equality constraints, the least squares support vector machine
(LS-SVM) model applied by Yang et al. simplified the algo-
rithm and enhanced solving speed [14]. In 1991, Artificial
neural network (ANN)was first proposed by ParkDC [15] for
load forecasting of power system, and back propagation (BP)
algorithm was adopted. Afterwards, due to the optimization
by intelligence algorithms, the ANN got improved accuracy,
but it relied heavily on the quality of training data [16].
Nowadays it is well known that deep neural network (DNN)
has dominated load prediction in recent years. Shi et al.
imported the novel recurrent neural network (RNN) into
household STLF domain, which was available for time char-
acteristics [17]. In addition, long short-termmemory (LSTM)
network is a variant of RNN, which overcomes the gradient
disappearance and gradient explosion of RNN, therefore,
the LSTM adopted by Liu et al. performed more promi-
nently on long sequences [18]. Other DNN baseline models
were trained with abundant samples, such as gate recurrent
unit (GRU) [19] and bidirectional recurrent neural network
(Bi-RNN) [20], however their results implied that it is not
a promising realisation due to the ease of overfitting. In the
process of STLF development, single machine learning mod-
els had difficulty meeting load accuracy requirements and
a few hybrid preprocessing methods were mixed into them.
These usual preprocessing methods include grey theory [21],
wavelet packet analysis [22], empirical mode decomposition
(EMD) [23], random forest [24] and so on.

To sum up, although the STLF based on modern prediction
method has achieved great performances in theory and appli-
cation, the reasoning process is quite complex and tough to
meet the demands of practical problems. This paper proposes
a novel model based on data mining and deep learning,
which not only takes historical data into account, but also

meteorology, date type, economy and others. The normal-
ization of historical load prevents the gradient from falling
sluggishly and the fuzzification avoids that the influencing
factors cannot be fed directly into prediction model due to
different weights. The proposed PSO-KFCM algorithm is
applied to daily load curve clustering, which cracks the obsta-
cle that the initial clustering center is easily limited to local
optimization. After that, cosine similarity of the influencing
factor is exerted to establish relationship between the pre-
diction day and all clusters. Finally, a hybrid deep learning
model CNN-LSTM whose input mode is multivariate and
multi-step (MMCNN-LSTM) is proposed to forecast the load
data in the next 24 hours. The above comprehensive technique
which combines the PSO-KFCM algorithm and CNN-LSTM
model so far have not been applied in the field of STLF.
The effectiveness of the above comprehensive technique is
verified by three predictive results, which will provide a
reference for future load forecasting.

The main contributions in this paper are summarized as
follows:

1) Advanced preprocessingmethods: From the perspec-
tive of practical problems, historical load data and
influencing factors (meteorology, date type, economy
and others) should be amply taken into account, where
historical load data are normalized and influencing
factors are fuzzy mapped according to the PCC.

2) Enhanced algorithms: KFCM algorithm maps the
points form the original space to the high-dimensional
space through the kernel function, which increases
operational efficiency. After the PSO optimization,
PSO-KFCM algorithm has a better global searching
ability which overcomes the problem of sensitivity to
the initial clustering center. The CNN-LSTM hybrid
model not only has the ability to extract features, but
also is skillful at processing time series.

3) Multitudinous comparative experiments: In this
research, one clustering experiment and three predic-
tive experiments were executed. Firstly, the validity of
clustering method is confirmed by the clustering exper-
iment. In addition, unclustered models, three other
input methods and five DNN baseline models are com-
pared in accuracy with the data mining-based novelty
MMCNN-LSTM model.

4) Fruitful evaluation indicators: On the one hand,
the clustering validity indicators refer to silhou-
ette coefficient (SC), Davies-Bouldin index (DB),
Calinski-Harabasz index (CH), Krzanowski-Lai index
(KL). On the other hand, root mean square error
(RMSE), mean absolute error (MAE) and MAPE rep-
resent prediction evaluation indicators. The excellent
results are validated by the optimal evaluation indica-
tors as well.

The remainder of this paper is organized as follows. Part II
introduces the theory of algorithms applied in this study.
Part III presents the source of the dataset and modeling.
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FIGURE 1. The proposed overall design for short-term load forecasting.

In Part IV, exploratory experiments are carry out and exper-
imental results are shown. Finally, Part V summarizes this
study.

II. METHODOLOGY
A. THE PROPOSED METHOD
The proposed short-term load forecasting based on
PSO-KFCM algorithm and CNN-LSTM model is shown
in Fig.1. Firstly, historical power load data can be obtained
from the supervisory control and data acquisition (SCADA)
system. Load forecasting should not take the historical load
data as whole evidences, influencing factors are ought to
obtain from the local administrative section such as mete-
orological factors, date types, economic factors, etc. The
load features composed of historical data and influencing
factors guarantee the accuracy of the prediction and enhance
the anti-interference ability. Then, the historical load data
and the influencing factor are normalized and fuzzified
respectively, which overcomes the odd of slow gradient
descent caused by vast values and and not being able to
input directly into the prediction model due to non-uniform
units or no units. In the second step, PSO-KFCM algorithm
clusters the normalized historical load data to excavate typical

power consumption characteristics. Third, cosine similar-
ity establishes the resemblance between the prediction day
and each cluster, where the input is the influencing factor
of the predicted day and the average influencing factor of
within-cluster both after fuzzification. The similar cluster of
the prediction day is identified according to the principle of
maximum similarity. All three steps mentioned above apply
to the preprocessing method for extracting hidden features
and internal laws. Finally, the multivariable and multi-step
CNN-LSTM model is committed to forecasting 24h ahead
load data in the end.

B. THE PRINCIPLE OF THE PSO-KFCM ALGORITHM
1) KFCM
Fuzzy c-means (FCM) algorithm is an unsupervised fuzzy
clustering method based on objective function proposed by
Bezdek et al. [25]. FCM belongs to soft clustering, which is
different from traditional hard c-means (HCM) clustering in
that it allows the same object to belong to the same cluster.
This fuzzy partition enables each data point to determine
the degree of its relevance with other groups through the
membership grade between [0,1]. Set the dataset as X =
{x1, x2, · · · , xn} ⊂ Rp, each data x has p characteristics and n
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is the number of sample data in dataset X . To divide a dataset
into k classes, the objective function of FCM algorithm is as
follows:

Jm (U ,V ) =
k∑
i=1

n∑
j=1

umij
∥∥xj − ci∥∥22 (1)

where m represents the fuzzy weighting coefficient, uij rep-
resents the membership grade of sample data j to cluster i,
ci represents the clustering center of i cluster. U is a k ∗ n
matrix, representing the membership matrix, V is a k ∗ p
matrix, representing the clustering center matrix. Obviously,
this 2-norm

∥∥xj − ci∥∥2 is the Euclidean distance from each
data point to the clustering center. The constraint condition

is
k∑
i=1

uij = 1,∀j = 1, 2, · · ·n, that is, the sum of membership

grades of each sample data to all clusters is equal to 1 [26].
More seriously, the membership grade is inversely propor-
tional to Euclidean distance, which makes FCM sensitive to
noise and outliers. In the case of data with strong interference,
this fatal shortcoming lead to poor clustering quality.

For the purpose of settling the problem of poor clustering
quality caused by the constraint condition, the kernel function
is introduced into KFCM algorithm, which maps the points
of the original space to the high-dimensional feature space.
Contrasted with FCM algorithm, KFCM algorithm has been
greatly improved in performance and classification effect,
because it enlarges the feature differences among various
samples through nonlinear mapping [27]. The objective func-
tion of KFCM algorithm is as follows:

Jm (U ,V ) =
k∑
i=1

n∑
j=1

umij
∥∥8(xj)−8(ci)∥∥22 (2)

where 8 represents a nonlinear mapping, the Euclidean dis-
tance

∥∥xj − ci∥∥2 in the traditional FCM algorithm is rewritten
as
∥∥8(xj)−8(ci)∥∥2,8(xj) and8(ci) are the images of sample

data and clustering center mapped from the original space to
the high-dimensional feature space respectively.

The common kernels are radial basis function (RBF) ker-
nel, rational quadratic (RQ) kernel, exponential kernel, sig-
moid kernel and so on. In this study RBF kernel function is
dedicated to nonlinear mapping, which has the characteristics
of rotational symmetry and separability [28]. RBF kernel
function can be decomposed into the following forms:

K (x, x̂) =< 8(x),8(x̂) >= exp

(
−

∥∥x − x̂∥∥2
2σ 2

)
(3)

Obviously, K (x, x) = 1.Therefore, the objective function of
KFCM can be simplified as follows:

Jm (U ,V )=2
k∑
i=1

n∑
j=1

umij (1− K (xj, ci)) (4)

The perfect clustering result is the smallest similarity
within a cluster and the largest similarity between the clusters,
which means calculating the minimum objective function.

The Lagrange multiplier method is applied to this extreme
value problem with constraint condition. In the end, calcula-
tion formula of the clustering center ci and membership grade
uij are shown in Eq.(5) and Eq.(6) respectively:

c(l+1)i =

n∑
j=1

(u(l)ij )
m
K (xj, c

(l)
i )xj

n∑
j=1

(u(l)ij )
m
K (xj, c

(l)
i )

(5)

u(l+1)ij =
(1− K (xj, ci(l+1)))

−1
m−1

k∑
i=1

(1− K (xj, ci(l+1)))
−1
m−1

(6)

where l represents the iteration step at present. The concrete
steps of KFCM algorithm are as follows:

1) Initialize the maximum number of iteration steps M ,
number of clusters k , fuzzy weighting coefficient m,
RBF kernel parameters σ , termination threshold of the
objective function δ and iteration step l = 0.

2) Initialize the membership matrix U (0) through the ran-
dom numbers between [0,1] in case of satisfying the
constraint condition.

3) According to the Eq.(5) and Eq.(6), The clustering
center matrix V (l+1) and membership matrix U (l+1)

are constantly updated respectively. Then, compute the
value of the objective function J (l+1)m .

4) If
∣∣∣J (l+1)m − J (l)m

∣∣∣ < δ or reaching the maximum number
of iteration steps, the calculation is terminated, other-
wise let iteration step l = l + 1 and skip back to step
(3).

The KFCM mentioned above has overcome the problem
of poor quality caused by outliers. However, extra attention
should be paid to step (3), KFCM itself is an iterative descent
algorithm, which makes it sensitive to the initial clustering
center and tough to converge to global optimality.

2) PSO-KFCM
In view of the shortcoming of KFCM clustering algorithm
which is sensitive to initial value and easy to drop into local
optimum, the kernel fuzzy c-means optimized by particle
swarm optimization (PSO-KFCM) is figure out to escape
poor robustness.

PSO is a new global optimization algorithm with winged
convergence speed and few parameters proposed by Eber-
hart and Kennedy [29]. It simulates the predatory behav-
ior of birds searching for food randomly through mass free
particles. Particles have two important properties: velocity
and position. Let the particle population size be N , where
the position of the i-th particle in the D-dimensional space
can be expressed as xi = (xi1, xi2, · · · , xid , · · · , xiD). The
velocity of i-th particle is defined as the moving distance in
each iteration, expressed by vi = (vi1, vi2, · · · , vid , · · · , viD).
The optimal position of the i-th particle at present is
called individual extremum, which is denoted as pbest =
(pi1, pi2, · · · , pid , · · · , piD). The optimal position of the
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whole population at present is called global extremum,
denoted as gbest = (pg1, pg2, · · · , pgd , · · · , pgD). The for-
mula for the i-th particle to update its velocity and position
in d-dimensional space is as follows respectively:

vid (t + 1) = wvid+c1r1 (pid−xid (t))+c2r2
(
pgd−xid (t)

)
(7)

xid (t + 1) = xid (t)+ vid (t + 1) (8)

where w is the inertia weight, c1 and c2 are the acceleration
constant, r1 and r2 the random number between [0,1], pid is
the individual optimal position at present in d-dimensional
space, and pgd is the optimal position of the whole population
at present in d-dimensional space. The specific process of
PSO algorithm is as follows:

1) Initialize the particle swarm, including the population
size N , the speed vi and position xi of each particle.

2) Calculate the fitness value of each particle.
3) According to the fitness value, search for the individual

extremum pbest and the global optimal solution gbest .
4) Update the speed and position of each particle accord-

ing to Eq.(7) and Eq.(8).
5) If the error is little enough or reaches the maximum

iteration steps, the optimal result is output, otherwise
skip back to step (2) and proceed with calculation.

The theory of PSO has been mentioned before, the fol-
lowing is the combination of PSO and KFCM. The prime
problem to be solved is the encoding of particles. Let each
particle represent the solution of the clustering center, so the
velocity and position of each particle are k ∗pmatrix. Fitness
function is another trouble to be resolved, which evaluates
the position of each particle. As we all know, the smaller the
KFCM objective function, the higher the clustering quality,
that is, the larger the fitness value. Therefore, the objective
function of KFCM is inversely proportional to the fitness
value. The fitness function is defined as:

Fitness(x) =
K0

K0 + Jm(U ,V )
(9)

where K0 is an arbitrary minor positive number and 1 is a
decent choice to avoid the denominator of fitness function
being 0 and ignoring the subject. Then the overall flow of
PSO-KFCM algorithm is shown in Fig.2.

C. THE PRINCIPLE OF THE COSINE SIMILARITY
Cosine similarity is an effective method to calculate the
similarity between two unknown datasets. As we all know,
Euclidean distance measures the absolute distance, which
is directly related to the location coordinates of each point.
Furthermore, it equates the differences between different
attributes of samples, which can not occasionally meet the
actual requirements [30], [31]. Contrary to Euclidean dis-
tance, cosine similarity measures the angle of space vector,
which is more reflected in difference of direction rather
than position. The closer the cosine value is to 1, the closer
the angle is to 0 degree, that is, the more similar the two

FIGURE 2. The overall flow chart of the PSO-KFCM algorithm.

vectors are. In extreme cases, two vectors are completely
coincident. The cosine similarity analysis between vector a
and b is as follows:

cos(θ ) =
a � b

‖a‖2 � ‖b‖2
(10)

Customarily, cosine similarity is applied in multidimen-
sional positive space. In the field of load forecasting, load fea-
tures are generally multidimensional positive numbers. After
preprocessing, the data are in the first quadrant, the angle
is 0-90 degree, thus the cosine similarity value is between
[0,1]. Obviously, cosine similarity is absolutely suitable for
the determination of similar cluster. The similar cluster is
established by the maximum similarity intensity between
the prediction date and each cluster, which is equivalent to
performing a classification problem.

D. THE PROMCIPLE OF THE CNN-LSTM MODEL
1) CNN MODEL
Convolutional neural network (CNN) is a feedforward neu-
ral network (FNN) with feature extraction ability, which
was proposed by Fukushima [32]. It can be divided into
1DCNN,2DCNN,3DCNN, among which 1DCNN is the most
suitable for the prediction of time series. The integrated
1DCNN network consists of input layer, convolution layer,
pooling layer, flattening layer and dense layer [33].

As can be seen from Fig.3, 1D does not mean that the
input is 1-dimensional, but the direction of the convolution
kernelmotion is fixed, where the convolution kernel is a linear
weighted function. The height H of input layer represents
time steps andwidthW represents time features. In the convo-
lution process, the input and the convolution kernel do point
multiplication to extract features. If there are k convolution
kernels of size f and the step size is s,then the formula for
calculating the height of the convolution layer is illustrated
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FIGURE 3. The network structure of CNN model.

below:

Hcov =
(H − f )

s
+ 1 (11)

The width of the convolution layer is determined by the
number of convolution kernels, that is, Wcov = k .Then
pooling layer concentrates data by narrowing the sampling
window. The flatten layer stretches the data and connects it
to the dense layer. Through this structure mentioned above,
the characteristics of CNN can be summarized as follows:

1) Local receptive field: In contrast to the full connection,
the convolution kernel is connected to the local part of
input, which accelerates on operation.

2) Weight sharing: All the elements on the same feature
map share the identical convolution kernel, that is to
say, they assign a fixed weight, so that the parameter
setting reduction.

3) Subsampled: In order to lessen redundancy and prevent
overfitting, average pooling and maximum pooling are
employed to concentrate data.

2) LSTM MODEL
In order to solve the gradient explosion and disappearance of
traditional RNN, Sepp Hochreiter and Jürgen Schmidhuber
proposed long short-term memory (LSTM) network in 1997
[34]. Compared with RNN, LSTM cell units are still calcu-
lated based on input and hidden layer output of the upper
level, but the internal structure changes, while the external
structure remains invariant. As shown in Fig.4, the internal
structure of LSTM cell unit is composed of input gate i,
forget gate f , output gate o and internal memory unit c. Forget
gate f manages the forgetting degree of input x(t) and output
of the upper hidden layer h(t − 1). Input gate controls the
update efficiency of input x(t) and output of the upper hidden
layer h(t − 1). The memory unit c determines which fresh
information remains in the cell and renews the cell state.
Finally, output gate o supervises how much information is
output for cell [35]. The calculation of each component in

FIGURE 4. The internal structure of LSTM cell network.

LSTM is summarized as Eq.(12) - Eq.(17).

Forget gate: ft = σ
(
Wf xt + Uf ht−1 + bf

)
(12)

Input gate: it = σ (Wixt + Uiht−1 + bi) (13)

New memory unit: c′t = tanh (Wcxt + Ucht−1 + bc) (14)

Final memory unit: ct = ft ∗ ct−1 + it ∗ c′t (15)

Output gate: ot = σ (Woxt + Uoht−1 + bo) (16)

Output: ht = ot ∗ tanh (ct) (17)

where Wf , Wi, Wc and Wo are input weight vectors, Uf , Ui,
Uc and Uo are upper output weight vectors, bf , bi, bc and bo
are bias vectors. Sigmoid is generally selected as the excita-
tion function for σ , which mainly plays a role of gating. Tanh
function is an option to generate new memory unit c′t due to
faster convergence rate. Their expressions are manifested in
Eq.(18) and Eq.(19) respectively.

Sigmoid(x) =
1

1+ e−x
(18)

tanh(x) =
ex − e−x

ex + e−x
(19)

3) THE HYBRID CNN-LSTM MODEL
In this paper, CNN can be regarded as ‘‘feature extractor’’
after preprocessing, that is to extract local features in time
step. 1DCNN is typically employed to address time series
related problems, convolution kernel only slides along an
inflexible direction to automatically extract the hidden fea-
tures and internal laws of data in the time direction. The
extracted feature information sequence is input into LSTM
network. By a large number of training data, the weights of
input gate, forget gate and output gate in LSTM network are
adjusted constantly, so that LSTM is capable to learn the
time dependence relationship between feature information
sequence and output.

As demonstrated in Fig.5, the original data is a
multi-dimensional load features with time information. CNN
which has an excellent feature extraction ability is the same
as automatic encoder in Seq2Seqmodel. Furthermore, LSTM
which has a brilliant prediction capacity of long time series
is more like an automatic decoder in Seq2Seq model. This
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FIGURE 5. The overall design of the hybird CNN-LSTM model.

hybridmodel CNN-LSTMwhich combines the advantages of
both, improves the prediction accuracy. It’s extensively oper-
ated in load forecasting, fault diagnosis, version classification
and other fields in recent years.

III. DATA AND MODELING
A. DATA SOURCES AND PREPROCESSING
This public electrical load dataset fromAustralian New South
Wales (NSW) which is downloaded at the Australian Energy
Market Operator (AMEO) Official website https://www.
aemo.com.au/energy-systems/electricity/national-electricity-
market-nem/data-nem/aggregated-data. NSW power system
is responsible for supplying electricity to almost 1.6 million
users, mainly including three metropolises, Sydney, New-
castle and Wollongong. The original data is composed of
settlement date, totol load demands, electricity price, period
type. Obviously, they are insufficient as a complete basis for
load forecasting. It is universally acknowledged that meteo-
rological factors are particularly prevalent in affecting load
variation, therefore, meteorological factors are supplemented
at the website https://www.wunderground.com, including
temperature (drybulb temperature, dewpoint temperature,
wetbulb temperature), humidity, precipitation, wind speed,
pressure and so on. Besides, seek for calendar to determine
the date type due to the massive distinction between week-
days and weekends, holidays and non-holidays. Every 0.5h
is a time step, so there are 48 time indexes in one day. The
data is distributed from January 01, 2006 to December 31,
2010, with a total of 1826*48 rows of data, furthermore,
the columns represent total load features (Historical load and
influencing factors).

FIGURE 6. The distribution of whole load data in the dataset for per half
hour.

The distribution of the whole electrical data is presented
in the Fig.6. From the box-whisker plot, it seems that there
are numerous outliers from 9:00 to 17:00, but this is not
necessarily a rotten matter, the difference of classification
and difficulty level of prediction are highlighted. At the same
time, it should attach importance to noted that the dimensions
of power load data are all on the thousand or ten thousand
scale, too large value retard speed of finding the optimal
solution by the gradient descent method. To overcome this
obstacle, normalization which converts the data to [0,1] is
utilized to simplify calculation. Assuming that the maximum
and minimum values of data x are xmax, xmin respectively,
the normalized data x̂ calculation formula is as follows:

x̂ =
x − xmin

xmax − xmin
(20)
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TABLE 1. The table of segmental fuzzy mapping results of influencing factors.

Meteorology is the most ordinarily wielded influencing
factors in STLF, since they have impact on economic activi-
ties (industrial, residential, commercial and agriculture), so as
to indirectly affect electricity consumption. For instance,
when the temperature drops low enough, more energies are
required to increase the comfort index of human body (CIHB)
which leads to boom load demand. In addition, agricultural
electricity is the most sensitive to precipitation. However,
These meteorological factors that keep different weighting
impacts on load variation have diverse units, such as tem-
perature (◦C) and wind speed (mph). On weekends or holi-
days people live with more recreational activities, while on
weekdays and non-holidays they tend to be obsessed with
subsistence, which justifies why date types should be taken
into account. It is also strenuous to input date types directly
into our forecasting model as they have no units.

Through fuzzification of influencing factors, a kind of
mapping is established to conquer the obstacle of no unit or
different units. The result of fuzzy mapping is determined
according to the Pearson correlation coefficient (PCC) which
is an examination of the degree of correlation between two
domains [36]. The PCC formula between n-dimensional data
X and Y is defined by Eq.(21):

PCC(X ,Y ) =

n∑
i=1

(Xi − X̄ )(Yi − Ȳ )√
n∑
i=1

(Xi − X̄ )
2

√
n∑
i=1

(Yi − Ȳ )
2

(21)

where X̄ and Ȳ are themean value ofX and Y separately. PCC
values range from−1 to 1, where its sign represent positive or
negative correlations, and the magnitude of the absolute value
depends on correlational strength. For the sake of clarity, PCC
between load data and segmental factors is exhibited in heat
map Fig.7.

It can be markedly noted that the absolute value of char-
acteristic PCC scopes from 0.11 to 0.73 in the first column.
The median absolute value of 0.42 is applied as a demar-
cation for the correlational strength. In other words, if the
absolute value of PCC between load and a factor is greater
than 0.42, this factor is defined as a strong correlation,such

FIGURE 7. The heat map of PCC between load and segmental factors.

as the above drybulb temperature, humidity and date type,
otherwise, the opposite is defined as a weak correlation, such
as wind speed, precipitation and pressure.

Furthest behind, the fuzzy mapping result is determined by
the correlational strength and positive-negative correlation,
in which the strong correlation maps the original physical
scale to [0,1], the weak correlation maps to [0, 0.5]. Positive
correlation mapping results are proportional to the original
physical scale and negative correlation is inversely propor-
tional. After fixing the two parameters, it refers numerically
to the normalization. This fuzzy mapping approach not only
conquers the lack of outright input influencing factors into
the prediction model caused by different units or no units, but
also avoids the slow gradient descent as normalization. The
segmental fuzzy mapping table of influencing factors in this
dataset is shown below Table.1.

B. DAILY LOAD CURVE CLUSTERING
Clustering technology can excavate the archetypal power
consumption characteristics from enormous load data, and
supply sovereign support for power grid companies to achieve
load forecasting and demand side management. A significant
step of daily load curve clustering is to determine the number
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of clusters in the PSO-KFCM algorithm mentioned above.
There are variousmethods to ascertain the number of clusters,
for instance, within-cluster sum of squared errors (SSE),
partitioning around medoids (PAM), gap statistic (GS) [37].
In this article, the comprehensive SSE method is adopted to
accomplish this assignment. The analytical formula of SSE is
as follows:

SSE(k) =
k∑
i=1

∑
x∈pi

‖ci − x‖22 (22)

where ci is the i-th clustering center, pi represents the muster
of data points in the i-th cluster. With the increase of cluster
number k , the sample partition will be more meticulous,
and the aggregation degree of each cluster will gradually
amend, so SSE will naturally become smaller. Theoretically,
the smaller the SSE value is, the better the clustering effect
will be. However, when k increases to a certain extent,
the effect on the decrease of SSE is rare. Therefore, the k
value near the inflection point of the curve is normally the
appropriate number of clusters. In this clustering experiment,
Set the particle population size N = 100, maximum iteration
stepsM = 100, RBF kernel parameters σ = 150, termination
error δ= 1e− 4 and the range of k is programmed from
1 to 10, and the SSE broken line is exhibited in the below
Fig.8. Evidently, the most appropriate number of clusters
is recognized as 6, since there is no abrupt inflection point
nearby and it tends to the minimum. After that, this novel
algorithm begins to cluster the preprocessing load data with
48 time steps.

FIGURE 8. The gradient graph of SSE index with increasing cluster
number k from 1 to 10.

The daily load curve after PSO-KFCM clustering is shown
in the Fig.9, where numerous daily loads are represented
by different color curves. In order to prove the superior-
ity of this algorithm, FCM, KFCM, GA-KFCM algorithm
are contrasted with proposed method. Four internal indexes
[38], [39] are adopted to evaluate the validity of clustering as
shown in Eq.(23)-Eq.(26).

1) Silhouette coefficient (SC): The range of coefficient is
between [-1,1], and the closer to 1, the better the clus-
tering performance. ai is the average distance between

FIGURE 9. The daily load curve after PSO-KFCM clustering when the
number of clusters is determined to be 6.

the sample i and other points in the same category, and
bi is the minimum average distance from sample i to
other clusters

2) Davies-Bouldin index (DB): DB index describes the
distance between the clustering centers and the within
cluster divergence of samples. The smaller the index,
the better the clustering effect. si represents the average
distance between samples in cluster i.

3) Calinski-Harabasz index (CH): CH index is obtained
by the ratio of compactness to separation. Thus,
the larger the index, the more compact it is. Tr(Bk )
denotes the trace of between-clusters dispersion mean
matrix and Tr(Wk ) represents the trace of within-cluster
dispersion matrix.

4) Krzanowski-Lai index (KL): KL index can only be
applied to calculate clusters of two categories and
above. In order to achieve the best clustering effect,
KL index should be as large as possible. Wk is the
sum of the squares of the distances from the clustering
interior point to clustering center.

SC =
1
n

n∑
i=1

bi − ai
max(ai, bi)

(23)

DB =
1
k

k∑
i=1

max
j=1...k,i6=j

si + sj∥∥ci − cj∥∥22 (24)

CH =
Tr(Bk )
Tr(Wk )

×
n− k
k − 1

(25)

KL =

∣∣∣∣∣∣ (k − 1)
2
pWk−1 − k

2
pWk

k
2
pWk − (k + 1)

2
pWk+1

∣∣∣∣∣∣ (26)

Their comparison indicators are clearly displayed
in Table.2 and Fig.10. It can be seen from the results that
the three indices of SC, CH, KL are the highest and DB is
the lowest with 0.496, 1120.465, 1.575, 1.001, respectively,
proving that all the clustering validity is preferred over the
other three proposed methods. In addition, the clustering
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TABLE 2. The comparative table of four clustering validity indicators, SC,
DB, CH and KL between FCM, KFCM, GA-KFCM and PSO-KFCM method.

FIGURE 10. The comparative graph of four clustering validity indicators,
SC, DB, CH and KL between FCM, KFCM, GA-KFCM and PSO-KFCM method.

effect is enhanced by 31.9% compared with the traditional
FCM algorithm in term of SC. From the comparison results
above, the effectiveness of the proposed method is verified.

C. PREDICTIVE MODELING
The dataset is divided into 80% training set (January 01,
2006 to December 31, 2009,1461 days) and 20% (January 01,
2010 to December 31, 2010,365 days) test set. Among them,
the training set is employed for daily load curve clustering and
training prediction model, the test set is used to determine the
similar cluster and as the input in the trained model.

In this paper, the default prediction model is multivariable
and multi-step CNN-LSTM (MMCNN-LSTM). The overall
network composition is distinctly expressed in Fig.11. Each
time step has a total of 21 dimensions of load features, such
as the current moment Lt , the previous moment Lt−1, the first
2 moments Lt−2, the first 48 moments Lt−48 of load, . . . ,
the current temperature Tt , humidity Ht , wind speedWt , . . . ,

electricity price Pt etc. The input is a 48*21 matrix repre-
senting time steps and the number of load features. A dou-
ble convolution layer with 128 convolution kernel of size
2 extracts features and the extracted time series are com-
pressed by a max pooling layer of size 2. To avoid the model
from overfitting, dropout layers are added with a probability
of 0.1. Set the amount of LSTM hidden layer units to 200,
since the load is only predicted one day ahead, the output
displayed is 48 dimensions. These network parameters are

FIGURE 11. The network structure of the proposed multivariable and
multi-step CNN-LSTM model.

continuously adjusted through predictive experiments before
they are obtained.

With the purpose of certifying the hybrid model’s supe-
riority proposed in this paper, three indexes are selected
for prediction evaluation, namely, root mean square error
(RMSE), mean absolute error (MAE), mean absolute percent
error (MAPE) [40]. Suppose the original data is y and the
predicted data is ŷ, these calculation formulas are shown as
Eq.(27)-Eq.(29) respectively.

RMSE =

√√√√1
n

n∑
i=1

(ŷi − yi)
2 (27)

MAE =
1
n

n∑
i=1

∣∣ŷi − yi∣∣ (28)

MAPE =
100%
n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (29)

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT I
The predictive experiment platform is Jupyter Notebook,
the framework are Tensorflow (GPU) and Keras, and the
device configuration is NVIDIA Titan xp and Intel(R)
Xeon(R) CPU E5-2620 and RAM 16G.

In the first experiment, the PSO-KFCM clusering model
and the model without pretreatment were compared while
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keeping the other variables the same. Selected local 30-day
data, a total of 30*48 time steps as observations. When an
unpreprocessed forecast is settled upon, the observations are
the last 24 days of the training set and the first 6 days
of the test set. When the PSO-KFCM clustering data are
imported into prediction model, the observations are the last
24 days of a certain cluster in the training set and the first
6 days of a similar cluster based on cosine similarity in the
test set. The clustering data has been given in mentioned
Section III(B), and the cluster label ‘‘Cluster 5’’ is selected
in this investigation.

The two vectors of cosine similarity are determined as
influencing factor of the predicted day and average influenc-
ing factor of within-cluster. The prediction model’s input is
in form of daily maximum temperature Tmax, minimum tem-
perature Tmin, average temperature Tavg, maximum humid-
ity Hmax, minimum humidity Hmin, average humidity Havg
and so on, within-cluster is the average of all days in the
same format. The determination of similar cluster is based
on the maximum cosine similarity principle. Among them,
the cosine similarity data operated to determine the similarity
of two samples (Two of the six days) are shown in Table.3.
According to the two largest cosine similarity, 0.925 and
0.897, respectively, it can be indeed confirm that the two test
samples belong to ‘‘Cluster 5’’.

TABLE 3. The cosine similarity belonging to 6 clusters and determination
of similar cluster.

The comparative graph of 6-day forecast data between
the model without pretreatment and the PSO-KFCM clus-
tering model are clearly depicted in Fig.12(a) and Fig.12(b)
respectively. Obviously, the data after PSO-KFCM clustering
present a regular periodicity, which relatively alleviate the
predictive hindrance. Through local amplification, especially
the prediction accuracy of peak and valley values have been
greatly upgraded. The detailed RSME, MAE and MAPE of
the two methods are presented in Table.4(a) and Table.4(b)
respectively. It should be noted that the maximum MAPE
value of the clustering model 0.83% is also fewer than the
minimum of the model without pretreatment 1.81% within
these six days. On the whole, the three indexes of the model
after pretreatment are 82.71, 61.86 and 0.67% on average,
which is almost one-third of the unpreprocessedmodel. Com-
pared with the unpreprocessed model, the average MAPE
value of the assembled model is acutely dropped by 1.51%,
which amply verifies the superiority of PSO-KFCM pretreat-
ment and method for determining similar clusters by cosine
similarity. In order to further observe the prediction accuracy,
experiments II and III were carried out.

FIGURE 12. The comparative graph of 6-day forecast data between the
model without pretreatment and the PSO-KFCM clustering model.

TABLE 4. The comparative table of three predictive evaluation indexes,
RMSE, MAE, MAPE between the model without pretreatment and the
PSO-KFCM clustering model.

B. EXPERIMENT II
To certify the supremacy of multivariate and multi-step input
approach on the foundation of original clustering logic, com-
pare with the other three input modes, namely, univariate
and single-step CNN-LSTM (USCNN-LSTM), univariate
andmulti-step CNN-LSTM (UMCNN-LSTM),multivariable
and single-step CNN-LSTM (MSCNN-LSTM). The univari-
ate model represents only a single historical load data as a
theoretical support without taking into account all influenc-
ing factors let alone fuzzy mapping. Similarly, just one step
data will be predicted in single-step model, even insufficient
outputs result in overlapping predictions. In order to preserve
the consistency of other settings, set the optimizer to ’Adam’,
the learning rate is ’0.001’ and the maximum number of
iterations is 100.
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FIGURE 13. The comparative graph of CNN-LSTM model between four
different input modes on January 14, 2010.

TABLE 5. The comparative table of three predictive evaluation indexes,
RMSE, MAE, MAPE between four different input modes on January 14,
2010.

January 14, 2010 was selected as the prediction date. Using
the above clustering data and calculating cosine similarity,
the label of similar cluster is determined as ‘‘Cluster 6’’.
Fig.13 indicates the comparisons between four different input
modes on that day and the complicated indexes are shown
in Table.5 and Fig.14. From the chart above, it can be clearly
observed that the outcomes of multivariate model are more
likely to superior than those of the univariate model in case
of keeping output step size constant. From the perspective of
elaborate MAPE value, The MS model decreases by 0.59%
over the US model and the largest accurate enhancement is
in MM model, which is a 0.7% dramatic decline compared
to UMmodel. This justifies seamlessly why it is necessary to
consider numerous influencing factors and fuzzy mapping,
which provides with a admirable theoretical basis. Main-
taining the input variables as constant, US model and UM
model, MS model and MM model are compared, and the
precise improvement is between 0.41% and 0.52% in term of
MAPE. Multi-step models are acknowledged due to precise
accuracy and prominent applicability to the STLF domain for
multi-time forecasting.

In this entire procedure, the time taken by the US model
(Training and prediction), UM model (Training and predic-
tion), MS model (Clustering, training and prediction) and
MM (Clustering, training and prediction) model are 20s,
22s, 30s and 33s, respectively. Although the present model
spends more time in training and clustering process than

FIGURE 14. The comparative graph of three predictive evaluation
indexes, RMSE, MAE, MAPE between four different input modes on
January 14, 2010.

FIGURE 15. The curve chart of train loss and validation loss in
MMCNN-LSTM model.

its partner, the high accuracy criterion still better meets the
realistic demands. The mean square error (MSE) loss curve
of MMCNN-LSTM model is exhibited in Fig.15. The train
loss and validation loss are evidently decline and eventually
stabilize. Combined with the fitted curves, which are almost
identical in magnitude and direction, these are distinguished
signs that it has outstanding fitting ability and appropriate
network parameter settings. In a nutshell, the results clearly
indicate that the proposed MMCNN-LSTM model is more
capable of finishing the STLF task than its counterparts
regardless of precision and adaptability.

C. EXPERIMENT III
In the first two experiments, the advantages of cluster-
ing preprocessing and the optimal input pattern have been
demonstrated. The overall effect will verified by compar-
ing with alternative unclustered DNN-based models in the
following step. Multilayer perceptron (MLP), gate recur-
rent unit (GRU), bidirectional recurrent neural network
(Bi-RNN), extreme gradient boosting (XGBoost) and
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TABLE 6. The comparative table of max MAPE, min MAPE and average
MAPE of the entire test set between the proposed model and other DNN
baseline models.

FIGURE 16. The MAPE distribution graph of the entire test set between
the proposed model and other DNN baseline models.

conventional LSTM with certain impacts in the domain of
time series forecasting have been handpicked. Taken as a
whole, the entire test set was determined to be predicted since
MAPE existed for each day.

Table.6 indicates the detailed evaluation parameters of
the six models in terms of max MAPE, min MAPE, aver-
age MAPE and Fig.16 provides a visual representation of
the MAPE distribution. From these six groups of results,
it is obvious that poor presentation of the single LSTM
model and GRU model with maximum mape higher than
5%. As the more prevalent XGboost model whose average
mape reaches 2.16% in deep learning over recent years has a
20.9% heightened accuracy over the traditional MLP model,
which is second only to the novelty admixture. As can be see,
the proposed method produces better prediction results, with
a decent in average MAPE value from 0.82% to 3.31%. The
results show that the proposed method significantly upgrades
predictive accuracy in comparison with unprocessed DNN
baseline models. In addition, the difference between the max-
imum and minimum is only 1.92%, however, the GRU and
Bi-RNN model are 4.29%,2.68% respectively, which proves
to play prettily in the stability of predictions as well.

V. CONCLUSION
Short-term load forecasting is a basic work for daily operation
of power grid. This paper presents a STLF method based

on PSO-KFCM daily load curve clustering and CNN-LSTM
model. This comprehensive technique taken historical load
data and influence factors (meteorology, date type, econ-
omy and others) into account, where historical load data
were normalized and influencing factors were fuzzy mapped
according to the Pearson correlation coefficient. The novel
PSO-KFCM algorithm clusterd the preprocessed daily load
curves, which not only solved the problem of sensitivity of the
initial clustering center, but also greatly improved the cluster-
ing quality. The clustering experiment shown that the number
of clusters was determined as 6 by sum of squared error index
and the 31.9% improvement in Silhouette coefficient over
conventional FCM algorithm. Besides the Silhouette coef-
ficient, Davies-Bouldin index, Calinski-Harabasz index and
Krzanowski-Lai index were operated in clustering validity
indicators as well. The cosine simlarity mainly for multidi-
mensional positive space was selected as the indelible bridge
between clustering label and prediction model. Multivariate
and multi-step CNN-LSTM was focused on predicting load
data for the next 24h in half-hourly steps and the accuracy
was verified by root mean square error, mean absolute error,
mean absolute percent error. This hybrid prediction integrates
the advantages of both, feature extraction capability and long
time series processing potential. Finally, contrasted with the
model without clustering, three other input models, and five
DNN baseline models, the extensive comparative results have
confirmed the high-precision and excellent practicality and
stability of the proposed model.

The PSO-KFCM method and CNN-LSTM model pro-
posed in this paper are not only limited to short-term load
forecasting, but also can be applied to other deep learning
contents, such as bearing fault diagnosis, signal pattern recog-
nition, intelligent visual sorting, etc.
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