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ABSTRACT A robust model predictive control (MPC) with bi-level optimization is proposed for nonlinear
boiler-turbine system. The nonlinear dynamics are described by multiple local models linearized at distinct
operating points. A global linear parameter varying (LPV) model is constructed by combining the linearized
local models. In order to combine the local models smoothly, an exponential weighting coefficient deter-
mined by the system states is applied. The bi-level optimization is proposed to optimize the control moves
and control policy respectively. A controller model is designed as the inner optimization to calculate the
suitable control policy under different operating conditions. The closed-loop robust MPC is designed to
optimize the control moves to improve economic performance. Simulations under wide operating conditions
have demonstrated the effectiveness of the proposed robust MPC method, by applying which the economic
performance of the nonlinear boiler-turbine system is improved.

INDEX TERMS Dynamic control policy, model predictive control, nonlinear system, linear parameter
varying model.

I. INTRODUCTION
The dynamics of boiler-turbine system are typically
multi-variable, constrained and highly nonlinear [1]–[5].
Boiler-turbine system is a crucial component for drum-type
of power plant, which transforms fuel energy into mechanical
energy to drive the turbine and then generate electricity.
The output electric power of boiler-turbine system is usually
required to be regulated accurately according to the grid
and load demand, while the internal variables such as steam
pressure, temperature and drum water level should be kept
within the desired ranges. Generally, drum water level needs
to be adjusted to closely around the centerline of the drum,
while drum steam pressure is required to be working within
a safe range. Meanwhile, the input signals for various control
valves need to satisfy the associated physical constraints
imposed on actuators.

It is challenging to control such a complicated and
highly nonlinear system as boiler-turbine system. The most
intractable thing is to maintain the process working smoothly
over wide operating conditions. The success of control tech-
nology depends not only on perfect control algorithm, but
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also on accurate model. Many efforts have been made in
the modeling for boiler-turbine system. In the early models
derived from first principles [2], [3], the dynamic charac-
teristics of nonlinear system are not fully captured. This
stimulated the further development of control technology
for nonlinear system. In recent years, various techniques,
such as fuzzy logic [6]–[8], system identification [9], [10],
and piecewise affine modeling [11], are utilized to modeling
the boiler-turbine system. Besides, the change of operating
conditions will bring about further nonlinearities. In order
to improve the control performance for the nonlinear sys-
tem operating over a wide range, in [13], multiple mod-
els linearized at nine distinct operating points and a global
nonlinear multi-variable compensator were designed for the
GE-21 jet engine. Keshavarz et al. in [11] proposed the
hybrid piecewise affine(PWA) model which was linearized
at five typical operating points. Considering the nonlinear-
ity of the transitional dynamics between different operating
points, a multiple model LPV approach has been proposed
for the modeling, and achieved satisfactory approximation.
In addition, LPV model has been extensively applied to dealt
with the model uncertainty [14]–[21]. In this paper, the non-
linear dynamics of the boiler-turbine system is approximated
by a global LPV model established by the combination

48244 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-6398-4826
https://orcid.org/0000-0001-7364-3101
https://orcid.org/0000-0002-9864-1791
https://orcid.org/0000-0003-0961-8758


L. Wang et al.: Robust Model Predictive Control With Bi-Level Optimization for Boiler-Turbine System

of multiple local models linearized at different operating
points.

Due to the complexity and nonlinearity, various control
strategies have been applied to the controller design for
boiler-turbine system, such as gain-scheduled method [22],
fuzzy control [6]–[8]. Artificial intelligence techniques are
also applied to boiler-turbine controller design. In [12],
genetic algorithm (GA) was applied to the control sys-
tem to achieve good steady-state tracking performance.
In [24], a radial basis function neural network was utilized
to approximate the dynamic behaviour of the boiler-turbine
system over a wide operating range. For the past few
decades model predictive control(MPC), with the outstand-
ing advantages in handling multi-variable constraints, has
attracted extensively attention both in academia and in indus-
trial [19], [25]–[27]. A new coordinated control strategy by
combining min-max MPC with moving horizon estimation
(MHE-MPC) was proposed in [28] to deal with the unmea-
sured disturbance for boiler-turbine system, in which the
bounded stochastic disturbance and dead characteristics of
inputs have been effectively suppressed. All of these meth-
ods applied to linear time-invariant system have achieved
good tracking performance. In order to improve the con-
trol performance of nonlinear system, Zhu et al. in [29]
investigated nonlinear predictive control strategy based on
local model network for a 500 MW coal-fired boiler-turbine
system, in which the nonlinear optimization problem was
solved by the immune genetic algorithm. However, due to
the model uncertainty, the future state predictions of robust
MPC are uncertain. Only optimizing the control moves and
utilizing a specified feedback control policy cannot ensure the
satisfactory control. Therefore, a more sophisticated strategy
is expected to optimize both the control policy and control
moves at each iteration.

Motivated by these considerations, we develop the
closed-loop robust MPC with bi-level optimization for the
nonlinear boiler-turbine system. The main contributions are
as follows:

(1) a global polytopic model representing the model uncer-
tainty is constructed by combining multiple local models,
by applying which, the accuracy of state predictions for the
uncertain nonlinear system is improved.

(2) a controller model is designed to calculate the suitable
control policy according to the changing operating condi-
tions, which is obtained by solving a quadratic problem.

(3) a closed-loop robust MPC algorithm with bi-level opti-
mization is presented, where both the control moves and the
control policy are optimized, which is amore rational strategy
to improve the control performance for an uncertain nonlinear
system.

II. GENERAL DESCRIPTION OF BOILER-TURBINE SYSTEM
The main components of a boiler-turbine system include the
furnace, drum, riser, downcomer, superheater and reheater.
The heat from superheater supplied to the risers causes water
boiling. Feed-water is supplied to the drum, and saturated

steam is passed from the drum to the superheater and the
turbine. Maintaining the water level moderate is an important
criterion both for the plant protection and for the equipment
safety. However, the water level may vary with the load.
So the water level must be supervised closely and a good
controller is required to regulate the drum water level.

Åström-Bell boiler-turbine dynamic model [2] developed
for 160 MW fossil fueled boiler-turbine-alternator power
generation units has been widely investigated. The model is
established based on the first principle. The nonlinear model
captures the essential dynamics of the boiler-turbine system,
inwhich the drum pressure and power dynamics are described
by the extention second order nonlinear model, and the drum
water level dynamics is represented by an extra evaporation
equation and the fluid dynamics. The nonlinear model is
expressed in (1)

ẋ1 = −− 0.0018u2x
9/8
1 + 0.9u1 − 0.15u3

ẋ2 = (0.073u2 − 0.016)x9/81 − 0.1x2

ẋ3 =
[141u3 − (1.1u2 − 0.19)x1]

85
y1 = x1
y2 = x2

y3 = 0.05(0.13073x3 + 100αcs +
qe
9
− 67.975) (1)

where u1, u2, u3 are the normalized inputs to the plant,
namely fuel, control and feedwater actuator positions, respec-
tively. x1, x2, x3 are drum steam pressure (kg/cm2), power
output (MW), and the density of fluid in the system (kg/m3),
respectively. The output y3 denotes the drumwater level (cm),
which is calculated by the following algebraic calculations
αcs and qe:

αcs =
(1− 0.001538x3)(0.8x1 − 25.6)
x3(1.0394− 0.0012304x1)

qe = (0.845u2 − 0.147)x1 + 45.59u1 − 2.514u3 − 2.096

(2)

where αcs is the steam quality and qe is the evaporation
rate(kg/s).

In the controller design, the physical limitation imposed on
valves should not be violated. The normalized constraints of
the corresponding control valves are

0 < u1, u2, u3 < 1 (3)

The constraints of the change rate of control inputs are

|
du1
dt
| ≤ 0.007

|
du3
dt
| ≤ 0.05

|
du2
dt
| ≤ 0.2 (opening or upper rate)

|
du2
dt
| ≤ 2 (closing or lower rate) (4)

Fig. 1 illustrates the realization of the actuator dynamics.
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FIGURE 1. The block diagram of actuator dynamics [2].

TABLE 1. Different operating points.

The dynamics of the boiler-turbine system are complex
and nonlinear. Moreover, under different working conditions,
the operating points may vary with the change of economic
considerations. Thus causes main dynamic characteristics,
such as drum pressure, power output andwater level deviation
to vary significantly. The collection of operating points for
160 MW boiler-turbine system is shown in table 1.

III. GLOBAL LPV MODEL
In this paper, several local linearized models are obtained
for boiler-turbine system by employing Taylor’s expansion
approximation at different operating points. By combining
the local linearized models, a global LPV model is con-
structed.

A. LOCAL LINEARIZED MODEL
In light of the experiences in [13], [23], several operating
points (No.2,No.4,No.6) in table 1 are chosen to represent
the typical operating conditions for the boiler-turbine system
working over a wide range. No.2 operating point is working
at 80% of half load point, No.4 is at the half load point and
No.6 at 120% of the half load point.

The nonlinear boiler-turbine system (1) can be expressed
in the following form:

ẋ = f (x, u)

y = g(x, u) (5)

By applying the Taylor’s expansion and only retaining the
linear terms, the linearized model is obtained

δẋ = Ăoδx + B̆oδu

δy = C̆oδx + D̆oδu (6)

where Ăo, B̆o, C̆o, D̆o are constant matrices defined at the
operating point,

Ăo =
∂f
∂x
|(xo,uo), B̆o =

∂f
∂u
|(xo,uo)

C̆o =
∂g
∂x
|(xo,uo), D̆o =

∂g
∂u
|(xo,uo) (7)

For such a nonlinear system as boiler-turbine system, its
operating points may vary with the operating conditions as
in table 1. So the linearized local models obtained at different
operating points are distinct. The corresponding matrices of
the linearized model at the operating point l(l = 1, . . . ,M )
are given by

Ăl =

0.0018u2x1/81 0 0
−0.016x1/81 −0.1 0
0.19/85 0 0

 ∣∣∣∣
(xl ,ul )

B̆l =

0.9 −x9/81 −0.15
0 0.073x9/81 0
0 −1.1/85 141/85

 ∣∣∣∣
(xl ,ul )

C̆l =

 1 0 0
0 1 0

−0.147/9 0 0.05 ∗ 0.13073

 ∣∣∣∣
(xl ,ul )

D̆l =

 0 0 0
0 0 0

45.59/9 0.845/9x1 −2.514/9

 ∣∣∣∣
(xl ,ul )

B. GLOBAL LPV MODEL CONSTRUCTED BY WEIGHTING
INTERPOLATION
A local linearized model can approximate the dynamics of
nonlinear process only within a small range around the oper-
ating point. Considering the transition dynamics between dif-
ferent operating points, a global model is expected. By com-
bining multiple local models, the global model can be con-
structed by

ẋg =
M∑
l=1

αl ẋl

yg =
M∑
l=1

αlyl (8)

where the parameter vector αl represents the normalized
effectiveness that the lth local model contributes to the global
model of the system. T is a scheduling variable representing
the operating condition and O denotes the validity width of
each local model. In order to combine M local models into
a global model smoothly at each sampling instant, an expo-
nential weighting coefficient wk is designated for each local
model l,

wl,k = exp(
−(Tcl − Tmk )2

2(O2
l )

) (9)

where Tmk is the measurement of the scheduling variable at
time k , Tcl(l = 1, 2, . . . ,M ) is the center of the scheduling
variable for the lth local model, i.e., the value of the operating
point, and Ol denotes the validity width for the lth local
model. By normalizing the weighting coefficient (9), one
yields

αl,k =
wl,k
M∑
l=1

wl,k

(10)

48246 VOLUME 9, 2021



L. Wang et al.: Robust Model Predictive Control With Bi-Level Optimization for Boiler-Turbine System

The parameter vector αl,k is non-negative, and the following
relation holds:

M∑
l=1

αl,k = 1 (11)

Suppose the M non-negative coefficients αl,k (with l =
1 · · ·M ) such that: [Ag|Bg] =

∑M
l=1 αl[Ăl |B̆l]. Then a global

polytopic model based on the M vertices can be constructed
as follows:

ẋg =
M∑
l=1

αl Ălxl +
M∑
l=1

αl B̆lul

= Agxg + Bgug (12)

where Ag,Bg are the coefficient matrices of the global model.
By discretizing, the global dynamic model at time k is
expressed as follows:

xg,k+1 = Ag,kxg,k + Bg,kug,k (13)

where k is the sampling instant. At time k , αl,k for the
local model l is known, then the current coefficient matrices
Ag,k ,Bg,k are determined.
By omitting the subscript g in (13), the global model is

expressed as

xk+1 = Akxk + Bkuk (14)

Let � denote the convex hull defined by [Ăl |B̆l](l =
1, . . . ,M ), i.e. � = Co{[Ă1|B̆1], . . . , [AM |B̆M ]}, where
[Ăl |B̆l] is defined as the vertex of the polytope. The corre-
sponding nominal model of (14) is denoted as

x̄k+1 = Ax̄k + Buk (15)

where the nominal coefficient [A|B] = 1/L
∑L

l=1[Ăl |B̆l]. x̄k
denotes the nominal state.

Since the real-time value of the coefficient αl,k can be
obtained from (9) and (10), the real-time values of the param-
eters [Ak |Bk |Ck ] are known.

C. ECONOMIC OBJECTIVE FUNCTION
The process optimization for boiler-turbine system is a
multi-objective optimization problem, more details are
referred to [31]. The load-tracking, heat-rate, steam pressure,
temperature and the drum water level are required to be
considered. In general, priority is given to power generation.
When the load demand is given, the fuel consumption and
feedwater are expected to be reduced as much as possible.
Meanwhile, the steam valve is expected to be opened wide
enough so as to reduce the throttling losses. Similar criterion
is used for the control of the feedwater valve. Thus the global
economic objective function is designed as follows:

J = β0x2e2,k+1 + β1u1,k − β2u2,k − β3u3,k (16)

where β0, β1, β2, β3 are the weighting coefficients. xe
denotes the deviation of state variable

xe2,k+1 = |Euld − x2,k+1| (17)

where Euld is the unit load demand, xe2 denotes the error
between the power generation and the load demand.

D. CONSTRAINTS ON VARIABLES OF GLOBAL LPV MODEL
The magnitudes of the control inputs in (14) are required to
satisfy 0 < ui < 1, i = 1, 2, 3. Denote 1uk as the deviation
of manipulated variable between the current time step and
the previous time step, i.e. 1uk = uk − uk−1. Assume the
sample time interval is T , the change rates of control inputs
are required to satisfy

|1u1,k | ≤ 0.007T

|1u3,k | ≤ 0.05T

|1u2,k | ≤ 0.02T (opening or upper rate)

|1u2,k | ≤ 2T (closing or lower rate) (18)

IV. ROBUST MPC WITH BI-LEVEL OPTIMIZATION
Due to the model uncertainty, the future dynamics of the
global LPV model is uncertain. So a controller model to cope
with the model uncertainty is incorporated into the robust
MPC. By adding the controller model, combining with the
global dynamic model (14), the economic objective func-
tion (16) and the magnitude constraints, the new robust MPC
is formulated as follows:

min
x̃r,k+1,ũr,k

∑
k

{
β0x2e2,k+1

+β1u1,k − β2u2,k − β3u3,k

}
(19a)

s.t. uk = fNMPC (xk+1, x̃r,k+1, ũr,k ) (19b)

xk+1 = Akxk + Bkuk (19c)

umin ≤ uk ≤ umax (19d)

k = 0, . . . ,N − 1

where xk = xk|k , x̃r,k+1 = (xTr,k+1, . . . , x
T
r,k+N )

T and ũr,k =
(uTr,k , . . . , u

T
r,k+N−1)

T are the virtual reference value. N is
the predictive horizon. fNMPC (xk+1, x̃r,k+1, ũr,k ) is the control
policy determined by the nominal MPC. (19c) is the process
dynamic model.

The robust MPC as in (19) is a bi-level optimization prob-
lem, the framework of which is shown in Figure 2. The outer
optimization is designed to minimize the economic perfor-
mance of boiler-turbine system, and the inner optimization is
designed to optimize the nominal control policy. At each time
step, both control moves and the control policy are optimized.

A. PREDICTION OF THE VERTEX STATES
Suppose that the state xk in the global LPV model (14) is
undetectable, the output yk is measurable. Then the real-time
value of the state can be estimated by

x̂k = xk|k−1 + Lx(yk − Ckxk|k−1) (20)

where Lx is the Kalman filter gain for x. x̂k is the estimated
state.
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FIGURE 2. Framework of the closed-loop robust MPC with bi-level
optimization.

Although the estimated state at the next time step can
be obtained by the state observer, the future estimated state
xk+1+i|k , i ≥ 1 cannot be obtained. In order to obtain a correct
prediction of the process future behavior for the polytopic
model, the open-loop model predictive control method is
applied, which is proposed by Ding in [32] by optimizing the
vertex control moves to improve the dynamic prediction. For
the uncertain nonlinear system, the control moves at future
time step are uncertain. So, in this paper, a controller model
is designed to determine the decision variables according
to the updating nominal control policy at each time step.
Let the control horizon and the predictive horizon be the
same N . For the polytopic model, the vertex control moves
dependent on the vertex values of polytope, are defined by
uk|k , u

l0
k+1|k , . . . , u

lN−2···l0
k+N−1|k ,lj ∈ {1, . . . ,L}, j ∈ {0, . . . ,N −

2}. The vertex next state predicted at time k can be obtained
by

x l0k+1|k = Ăl0xk|k + B̆l0uk|k (21)

x li···l0k+j+1|k = Ălix
li−1···l0
k+j|k + B̆liu

li−1···l0
k+j|k (22)

where j ∈ {1, . . . ,N−1}, li ∈ {1, . . . ,L}, i ∈ {0, . . . ,N−1}.
Based on (14), the future estimated states of the global LPV

model are predicted by

xk+1|k = Akxk|k + Bkuk|k

=

L∑
l0=1

αl0,k [Ăl0xk|k + B̆l0uk|k ]

=

L∑
l0=1

αl0,kx
l0
k+1|k (23)

xk+2|k = Ak+1xk+1|k + Bk+1uk+1|k

=

L∑
l1=1

αl1,k+1[Ăl1

L∑
l0=1

αl0,kx
l0
k+1|k

+B̆l1

L∑
l0=1

αl0,ku
l0
k+1|k ]

=

L∑
l1=1

L∑
l0=1

αl1,k+1αl0,kx
l1l0
k+2|k

... (24)

Assume x(k|k) = x̂(k). Then the state estimated prediction at
the future time can be written in a vector form


xk+1|k
xk+2|k
...

xk+N |k

 =
L∑

l0···lN−1=1

(
N−1∏
h=0

αlh,k+h


x l0k+1|k
x l1l0k+2|k
...

x lN−1···l0k+N |k

) (25)

where
L∑

l0···lN−1=1
(
∏N−1

h=0 αlh,k+h) = 1, i ∈ {1, . . . ,N }.

According to (25), the state predictions xk+i|k , i ∈
{1, . . . ,N } are parameter dependent. As in [33], all the vertex
state predictions can be denoted by adopting a tree-type
structure, in which the total number of the prediction vertex
L is dependent on the number of multiple local models L and
the predictive horizon N , that is L = LN .
Based on the equations (23) and (24), the future prediction

of the global LPV at the future time is expressed as


x l0k+1|k
x l1l0k+2|k
...

x lN−1···l0k+N |k



=


Ăl0
Ăl1 Ăl0
...

N−1∏
i=0

ĂlN−1−i

 xk|k

+



B̆l0 0 · · · 0

Ăl1 B̆l0 B̆l1
. . .

...
...

...
. . . 0

N−2∏
i=0

ĂlN−1−i B̆l0
N−3∏
i=0

ĂlN−1−i B̆l1 · · · B̆lN−1



×


uk|k
ul0k+1|k
...

ulN−2···l1l0k+N−1|k

 (26)
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The above equations (25) and (26) can be summarized as
xk+1|k
xk+2|k
...

xk+N |k

 = Akxk|k + Bk ×


uk|k
ul0k+1|k
...

ulN−2···l1l0k+N−1|k

 (27)

where

Ak =

L∑
l0···lN−1=1

(
N−1∏
h=0

αlh,k+h ×


Ăl0
Ăl1 Ăl0
...

N−1∏
i=0

ĂlN−1−i

 (28)

Bk =



B̆l0 0 · · · 0

Ăl1Bl0 B̆l1
. . .

...
...

...
. . . 0

N−2∏
i=0

ĂlN−1−i B̆l0
N−3∏
i=0

ĂlN−1−i B̆l1 · · · B̆lN−1


(29)

The combination coefficients αlh, h ∈ {0, . . . ,N−1} for each
local model are known. The future real control moves uk+j|k ,
for any j > 0, are uncertain and can be defined by

uk+j|k =
L∑

l0···lj−1=1

{{ j−1∏
h=0

αlh,k+h

}
× u

lj−1···l0
k+j|k

}
j = 1 . . .N − 1 (30)

where
L∑

l0···li−1=1

(∗) =
L∑

l0=1

· · ·

L∑
li−1=1

(∗)

The future real control moves uk+j|k , j ∈ {1, . . . ,N − 1}

are parameter dependent. Since
L∑
li=1

αli = 1, each uk+j|k is

uncertain and can be regarded as a convex combination of
its vertex control moves u

lj−1···l0
k+j|k , j ∈ {1, . . . ,N − 1}. Hence,

in the new closed-loop robust MPC, the control moves are
determined by the nominal MPC control policy fNMPC at each
time step.

B. INNER OPTIMIZATION PROBLEM DETERMINING THE
CONTROL POLICY
In the closed-loop MPC with bi-level optimization, the inner
optimization problem is a nominal MPC, which is designed
to optimize the control policy. At each time step, the optimal
control policy is obtained by solving the following Quadratic
Program (QP):

min
ui

∑
i

{
(x̄i+1 − xr,i+1)TQ(x̄i+1 − xr,i+1)

+

∑
i

(ui − ur,i)TR(ui − ur,i)
}

(31a)

s.t. x̄i+1 = Ax̄i + Bui (31b)

umin ≤ ui ≤ umax (31c)

i = k, . . . , k + N − 1

where Q,R are the weighting matrices for states and control
moves, respectively. (31b) is the nominal model. {xr,i+1, ur,i}
is the virtual reference variables at time i.

C. SOLUTION FOR THE INNER OPTIMIZATION
It is intractable to solve the bi-level optimization problem (19)
in real time. Li in [27] has proposed a successful way to solve
this kind of problem by transforming the bi-level optimization
problem into a tractable single-level optimization problem.
The main idea to do that is to convert the effective inequality
constraints into equality constraints, then to solve the equiva-
lent QP problem by utilizing the first order optimality condi-
tions. Since physical constraints can never be violated at any
time. Suppose that a bound on a decision variable at each time
step is either active or inactive for all the realizations of the
system. By removing the inactive bounds and transforming all
the active bounds into equality constraints, a QP problemwith
equality constraints equivalent to (31) is formulated. Then,
the equivalent QP problem is solved by using the first order
optimality condition,

2ÃT Q̃Ãx̄0 − 2xTr,1Q̃Ã+ 2(ÃT Q̃B̃T + Q̃B̃+ R̃)ui
+2B̃T Q̃Ãx̄0 − 2xTr,1Q̃B̃− 2uTr R̃

+λ+ − λ− = 0 (32a)

umin ≤ ui ≤ umax (32b)

where (32a) is stationary condition. λ+ and λ− are the
Lagrange multipliers. Complementarity constraints on the
decision variables are as follows:

λ+(ui − umax) = 0,λ−(−ui + umax) = 0, λ+,λ− ≥ 0

(33)

The decision variables ui are determined by

ui = (ÃT Q̃B̃T + Q̃B̃+ R̃)−1 × [−(ÃT + B̃T )Q̃Ãx̄0
+(ÃT + B̃T )T Q̃xr,1 + R̃Tur − (λ+ − λ−)/2] (34)

Since only the first control move is sent to the plant and
implemented, partial information of ui is required. An iden-
titymatrix Ipu is designed to pick up the values of the effective
decision variables at the current time step. Thus, uk = Ipu ×
ui.

At time k , if no bound is active, the Lagrange multipliers
are zero. When some bounds on the decision variables are
active, the complementarity constraints and Lagrange mul-
tipliers can be substituted for equality constraints. Then the
controller model at time kth is formulated by

uk = Ipu × (ÃT Q̃B̃T + Q̃B̃+ R̃)−1 × [−(ÃT + B̃T )Q̃Ãx̄k
+(ÃT + B̃T )T Q̃xr,k+1 + R̃Tur,k ] (35)

At time k , only the values of the decision variable, not the
reference variables, are applied into the closed-loop MPC.
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So the combination of the virtue reference variables can
be defined as a new vector variable t, which is used as an
auxiliary variable to adjust the optimization of the robust
MPC,

tk = Ipu,k ·8 · [(ÃT + B̃T )T Q̃xr,k+1 + R̃Tur,k ] (36)

where 8 = (ÃT Q̃B̃T + Q̃B̃+ R̃)−1.
Then, rewrite (35) in linear form as follows:

uk = Kx x̄k + tk (37)

where

Kx = −Ipu ·8 · (ÃT + B̃T )Q̃Ã (38)

Thus the nominal control policy is obtained as in (37). Check
the physical constraints, once some decision variable is satu-
rated, the value of the corresponding decision variable is set
to its bound. Then the rest of the decision variables within the
bounds are optimized in the robustMPC. So active constraints
are required to be added into (37). Here a vector matrix Iδk
is introduced to specify the active constraints. The controller
model with active constraints can be expressed as follows:

uk = IδkKx x̄k + tk (39a)

(I − Iδk ) · tk = ub (39b)

where the vector ub represents all the active bounds. Iδk ∈
Rnu×nu is a diagonal matrix consisting of 0’s or 1’s. If any
bound on the decision variables ur,k is active, the correspond-
ing element in Iδk is set to 0, else set to 1. The active bounds
on the decision variables are obtained iteratively by using the
heuristic approach proposed in [27]. Substituting the control
policy (19b) with equations (39a) and (39b), the bi-level opti-
mization problem (19) is then transformed into a single-level
one.

D. SINGLE ROBUST MPC
According to the constrained control policy (39), the con-
troller model for the uncertain process at time k can be
approximately expressed as follows:

up,k = Kx,kxp,k + Kt,k tk (40)

where Kx,k = IδkKx , the subscript p in the variables
{up,k , xp,k} is used to differentiate the uncertain variable val-
ues from their nominal value. The uncertain process model at
time k is formulated by

xp,k+1 = Akxp,k + Bkup,k (41)

Based on (27) and (40),(41), the extended vector ξk =
(up,k−1, xp,k+1, xp,k ) is defined. Then equations (27)
and (40),(41) can be summarized as follows:

ξk+1 = Gξ,kξk + Gt,k tk , k = 0, . . . ,N − 1 (42)

where

Gξ,k =


0 0 Kx,k
0 Ak BkKx,k
0 LxCk+1Ak (Ak − LxCAk )
+(Bk − LxCBk )Kx,k
+LxCk+1BkKx,k

 (43)

Gt,k =

 Kt,k
BkKt,k

LxCk+1Bk+1Kt,k + (Bk − LxCBk )Kt,k

 (44)

Equation (42) is then transformed into the following explicit
formulation:

ξk+1 = (
k∏
i=0

Gξ,k−i)ξ0 +
k∑
i=0

(
(
k−1−i∏
j=0

Gξ,k−j)Gt,iti

)

= Gξ t,k

 t0
...

tN−1

+ Gξξ,kξ0 (45)

where

Gξξ,k =
k∏
i=0

Gξ,k−i,

Gξ t,k =
k∑
i=0

(
k−1−i∏
j=0

Gξ,k−j)Gt,i.

Suppose the initial estimation x̂0 is correct. Then the
closed-loop model is obtained

up,k = Gu1,k

 t0
...

tN−1

+Gu2,k (u−1x̂0
)
, k = 0, . . . ,N − 1

(46)

xp,k+1 = Gx1,k

 t0
...

tN−1

+Gx2,k (u−1x̂0
)
, k = 0, . . . ,N − 1

(47)

where the Gu1,k ,Gu2,k ,Gx1,k ,Gx2,k are uncertain parame-
ters.
Substituting (46) and (47) into formulation (19),

the bi-level robust MPC (19) can be transformed into the
following single-level optimization:

min
tk

∑
k

{
β0x2e2,k+1

+β1u1,k − β2u2,k − β3u3,k

}
(48a)

s.t. up,k = Gu1,k

 t0
...

tN−1

+ Gu2,k (u−1x̂0
)

(48b)

xp,k+1 = Gx1,k

 t0
...

tN−1

+ Gx2,k (u−1x̂0
)

(48c)

umin ≤ up,k ≤ umax (48d)

(I − Iδk ) · tk = ub (48e)

k = 0, . . . ,N − 1

According to (48), at each iteration, the control policy is
calculated by the controller model (48b). Then by solving

48250 VOLUME 9, 2021



L. Wang et al.: Robust Model Predictive Control With Bi-Level Optimization for Boiler-Turbine System

Algorithm 1 Overall Heuristic Algorithm
Step 0 Initialize (x0, u−1). Pre-specify the weighting matrices
Q,R, and coefficient matrices β0, β1, β2, β3.
Step 1 Calculate xk+1 by (20).
Step 2 Obtain xr,k+1, ur,k by solving the open-loop opti-
mization problem (19) without considering the control pol-
icy (19b).
Step 3 Substituting xr,k+1, ur,k into (31), obtain ui(i =
1, . . . ,N − 1) by solving (31).
Step 4 Check if any one (or more) decision variable violates
the physical constraints in (31c), then go to step 5; otherwise,
go to step 7.
Step 5 Set the decision variable that beyond constraint bound
to the bound values, set the corresponding δk = 0. Then
update ui.
Step 6 Substitute ui into (19a), resolve the optimization prob-
lem (19), go to step 3.
Step 7 Calculate up,k by equations (35) and (38).
Step 8 Solve the single-level optimization problem(48).
step 9 Increase k , go to step 1.

the optimization problem (48), a set of control moves are
obtained. Note that only the current optimal control move u∗k|k
is implemented in the plant.

E. OVERALL SOLUTION TO ROBUST MPC WITH MODEL
UNCERTAINTY
A heuristic method is utilized to solve the robust MPC with
model uncertainty. First, an initial solution up,k,0 is obtained
by solving problem (19) without any active bounds. Then,
the decision variables are substituted into (31c) to judge if
any of the decision variables which have not been set to
the constraint bounds exceed the physical constraints. For
the active constraints, the corresponding decision variables
are set to their bounds, meanwhile the equivalent equality
constraints are added into the inner optimization (31). Repeat
the procedure until all the decision variables in the solu-
tion are either fixed to their bounds or within the constraint
bounds. Thus the controller model is obtained as in (39),
and the control policy for the uncertain process model is
approximated with (40). Finally, a newly closed-loop robust
MPC with updating control policy is formulated as in (48).
Remark 1: Any decision variable set to its bound value

will remain valid for the subsequent iterations.
Remark 2: The solution is not globally optimal only if the

repeated procedure involves all the active bounds.

V. SIMULATION RESULTS
The robust MPC with controller model based on the global
LPV model is designed for the boiler-turbine system. The
objective is to minimize the economic performance of the
system. Simulation experiments are carried out to investigate
the performance of the proposed strategy. The sampling time
interval is set be 1s. In order to cover the whole dynamics for
the boiler-turbine system operating in a wide range, the local
models used to construct a global LPV model are linearized
at operating points No.2, No.4, No.6, respectively. The corre-

FIGURE 3. Dynamic response of states from operating point No.4 to No.6.

sponding coefficient matrices are as follows:

Ă1 =

0.001729 0 0
0.02794 −0.1 0
0.002235 0 0


Ă2 =

0.002230 0 0
−0.02872 −0.1 0
0.002235 0 0


Ă3 =

0.002712 0 0
−0.0294 −0.1 0
0.002235 0 0


B̆1 =

0.9 −150.8613 −0.15
0 11.01288 0
0 −0.1294 1.6588


B̆2 =

0.9 −193.91068 −0.15
0 14.15548 0
0 −0.01294 1.65884


B̆3 =

0.9 −238.88356 −0.15
0 17.4385 0
0 −0.01294 1.65884


C̆1 = C̃2 = C̃3 =

1 0 0
0 1 0
0 0 6.5365e− 3


The coefficient matrices of nominal model (15) are

A =

 0.0022 0 0
−0.0101 −0.1 0
0.0022 0 0


B =

0.9000 −194.5518 −0.1500
0 14.2023 −0.0500
0 −0.0518 1.6588


C = C̆1 = C̆2 = C̆3

Based on equations (9),(10),(11), the widths of each local
model are pre-specified as O1 = 5.4, O2 = 5.5,O3 = 5.3,
respectively. The filter gain L0 = [1; 1; 1] and the prediction
horizon N = 3.
The dynamic response and economic performance of the

robust MPC is first tested under different operating condi-
tions. The weighted coefficients β0 = 0.01, β1 = 15,
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FIGURE 4. Control variables.

FIGURE 5. Dynamic response of states from operating point No.1 to No.7.

β2 = 5.27, β3 = 6.77, and the weighting matrices Q = diag
{0.01; 0.01; 0.01}, R = diag{10; 10; 10}. When the operat-
ing condition is varying from operating point No.4 to No.6,
the dynamic responses of the states of boiler-turbine system
under are shown in Fig. 3, and the response of the control
variables are adjusted as in Fig. 4. According to (48),The
transient economic performance of the bi-level robust MPC
for this simulation is 134.1073. It is seen that the dynamic
responses of drum pressure P, power output Po, and water
level Xw, increase smoothly with time and ascends up to the
higher stable conditions at time about 300s, indicating that the
constructed global LPVmodel (14) can perfectly describe the
transient dynamic characteristic of the boiler-turbine system.
Seen from Fig. 4, throughout the transient process, u1, u2, u3
are kept within the allowable ranges (3), and the change rates
of the control variables meet the restriction (4).

The performance of the proposed control method based on
the global LPV model is demonstrated in the next simulation
for the boiler-turbine system operating over a wide range, for
instance, from operating point No.1 to No.7, as in Figs. 5
and 6. From Fig. 5, we notice that the drum pressure P and
power output Po gradually increase to the higher stable opera-
tion conditions. Due to the swell-and-shrink effect, the water
level Xw declines initially and then rises up to the climax,
then Xw drops to a the final stable value as the drum pressure
P increases. Note that it takes longer time to reach the stable

FIGURE 6. Control variables.

condition. As shown in Fig. 6, the steam control valve u2 and
feedwater flow valve u3 hit the bounds at time 365a and 400s,
respectively, and keep it to the end. while the fuel flow valve
u1 always meets the designated range.
The simulation results show that the proposed closed-loop

robust MPC with bi-level optimization for nonlinear
boiler-turbine system has good performance. Different from
the tracking MPC, the proposed MPC method emphasizes
on the economic performance, in which the operating points
are slightly changed. Besides, the global LPV model accu-
rately describes the dynamic performance of the nonlinear
boiler-turbine system, thus improve the transient performance
when the operation conditions vary from one operating point
to another.

VI. CONCLUSION
A closed-loop robust MPC with bi-level optimization for
the control of boiler-turbine system is proposed. A global
LPV model with load-dependent parameters is established to
represent the uncertain process for the boiler-turbine system
operating over a wide range. A bi-level optimization, includ-
ing a quadratic program as the inner optimization and an
economic optimization in the outer, is designed to improve
the control performance. A heuristic algorithm is introduced
to transform the bi-level optimization problem into a single
one, thus the computational complexity is greatly reduced.
The simulation shows that the proposed strategy is able to
deal with the model uncertainty effectively.
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