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ABSTRACT Predicting the movement of the vessels can significantly improve the management of safety.
While the movement can be a function of geographic contexts, the current systems and methods rarely
incorporate contextual information into the analysis. This paper initially proposes a novel context-aware
trajectories’ simplification method to embed the effects of geographic context which guarantees the logical
consistency of the compressed trajectories, and further suggests a hybrid method that is built upon a
curvilinear model and deep neural networks. The proposed method employs contextual information to check
the logical consistency of the curvilinear method and then, constructs a Context-aware Long Short-Term
Memory (CLSTM) network that can take into account contextual variables, such as the vessel types. The
proposed method can enhance the prediction accuracy while maintaining the logical consistency, through
a recursive feedback loop. The implementations of the proposed approach on the Automatic Identification
System (AIS) dataset, from the eastern coast of the United States of America which was collected, from
November to December 2017, demonstrates the effectiveness and better compression, i.e. 80% compression
ratio while maintaining the logical consistency. The estimated compressed trajectories are 23% more similar
to their original trajectories compared to currently used simplification methods. Furthermore, the overall
accuracy of the implemented hybrid method is 15.68% higher than the ordinary Long Short-Term Mem-
ory (LSTM) network which is currently used by various maritime systems and applications, including

collision avoidance, vessel route planning, and anomaly detection systems.

INDEX TERMS Automatic identification system, deep learning, movement prediction, ship behavior.

I. INTRODUCTION

According to the International Maritime Organization (IMO),
the shipping industry plays a fundamental role in the world
economy [1]. Maritime is responsible for transporting about
90% of world trade [2], as being the most cost-effective
mode of transportation [3]. On that account, the safety of
vessels, in particular during vessels’ movement is crucially
important [4], [5], as any incident can result in human casu-
alty, a great loss of properties and goods, and potentially
environmental damages [6]. In this regard, in order to min-
imize maritime accidents, the use of the vessels’ collision
avoidance systems can help [7]. Collision avoidance systems
are expected to predict other vessels’ trajectories accurately
to be able to act as early as possible [8]-[10].
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Predicting the trajectories of movement can also help
the vessels’ traffic management systems (VIMS) [11] as
well as, vessels’ traffic monitoring information systems
(VIMIS) [11], [12] to increase the efficiency and the safety of
operations at sea [12]. Such systems provide the human oper-
ators with a better understanding of the complex real-world
at sea and improve the decision-making process [11] and
ultimately prevent or minimize accidents [13].

Furthermore, maritime autonomous systems can provide
potential solutions to improve safety during navigation and
management in the future [14], [15]. One of the major chal-
lenges for autonomous vessels’ is to avoid collisions [8]. One
step in achieving this goal is to predict other vessel trajec-
tories accurately [9], [16]. Therefore, this paper attempts to
focus on the vessels’ trajectory prediction problem.

According to the implementation mechanism of ves-
sels’ movement prediction methods, it is possible to
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categorize them into three classes [3]: physical (mathemat-
ical) model-based methods, learning model-based methods,
and hybrid methods. The physical models are based on equa-
tions of motion [17] and refer to the precise mathematical
description of a vessels’ dynamics and its neighboring envi-
ronment [14]. These methods precisely consider all possi-
ble influencing factors (mass, force, inertia, yaw rate, etc.)
and calculate motion characteristics using physical law [3].
The second class of methods models vessels’ motion by
one learning model that learns motion characteristics from
historical motion data and thus implicitly integrates all pos-
sible influencing factors [3]. Among learning methods, deep
learning can independently identify patterns in large amounts
of complicated, unstructured data, and generate predictions
through a neural network model [1]. Deep learning has the
potentials to benefit autonomous processes in the shipping
industry [1].

The hybrid methods build a model that either explicitly
considers part of influencing factors and is trained by his-
torical motion data, or combines different learning methods
to form one model to have a better performance [3]. The
hybrid methods are developed to combine the strengths of
their constituent models to improve prediction accuracy [3].

The movement of any object is embedded in context [18].
In this study, the geographic context is referred to part
of a situation or data that influences movement [19]. This
context both enables and limits movement [18]. Variations
in contextual parameters may also cause certain behavioral
responses in moving objects [20]. While the movement of
the vessels’ can be significantly affected by the geographic
context, the current systems and methods rarely incorporate
contextual information into their analysis.

Within this framework, this paper’s contributions is
twofold: the first objective is to develop a new trajectory
compression method to address the logical consistency of
compressed trajectories. The second objective is to predict the
vessels’ location using a novel context-aware hybrid method
tailored to AIS data. The proposed method is developed to
combine the strengths of physical and deep learning mod-
els, and to improve vessels’ movement prediction accuracy.
This paper integrates the vessels’ motion equations into the
deep neural networks. The method can capture the vessels’
information (e.g. vessel type) as well as geographic con-
text (e.g. shoreline) to predict vessels’ future positions. This
method is expected to increase the accuracy of the vessels’
trajectory prediction. In addition, the proposed method uses
the geographic context in order to provide a trajectory com-
pression method that can maintain the logical consistency
of compressed trajectories while reducing the volume of the
data. The filter is based on an algorithm that incorporates
contextual information with topological relationships that are
expected to maintain the logical consistency of compressed
trajectories. In addition, by considering contextual effects in
vessels’ movement prediction a new perspective has been
taken into account in this paper. In other words, instead of
using context just as an input parameter to a prediction model,
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the context effect is modeled in the trajectories preprocessing
method and it is expected to keep logical consistency.

A. ORGANIZATION

The rest of the paper is organized into six sections.
In section 2, the related work in vessel trajectory pre-
diction and deep neural networks are reviewed. The third
section sets out the background concepts and data sources.
Section 4 presents the proposed context-aware trajectory
simplification algorithm and provides an overview of the
proposed framework and method’s architecture. Section 5
discusses the results and section 6 puts forward the conclu-
sions and suggestions for future research.

Il. RELATED WORKS

Physical-model for trajectories prediction attempts to explic-
itly include all influencing factors in the modeling equa-
tions [3]. Abdelaal [5] et al. took surge force and the yaw
moment into account to build a predictive model with an
application into the collision avoidance system. Regardless
of the accuracy of their method, it seems to be impossible to
provide such detailed information for all vessels and this may
limit the use of the mentioned method. Vijverberg [21] et al.
used a linear extrapolation model to predict the future location
of the vessels. While this is a relatively simple model, it does
not take the environmental factors into account, which may
have a negative effect on prediction accuracy.

Methods that are based on physical laws precisely describe
vessels’ dynamics and their neighboring environment [14]
and are capable of calculating motion characteristics pre-
cisely [3]. These methods can greatly outperform any other
methods [22]. But they are rarely used independently for non-
simulated vessels’ trajectory prediction because, to perform
well, such models need an ideal environment and accurate
state assumptions which are difficult to attain in reality [3].
However, their ability to describe a motion system can be
useful when combined with machine learning methods [3].

Learning model-based trajectory prediction methods
([23]-[28]) are gaining more interest in recent years [29].
They rely on the learning models to mimic the move-
ment behavior of vessels based on the historical movement
dataset [10]. In this class, artificial neural networks are
gaining more attention in predicting vessels’ movement tra-
jectories i.e., regarded as complex, dynamic, and technical
systems [30]. Neural networks are systems that are a form
of artificial intelligence that attempt to mimic the behavior of
the human brain and nervous system [31]. They can learn and
adapt to changing environmental conditions [30]. They are an
interesting alternative to physical methods in the absence of a
precise hydrodynamic model of the vessel and in the case of
difficulties and time constraints relating to the identification
of analytical model parameters [30].

Zorbas [23] et al. introduced a machine-learning model
using artificial neural networks (ANN), which exploits
geospatial historical patterns of vessels’ movements in
the form of time-series, to predict future trajectories in
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five-minute intervals. Millefiori [24] et al. continued the
previous work of Pallotta [25] et al. to propose a novel method
for long-term prediction based on the Ornstein-Uhlenbeck
(OU) process. They predicted the future trajectories of the
vessels’ in large time intervals. This model outperforms the
nearly constant velocity (NCV) model [24]. Mao [26] et al.
trained an extreme-learning machine (ELM) to predict the
future locations of the vessels based on AIS data. They con-
sidered several input datasets, including the maritime mobile
service identity (MMSI), a time, latitude, longitude, a speed
over ground (SOG), a course over ground (COG), and a rate
of turn (ROT). Within two prediction slots, i.e. 20-minute and
40-minute, the error distribution seems to be less than 2.5 and
6 nautical miles, respectively.

Among the learning-based models, a recurrent neural net-
work (RNN) has become state of the art for “sequence to
sequence learning” problems. An LSTM network, which is
the most popular version of RNN, has proven its versatility
in prediction applications [28]. Gao [27] et al. constructed
a bidirectional long short-term memory recurrent neural net-
work (BI-LSTM-RNN) that uses AIS data. Their method can
predict six future points with a 90-meter error based on three
historical data points. Learning-based trajectory prediction
methods combine all factors as a single package. So, their
prediction quality depends strongly on both the quality of the
data and the learning ability of the model [3].

Hybrid algorithms benefit from the advantages of their
constituent algorithms [21], [32], [33]. For example, Perera
and Guedes Soares [32] combined the curvilinear motion
model with an Extended Kalman Filter (EKF) to predict the
velocity and acceleration of the vessel. In order to consider
the environmental factors into the prediction models, Vijver-
berg [21] et al. built upon the work of Vemula [34] et al. and
added a feature vector for the Attention-LSTM. At first, they
used a linear extrapolation to predict vessels’ future positions
in 10-second time intervals and then trained the LSTM model
to calculate the linear displacement or the offset of the vessels
from the predicted path. Zhou and Shi [33], combined the
least squares support vector machine (LS-SVM) and particle
swarm optimization (PSO) to build a new vessels’ motion
prediction method. Their method can predict vessels’ motion
in 15-second time intervals.

Hybrid model-based prediction methods can combine the
advantages of its sub-models and thus are expected to perform
better [32]. Therefore, this paper combines the curvilinear
model [35] and the deep learning LSTM network [36] by tak-
ing contextual information as well as vessels’ data, which is
expected to retain logical consistency and increase prediction
accuracy. Due to the fact that the performance of learning
methods for trajectory prediction significantly depends on
the quality of the data [3], and the quality of spatial data
can have different aspects [50], this paper focuses on the
logical consistency of compressed trajectories. This research
introduces a new trajectory simplification method that incor-
porates contextual information with topological relationships
while maintaining the logical consistency of data.
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IIl. RELATED CONCEPTS AND DATA SOURCE

The term context has a wealth of different definitions in the
field of computer science. To use context effectively, it is
important to understand what context is and how it can be
used [37]. In this paper, context is defined as part of a situation
or data that influences movement [19].

According to the literature, many contextual factors like
the sea state [38], wave direction [39], water depth and dis-
tance to coast [39], wave height [40], fluid speed [40], wind
speed [39], [41], [42], wind direction [39], [43], the density of
air [44], vessel type [39], [40], [43], vessels’ hull design [40],
and vessels’ length [41], [44]-[47], affect the vessels’ move-
ment. This paper, according to the presented meaning of the
context and data availability, uses a shoreline and vessels’
type as contexts. According to Allianz, vessels’ grounding is
the second cause of vessels’ losses and the second prominent
causalities, in the last decade [2]. Grounding may refer to
the aground of the vessels into ashore, reef, or wreck [4],
and consequently, to avoid the mentioned vessels’ losses and
casualties, a water depth must be taken into account [48] as
a water depth and accordingly shoreline directly influence
vessels’ movements.

The vessel type, including tanker, tug, cargo, defines the
properties of the transport (e.g. maneuverability, speed, etc.)
within the water medium [14], [39], [40], [43] and since the
speed and agility of different types of vessels are different,
their maneuverability will also differ [14]. According to the
fact that vessel type influences its movement, considered
context in this paper are vessel types and shorelines.

A trajectory is also defined as a sequence of points with
two-dimensional coordinates. Referring to (1), a vessel tra-
jectory is represented by T which is a sequence of points in
2-dimensional Cartesian space [49].

T = [(xlvyl)V(x2vy2)1"'7(-xnvyn)] (l)

where (x;, y;) is a position of the vessel at time ;.

A. PROBLEM FORMULATION

To take advantage of both physical and learning models,
this study attempts to build a hybrid method for predicting
vessels’ trajectories. At first, it uses a curvilinear model which
is capable of modeling different types of motions [35] as a
physical method of vessels’ trajectory prediction.

This curvilinear model [3], takes the position of a vessel,
(x¢, yr) at time ¢, velocity v, and course ® of the vessel at ¢-1
and 1, to estimate the next three position of the vessel T/ =
(CARR AN NCAPT AT) N CATI A |

Although the accuracy of the curvilinear models may
seem to be adequate, more precision may still be required
for certain applications that need more ideal environment
and accurate state assumptions [3]. Unlike currently exist-
ing approaches that add new parameters or rigid assump-
tions to the curvilinear model, we achieve higher accuracy
through executing a deep neural network, which has only
been made possible recently due to the release of large
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historical AIS datasets. Such datasets can be used for training
learning-based trajectory prediction models.

Let the trajectory, to be estimated by the curvilinear model
is represented with 7’ and the actual trajectory with T'. The
k-th point on actual trajectory is denoted by px = (xk, yx) and
its corresponding point on 7" is p; = (x'x, ¥'x). The deviation
between py and p), can be defined based on (2).

/_.) 12 -2
=0k —x )1 +0Ok—¥)J (2)

where i and j are the standard basis in 2-dimensional
Cartesian space in the x and y direction, respectively. For the
known 7y, it will be possible to transform 7” into actual trajec-
tory T. Therefore, this paper introduces a novel context-aware
LSTM network (CLSTM) to model t; at each point of 77 and
then transforms 7" into T' by which it is expected to improve
prediction accuracy.

This paper trains a modified LSTM based deep neu-
ral network to mimic the vessels’ movement behavior by
minimizing the 7. The goal of the training phase is to min-
imize the differences between actual and predicted trajecto-
ries. Therefore, the model was trained to mimic the actual
trajectories by minimizing the t; for predicting the vessels’
future trajectories with high accuracy. Detecting anomalous
movement behaviors is out of the scope of this paper. The
LSTM networks’ performance significantly depends on the
quality of the data [3]. Spatial data quality can have different
aspects [50], including positional accuracy, temporal accu-
racy, semantic accuracy, incompleteness, and inconsistency.
This paper just focuses on the logical consistency aspect of
moving data in the trajectory compression phase. So, a new
filter for trajectory preprocessing is built which aims to main-
tain the logical consistency of compressed trajectories.

B. DATA SOURCES AND PREPROCESSES

In order to model and predict the vessels’ movement, two
datasets of the USA shoreline and the vessels’ AIS dataset
are used. The USA shoreline dataset is released in ESRI
shapefile format and comes from the National Oceanic and
Atmospheric Administration (NOAA) [51], worth mention-
ing that it is used in the proposed simplification method.

The vessels’ AIS dataset, from the eastern coast of the
United States of America, is made accessible for public
use [52]. The dataset contains AIS messages of 10676 ves-
sels for about two months, i.e. November 2017 to the end
of December 2017. The dataset includes 58,545,206 AIS
recodes occupying 6.68GB. The AIS data of November
included 31,043,610 and the dataset of December included
27,501,597 points. Vessels’ state contains time, SOG, COG,
and heading, whose resolutions are respectively 1 minute,
0.1 knots, 0.1° degree, and 1 degree.

The AIS raw data often can have noisy data due to the
nature of signal acquisition [53]. Anomaly detection in pre-
processing refers to using methods to detect and clean anoma-
lies in trajectory data [54], [55]. To correct the data outliers,
the paper applies the moving average method [55] to the raw
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AIS data. Also, the wrong AIS messages, in which the length
of their MMSI number is not nine-digits, are eliminated
according to the length of the MMSI number. As the result
of such syntax checking phase, i.e. MMSI length smaller or
longer than nine digits to validate data entry, 62 MMSIs with
135,878 corresponding AIS messages are removed. Fig. 1,
illustrates the AIS message recorded in December 2017 after
the pre-processing phase.
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FIGURE 1. The AIS messages of the eastern US in December 2017.
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The AIS messages are grouped based on vessel types.
Fig. 2, shows the number of different vessel types in our
dataset. Then, AIS messages are converted into trajectories
by a Python library named, MovingPandas [56]. There were
only 20 trajectories in the military group, so this group is
eliminated due to the limited number of AIS messages. Lastly,
trajectories are generalized to reduce both the size and com-
putational complexity of the process.

IV. METHODOLOGY
A. CONTEXTUAL TRAJECTORY COMPRESSION

An AIS message is transmitted by a vessel at frequent inter-
vals of approximately 2s—6min [57]. The behavior of vessels
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FIGURE 2. Vessel types and their count in the dataset.

is very regular because of the high rate at which the AIS
messages are transmitted [58]. This regularity provides the
opportunity to compress the vessels’ trajectories to a much
smaller volume without losing important information [58]
and thus made it easy to store and analyze [59]. The trajectory
compression refers to the elimination of points in a trajec-
tory, which does not contain new information [60] to reduce
the overall volume of data [59]. The trajectory compression
accelerates [61], and improves the performance [59] of the
further processes. The ultimate criterion for the quality of
compression is in the extent to which the data can be com-
pressed without damaging the use of the trajectory data for
further processing [58]. Algorithms use different criteria to
identify the splitting points [59] such as offset distance [62],
time, velocity, or combinations of them, i.e., a combination
of time and distance [59], or a combination of velocity and
distance [58].

This paper employs three criteria for its trajectory sim-
plification method: offset distance, logical consistency, and
similarity. To maintain logical consistency, the topological
signature of the original and simplified trajectory should be
the same [63].

In practice, the vessels’ trajectories cannot intersect with
the coastline. If there are some intersections generated
through the compression process, the generated segment is
void. This can be checked by validating the topological rela-
tionship between the simplified trajectories and the coast-
lines. Therefore, to compare the topological signature of
the original and simplified trajectories, the proposed method
checks the intersection of the trajectories segments and the
coastlines. During the compression, the original trajectory
deforms into a new geometry with a smaller set of vertices;
the logical consistency [64] may be violated if these geome-
tries are found within the convex hull of the set of vertices
forming the trajectory [65]. Consider Fig. 3, which illustrates
an example of the problem, the black line is an actual trajec-
tory and the red one is the compressed one. A compressed
trajectory passes into the shoreline, which is not logically
consistent.
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In addition, the method is expected to maintain a bal-
ance between the compression ratio of simplified trajectories
and their similarity to the originals. To measure the simi-
larity, the Dynamic Time Warping (DTW) method is used
which warps trajectories non-linearly with varying sampling
rates [66]. For trajectories 7; and 7}, this method minimizes
the cumulative distance over potential paths between two
vertices. Based on (3), it is possible to use different distance
functions in the DTW [67].

DTW (T}, T)) = min ) 8(w,) 3)

where n is the length of 7 and §(w;) is a distance function.
This work uses the Euclidean distance as a distance function
in DTW.

To build a new trajectory simplification method, this
paper updates the two-stage Piecewise Linear Segmentation
(2stage-pls) with the idea of Tienaah [63] er al. At first,
it integrates contextual information to the PLS method, which
seems to maintain logical consistency. The new method called
a Context-aware Piecewise Linear Segmentation (CPLS)
works in the following way. For a trajectory 7' with n vertices,
the first and the last points, p; and p, are selected and the E,,
is computed for all intermediate points, based on (4).

By = \JOn — 3P + O — 3P 4)

where the (x/¢, y/t) is a point in the trajectory. If the computed
E, is greater than the offset distance €4, then it applies
the procedure again, with the corresponding point p;. When
there is no error greater than the given threshold, next for
all other trajectory vertices pa, ..., p—1), it eliminates the
first point p>. After that, it checks the consistency of the
topological signature. If removing p, destroys the topological
signature, it adds it to the trajectory, again. Otherwise, it elim-
inates pp and continues the algorithm with the next point.
The pseudo-code of the CPLS algorithm based on adding a
topological signature is summarized in Algorithm 1.

Although the CPLS is expected to solve the problem of
illogically compressed trajectories, using it may lead to prob-
lems related to retaining stops in trajectories.
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Algorithm 1 Context-aware piecewise linear segmentation
Input: trajectory 7, offset distance €4

1 Build topological relations for trajectory T
2 dimax =0
3 Imax = 0
4 fori=1to(n—1)
5 d=E,Ti,T,Ty)
6 ifd > dyax
7 Imax =1
8 dmax =d
9 ifd,,;,. >€4 then
10 A = CPLS(T(1, imax), €a)

11 b = CPLS(T (imax, 1), €4)
12 T, =A,BQ2,n), T, compressed trajectory

13 else

14 forj =2to(n—1)

15 Te=I[T,....T-1,.... Tjix1, ..., Tul, T}
is removed

16 if topological signature is consistent then

17 J++

18 gotolinel4

19 else

20 add vertex TjtoT,

21 returnT,

It may happen for a trajectory to be reduced in such a
way that in the compressed trajectory it appears as if the
vessel moves slowly, whereas in the original uncompressed
trajectory the vessel stops moving for a period of time [58].
To deal with this problem the CPLS method is extended.
Two heuristics are behind this extension. First, the stopping
and moving points of vessels which are important in the
behavior analysis, are more apparent in the derivative, i.e.
the speed of the moving object, of the trajectory than in the
trajectory itself [58]. Next, in some AIS messages, the status
field has rich information about vessels’ movement, which
can be useful to identify their stopping, and moving behavior.
Accordingly, the extension to the CPLS trajectory compres-
sion method, which is called the 2stage-CPLS, is proposed
that can be seen in Algorithm 2.

According to Fig. 4, for a given trajectory T = [pi,
D2, ..., Pnl, first, the method starts to check the status field
of each point. Supposed that the status field indicates the p;,
Di+1> - - - -, Di+k are stay points, i.e. the status value indicates
that the vessel is at anchor, the algorithm stores these points
in a temporary variable sp. Next, it computes the centroid
of pi, pit1, - ..., Pit+k. Those points are eliminated and sub-
stituted by their centroid. This continues with the remaining
vertices of trajectory piyi+1, Pi+k+2, - - - -» Pn- Also, the CPLS
is applied to the speed time-series of the trajectory using a
one-dimensional error measure E, [58]. This error measure,
for speed time series V of a trajectory T, is defined as follows:

V =[vi,va, ..., vl 5)
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FIGURE 4. Finding stay points using a state attribute of AIS messages,
adapted from [68].

E, = /(vi —V))? (6)
where v; is the speed of the vessel at point (x;, y;) and v; is
the speed of the vessel at point (x;, y; ). The point (x/, y; ) is
located on the line segment < x1, y; >, < X, y, >. Within
the compression process conducted on the trajectory < xi,
y1 >, < Xp, yn >, the compression algorithm, calculates the
error which is caused by eliminating each point (x’, y' ) on the
trajectory segment. Obviously, between two stay points, there
must be some moving points [68], the point (x’, ¥’ ) which can
be a stay point or moving points based on the situation.

The one-dimensional error measure, E,, is to compute the
difference between the actual v; and the estimated peed v;.
The pseudo-code of this method, i.e., the 2stage-CPLS
method, is presented in Algorithm 2. The method uses the
vessels’ speed that is estimated at the trajectory simplification
stage. AIS data can have varying frequencies of transmission,
which means the time interval between the two records can
vary. Using the vessels’ speed, i.e. the ratio between distance
and time interval, can help to adjust the traveled distance
against the varying time intervals of AIS data and so we
can handle the potentially varying AIS data transmission
rate.

B. CONTEXTUAL MOVEMENT PREDICTION

This paper predicts vessel movement using a hybrid method,
which makes it possible to combine the advantages of both
physical and learning-based methods into a single predic-
tion method. This follows the framework that is illustrated
in Fig. 5.
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Algorithm 2 Two-stage context-aware piecewise linear seg-
mentation
Input: 7, €4, €,

1 sp=0, PA=0,Tj=0,Ti=0
2 j=1
3 fori =1 tonin trajcroty T
4 if p; is not stay point
5 if PA # ()
6 sp = centroid(PA)
7 Append sp at the end of T;
8 Append T; into the T;
9 T, =90
10 add p; into T;
11 T, =CPLSg,(V,€y)
12 T.=0
13 for all vertices i and j in T,
14 T, = CPLS(T; j, €q)
15 T.=T.(1,n—1),T,
16  returnT,

Training phase

Prediction phase

AIS data, Context AIS data, Context
(shorelines) (shorelines)

v

Preprocess

Contextual trajectory
compression

H

Topological rules

Curvilinear model

o
Curvilinear model 2
=Y 1
] 8
£ ps
i
% Contextual
g condition
<
Contextual No
condition
Yes
CLSTM

FIGURE 5. Training and prediction framework.

C. CURVILINEAR MODEL

The curvilinear model is capable of modeling a variety
of motion patterns including linear, circular, and parabolic
motions [35]. Equation (7) describes the standard discrete-
time state system [35].

Xk +1(T) = Fx(T) + G (TYar(T) + wi(T)) )

where x is an input vector of vessels’ positions and F and
G (T) are two transition matrices that describe the nonlinear
motion properties of the system [3]. Fig. 6, shows the ele-
ments of the curvilinear model.

Evaluation of matrix Gi(T) in (7), involves nonlinear
matrix integral which is hard to be computed precisely [3].
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FIGURE 6. The curvilinear model, adapted from [3].

In this regard it is sensible to use the assumptions that
Zhang [3] et al. made to simplify (7): 1) Most white-noise
excitation wy can be caught by the time-varying discrete-
time forcing matrix Gy (T'), and 2) Vessels can only move in
a horizontal plane, i.e., no vertical movement is possible.

Having made these assumptions, the curvilinear models
can be constructed with the standard curvilinear-motion mod-
els from kinematics [3]. Also, de Vries [58] et al. show
that high-frequency transmission of AIS messages makes it
possible to assume the linearity of the vessels’ movement
between two AIS messages. Therefore, both normal and tan-
gential accelerations can be set to zero [58]. This also means
that we can replace the curves with the linear segments and
approximate the motion model of the vessels between two
AIS messages as follows:

L, = v; x dt; ®)
dti = (tix1 — 1;) )

Ax,- 7. sin(CD,-)
( Ay,) = Lix ( cos(dJi)) (10)

x X; Ax;
(-0 o
Vit Vi Ay;
where v; and ®; are the velocity and course of vessels at #;,
respectively. dt; is a timestamp between two AIS messages.
L; is a distance that the vessel moves during two AIS mes-
sages. (x;, y;) is the actual coordinate, and (x;, y;) is the

estimated coordinates of the vessel at ¢;.

Based on the vessel’s current position (x;, y;), the current
velocity v, the current course ®;, velocity prior to current
time v;_1, and the course ®,_; prior to current time f,
the method can predict positions of the vessel up to three
future epoch. These three predicted positions can form a new
trajectory 7" = [(x; 1. ¥y )s (6100 Vij0)s (K430 Vi43)]- Asit
may not be possible to have all ideal environmental factors
and states affecting the vessels’ movements, the predicted
trajectory 7', may not exactly fit the actual trajectory T.
To match the predicted trajectory T’ and the actual trajec-
tory T, the deviation 1, between estimated and actual coor-
dinates should be computed. This paper introduces a method
for computing 7 based on contextual data that considers the
spatial and temporal components of movement to estimate the
coordinates that have a minimum difference from the actual
coordinates. The method which is called the context-aware
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LSTM (CLSTM) network, is to improve the prediction accu-
racy of movement prediction.

D. CONTEXTUAL CONDITION

As explained in C, trajectory T’ that is estimated using a
curvilinear model has to maintain the logical consistency,
e.g., it must not cross land or crosses untraversable corridors
obviously the vessels’ trajectories cannot cross the shorelines
or islands. As shown in Fig. 7, in areas that are too close to
shorelines the risk for 7’ to intersect with the shoreline can
be higher. It is possible to avoid such problems by adjusting
timestamp df to monitor the movement at higher temporal
accuracy, see (7). The timestamp is reduced to ¢, is expressed
by (12).

- dti)/n (12)

where n is the number of vertices of the trajectory and dt; is
a timestamp between two sequent trajectory vertices.

39°51I'N

39°50.67N :
75°15.67W

75°16W

Legend

*  AIS points Shoreline

Actual trajectory

Predicted trajectory

X Predicted points

FIGURE 7. An example of situations where T’ which is estimated by the
curvilinear model is illogical.

E. CLSTM STRUCTURE

The vessel types, e.g. tanker, tug, cargo, can directly influence
the maneuverability [14], which can have a high impact on the
movement patterns. Therefore, vessel type seems to be a good
classifier that is neither spatial nor temporal that can help
minimize the risk of having Simpson Paradox, i.e. global
learning model for the trajectory prediction of all vessel
types. This paper provides a CLSTM model that considers the
context, for predicting the movements of different but specific
types of vessels.

The LSTM networks can solve the long-term dependency
problems. An LSTM unit consists of a cell, an input gate,
an output gate and a forget gate. Fig. 8, illustrates an internal
schematics of an LSTM cell unit.

The illustrated structure in Fig. 8, allows for recursive
feedback loops which can update the weights in real-time.
This can prevent gradient disappearance and gradient expan-
sion. The first step in an LSTM network training is the state
initialization, in which the number of neural nodes of the
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FIGURE 8. An LSTM cell unit, internal schematics [27].

input layer, the number of output nodes, and the number
of cell units are determined. Here, both the initial state of
the cell and the link weight of each layer is set to be zero.
Equation (13) calculates the output.

~ n .
Hy=7) Wyxi+6 (13)

where w;; is the link weigh, x; is an input unit and 6} is the
offset. The next step is to calculate the amount of information
going to be thrown away from the cell state by the sigmoid
layer, which is called the “‘forget gate layer”’. Equation (14)
generates a number between zero and one indicating how
much information is going to be kept. One means that all
information is kept while zero indicates the elimination of all
information.

Jo = o Wrlhi—1, x] + by) (14)

where f; is the forget gate, o is a sigmoid and W is the weight
matrix. The next step is to deal with information that is going
to be stored in the cell state. At first, according to (14), an
input gate layer (i;) which is a sigmoid layer, decides which
values are going to be updated. Then, the hyperbolic tangent
(tanh) layer creates a vector for the new candidate values, C},
which can be added to the state. This is expressed by (15) and
(16), respectively.

ir = o (Wilhi—1, x:]1 + bi) (15)
C: = tanh(Welhi—1, x:]1 + bc) (16)
The old state values (C;_) and the new candidate values (C;),
are respectively multiplied by the forget gate (f;) and the input

gate (i;). In (17), the summation of these two creates new cell
values.

G =ft-Ct—l + C-iz )

To finish the training process, the model runs a sigmoid layer
to examine which parts of the cell state should be updated.
These values are passed to the state value (/;) of the next unit
as described in (18) and (19).

0r = o (Wolhi—1, X1 + bo) (18)
ht = 0,.tanh(C,) (19)

Equation (19) passes the cell state to tanh which pushes
values into a range of —1 to 1. Multiplying such values by the
output of the sigmoid layer allows updating those parts that
are important and effective. The square root of the difference
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of output value (O) and expected output (y) is used as a
measure of each batch training error, based on (20).

e =y — 0} (20)

For the learning process, a position is considered as a variable.
The proposed method based on the CLSTM network can take
three vertices of 7’ as its input and transform them into the
corresponding vertices of 7. An input layer can be expressed
based on (21).

I = {x{y 1, Viyps t + 1
Xfy2s Vipor 2
X413 V430t +3) 1)

Equation (20) describes the output layer.

0= xpred red

t+1 7741
pred red
xt+2 P2
pred red
xt+3 P 1+3 } (22)

The residuals, i.e Root Mean Square Error (RSME), can be
calculated as follows:

Ax = xpred _ xactual (23)
Ay = ypred _ yactual (24)

2 2
RMSE = M (25)
N

To measure the contributions of integrating contextual data
to the prediction accuracy, the point-wise error [28] for both
models can be calculated. The point-wise error is the distance
between every pair of vertices, i.e. predicted vertex on 2D
Cartesian and the actual coordinates.

V. RESULTS
A. TRAJECTORY COMPRESSION
In order to understand the effectiveness of the 2stage-CPLS
compression method, 500 randomly selected trajectories are
considered to test. These trajectories are compressed using
the 2stage-PLS and the 2satge-CPLS and results are com-
pared for better evaluation. In addition, for better evaluation,
both methods are used in different settings to test different
scenarios. In this regard, the offset distance €4 ranges from
0.02 to 2 km with increments of 0.02 allowing different
parameters and scenarios to be tested. The speed offset €,
is set to be 1.54 m/s (3 knots), ie. Having different settings,
5000 compressed trajectories were created by each method.
In order to evaluate and compare the performance and
effectiveness of the 2stage-CPLS and the 2stage-PLS trajec-
tory compression methods, two performance measures are
used. They include the compression ratio R and the similarity
of the compressed and the original trajectories. The R is
defined by (26), and the similarity is measured based on (2).

R=(1-N/p) x 100% (26)
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where N is the number of trajectory vertices after compres-
sion and M is before compression. Also, to evaluate the
performance of the methods based on how much of the logical
consistency of compressed trajectories are preserved. To do
so, the topological relationships between the output sets, i.e.
trajectories, and the geographic data that is used as contex-
tual data are considered after compression. If compressed
trajectories cannot maintain any of these relationships, e.g.,
crossing the shoreline, they are assumed to be logically
inconsistent. All compressed trajectories are checked and
compressed ones using the 2stage-CPLS do not have any
intersection with shorelines which means that the 2stage-
CPLS is able to maintain logical consistency. In contrast,
most of the trajectories that were compressed with the 2stage-
PLS seem to fail the logical consistency test for some of the
cases.

According to the experiments, the compression ratio of
the 2stage-CPLS and the 2stage-PLS have different behavior
based on compression ratio. As illustrated in Fig. 9, while
the compression ratio of the 2stage-PLS increases by the
increment of offset distance, the compression ratio of the
2stage-CPLS decreases gradually.

-@- 2stage-PLS
R (%) -@- 2stage-CPLS

95

90 —

N dR
85 N

80 ——
4 T ————— o

1 Offset distance (m)
75 4 ————

t T T T T t T T T T t
500 1000 1500 2000

FIGURE 9. The percentage of compression ratio.

For different offset distances, the compression ratios of
the 2satge-PLS seem to sustainably higher than the 2satge-
CPLS’s. The important vertices are the vertices of trajec-
tories that must be kept in compression procedure in order
to maintain the logical consistency or the spatial accuracy.
Equation (26) defines the percentage of important
vertices dR.

dR = Ragtage—pPLS — Rostage—CPLS 27

The dR shows the percentage of vertices that their removal
can fail the logical consistency of the compressed trajectories.
As shown in Fig. 9, the 2stage-CPLS’s R seems to decrease
as the offset distance increases. This means that the number
of important vertices dR x 100 can have a negative but direct
correlation with the offset distance.

During the compression process, the vertices of the trajec-
tories which do not contain new information (due to the high
transmission rate of the AIS messages) are removed, which
may change the trajectory’s geometry [61]. The compression
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with a large offset distance can potentially have a larger geo-
metrical change or deformation. This is illustrated in Fig. 10,
which shows a trajectory compressed with the 2stage-PLS.

In Fig. 10, the trajectory, which is compressed with a
200-meter offset (red line), has the smallest deformation.
In addition, the topological signature of this trajectory has
a slight difference from the raw trajectory (white line in
Fig. 10). This trajectory in one place intersects with land
(see the cyan array). The number of such intersections that
destruct the logical consistency of compressed trajectories
increases as the offset distance grows. To maintain logical
consistency, those intersections have to be avoided. There-
fore, the 2stage-CPLS method compares the topological
relations of trajectories and contextual data to avoid such
intersections by retaining important vertices. The large defor-
mation means that the 2stage-CPLS has to retain more ver-
tices. As aresult, the R of the 2stage-CPLS decreases as offset
distance increases.

40°43'N
N
74°6'W A 74°5'W
Legend
AIS points — 400 meter 800 meter
—— Original trajectory —— 600 meter Shoreline

— 200 meter

FIGURE 10. The relation of geometry deformation of compressed
trajectories and the applied offset distance.

Learning-based methods for movement prediction, tend to
mimic movement behaviors of vessels based on their histori-
cal movement dataset [10]. Therefore one of the expectations
after the compression process is such that the dataset keeps
the representativeness of the variety of possible behavior. The
compressed method should be able to compress trajectories
while keeping logical consistency, the best replacements of
initial trajectories, with maximum similarity to the initial
trajectories. Therefore, for another evaluation measure, the
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similarities of compressed and raw trajectories for both meth-
ods are compared. This is illustrated in Fig. 10. The 2stage-
CPLS presented in this paper restores the removed vertices to
resolve topological conflicts.

As shown in Fig. 11, the similarity of trajectories com-
pressed with the 2stage-PLS decreases as the offset distance
increases. Based on experiments, the similarity measure for
the 2stage-CPLS seems to converge. This makes it possi-
ble to select an optimum offset distance for compression.
At optimum offset distance, a compressed dataset seems to
be the best replacement of the original dataset while it has
less volume.

Similarity (%) -@- 2stage-PLS

120 4 -@- 2stage-CPLS

100 ~

oj—

60 —

40 Offset distance (m)

t t
500 1000 1500 2000

FIGURE 11. The overall similarity of compressed trajectories to originals.

B. MOVEMENT PREDICTION

To implement the proposed hybrid context-aware method,
the AIS dataset is preprocessed and compressed with the
2stage-CPLS. The compressed dataset contains 52628 tra-
jectories which 80% of which are used for training and the
remaining for the validation process of the hybrid method
(2satge-CPLS + CLSTM).

In order to evaluate the prediction performance, two per-
formance evaluation methods are used. They include RMSE
and point-wise horizontal error. Moreover, the results of the
proposed hybrid method are compared with the ordinary
LSTM network (2satge-PLS + LSTM). In both methods,
80% of the dataset is used for the training process and 20%
for their evaluation.

For more detailed evaluation, the convergence effects of
the proposed hybrid context-aware method (2satge-CPLS +
CLSTM) and the ordinary LSTM network (2satge-PLS +
LSTM) are compared. Both Fig. 12, and Fig. 13, illustrate the
convergence effects of these methods. The AIS dataset that is
used by this paper includes seven different types of vessels.
They include tanker, tug, cargo, sailing, passenger, other, and
fishing vessels. The “other” group type, refers to the group
of vessels whose vessel type field is recorded as null [69].
Based on the architecture of the CLSTM network, it con-
tains a unique LSTM deep learning neural network for each
vessel type group. Therefore, used AIS dataset, the CLSTM
network of this paper, is composed of seven LSTM
networks.

It can be clearly seen from Fig. 12, and Fig. 13, that the
deep neural network predicts the movement behavior of the
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—— 2stage-CPLS + CLSTM (Cargo)

Step

FIGURE 12. Convergence effects of two methods: an ordinary LSTM
network (blue line in all figures), and the Hybrid method for tanker, tug,
and cargo vessels.

vessel. After predicting for a period, because the data of a
single vessel in the verification dataset are limited, it was
replaced with the data of the other vessel to continue the
prediction and validation process. This change suddenly dete-
riorates the prediction accuracy, but the prediction seems to
be able to maintain performance and stabilizes in a short
period of time. Such fluctuations of the validation accuracy,
in the hybrid method (2satge-CPLS + CLSTM), are less
than the ordinary LSTM network (2satge-PLS + LSTM).
So, the convergence behavior of the hybrid method (2satge-
CPLS + CLSTM) seems to be more predictable than the
ordinary LSTM network (2satge-PLS + LSTM).

The level of predictability of the convergence behavior can
be the result of integrating the contextual information (e.g. the
vessel type). The movement behavior of the vessels seems
to be a function of the vessels’ type [14], [39], [40], [43],
using a ‘personalized’ learning model for each vessel type,
can improve the models’ learning process, as the model can
simply focus on learning one type of behavior with fewer
variations.

Based on the convergence velocity, oscillation amplitude,
and prediction accuracy, the proposed hybrid context-aware
method (2satge-CPLS + CLSTM) seems to be superior to the
ordinary LSTM (2satge-PLS + LSTM).
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FIGURE 13. Convergence effects of two methods: An ordinary LSTM
network (blue line in all figures) and the Hybrid context-aware method
for sailing, passenger, other, and fishing vessels.

In order to comprehensively analyze the proposed
method, the average point-wise error is calculated which is
summarized in Table 1. The outputs of both methods are
compared to the actual trajectories.

TABLE 1. Average of error in an LSTM network and hybrid method.

Method Point-wise error (meter)
The ordinary LSTM network (2satge-PLS 4574.927
+LSTM)
The hybrid model (2satge-CPLS + 3857.435
CLSTM)

The results of vessels’ movement prediction with the
2satge-CPLS 4+ CLSTM method are 15.68% more accu-
rate than the ordinary LSTM network (2satge-PLS +
LSTM), as demonstrated in Fig. 14, the actual trajectory,
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and the predicted trajectory with the hybrid context-aware
method.

39°51.33'N

39°51'N

39°50.67'N
2l
2 o s o o
75°1T'W 75°16.33'W  ~ 75°15.67'W 75°15'W
Legend
AIS points — Predicted trajctory

Actual trajectory Shoreline

FIGURE 14. Schematic of vessel behavior prediction using the hybrid
context-aware method.

VI. CONCLUSION

Predicting vessels’ movement trajectory has an important role
in the management of safety at sea. While the movement can
be a function of geographic contexts, the current systems and
methods rarely incorporate contextual information into the
analysis. This paper introduces a novel approach for integrat-
ing the contextual data in the movement prediction process,
to improve the accuracy of the vessels’ trajectories prediction.
The trajectory prediction based on the proposed method can
provide security for navigation, assist in trajectory planning,
and risk monitoring.

This study provides a solution for both compression and
movement trajectory prediction of the vessels. The paper
improves the classic compression algorithm, by combining
the contextual information in different stages of trajectory
mining and prediction. The novel prediction method builds
upon the strengths of both the curvilinear model and the
deep learning LSTM network. The proposed hybrid method
embeds contextual information as well as vessels’ historical
AIS data to retain logical consistency and spatial accuracy for
the predicted trajectories while increases prediction accuracy.
Also, in order to avoid the Simpson paradox, for each vessel
type, a unique LSTM network is trained to allow more accu-
rate movement behavior predictions. Then, all LSTM units
are combined into a single CLSTM structure.

Moreover, this study introduces a way to calculate opti-
mal offset distance by optimizing the similarity measures
and compression ratio. The optimal threshold selection is
to achieve the best trade-off between the similarity and the
compression ratio for a dataset. In the optimal offset distance,
the compressed trajectories are a very good replacement of
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the original dataset, while their volume of the dataset is also
minimized.

The experimental results showed that the 2stage-CPLS can
potentially provide a higher trajectory similarity rate, improve
the compression efficiency, and retain logical consistency.
Compared to the 2stage-PLS algorithm, the proposed algo-
rithm’s compression ratio seems to be lower than that of the
classic algorithm, the similarity quality of the proposed algo-
rithm is better. In the aspect of logical consistency, the 2stage-
PLS algorithm may not seem to be as good as the proposed
algorithm, and the geometrical changes of the trajectories
seem to be higher.

Based on the performed experiments, the proposed
context-aware trajectory prediction method outperforms the
ordinary LSTM network when it comes to the conver-
gence velocity, oscillation amplitude, and prediction accuracy
and it is 15.68% more accurate than the ordinary LSTM
network.

As future work, it is recommended to explore the effects
of the environmental and sea factors (a wave height, a wind
speed, etc.) on vessels’ movement prediction. Also, a related
opportunity for future work can be on fleet movements, i.e.
considering other objects and their topological relationships
to achieve a better results.
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