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ABSTRACT The recent advancements in Internet of Things (IoT), cloud computing, and Artificial Intel-
ligence (AI) transformed the conventional healthcare system into smart healthcare. By incorporating key
technologies such as IoT and AI, medical services can be improved. The convergence of IoT and AI offers
different opportunities in healthcare sector. In this view, the current research article presents a new AI and
IoT convergence-based disease diagnosis model for smart healthcare system. The major goal of this article is
to design a disease diagnosis model for heart disease and diabetes using AI and IoT convergence techniques.
The presented model encompasses different stages namely, data acquisition, preprocessing, classification,
and parameter tuning. IoT devices such as wearables and sensors permit seamless data collection while
AI techniques utilize the data in disease diagnosis. The proposed method uses Crow Search Optimization
algorithm-based Cascaded Long Short Term Memory (CSO-CLSTM) model for disease diagnosis. In order
to achieve better classification of the medical data, CSO is applied to tune both ‘weights’ and ‘bias’
parameters of CLSTMmodel. Besides, isolation Forest (iForest) technique is employed in this research work
to remove the outliers. The application of CSO helps in considerable improvement in the diagnostic outcomes
of CLSTM model. The performance of CSO-LSTM model was validated using healthcare data. During the
experimentation, the presented CSO-LSTM model accomplished the maximum accuracies of 96.16% and
97.26% in diagnosing heart disease and diabetes respectively. Therefore, the proposed CSO-LSTM model
can be employed as an appropriate disease diagnosis tool for smart healthcare systems.

INDEX TERMS Internet of Things, convergence, cloud computing, artificial intelligence, smart healthcare,
disease diagnosis.

I. INTRODUCTION
Healthcare sector started leveraging information technol-
ogy in the recent years to develop modern applications and
enhance the diagnostic and treatment processes. Advanced
techniques and scientific theory are the major entities that
generate huge volumes of digital data. Followed by, advanced
clinical applications are the brainchildren of information
technology which have been developed in the recent times.
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Also, advanced healthcare is assumed to have simple, ele-
gant, and multi-tasking applications. These modifications are
incorporated as clinical model extension (from disease-based
to patient-based care), informatization development changes
(from medical data to regional medical data), extension in
clinical management (general management to personal man-
agement), and modifications from prevention and treatment
(Shifting of concentration from disease treatment to preven-
tive medical system) [1]. Hence, the following changes are
concentrated to satisfy the basic requirements of individuals
in order to enhance the proficiency of health care which in
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turn improve health service knowledge and imply the future
deployment of smart medicine.

Advanced medical services are comprised of several
stakeholders such as doctors, patients, clinical and research
centers. Multiple dimensions should be considered such as
disease preventive measures and observation, prognosis and
treatment, clinical management, health decision-making, and
medical studies. For instance, mobile internet, Cloud Com-
puting (CC), big data, 5G systems, microelectronics, and
Artificial Intelligence (AI), along with smart biotechnology
are assumed to be the milestones of modern healthcare. These
methodologies are employed in every stage of advanced
healthcare. From patients’ viewpoint, wearable or portable
devices can be applied for monitoring their health condi-
tion whenever required. They can look for clinical guidance
through virtual support and control their homes remotely
using remote facilities. From the perception of doctors, smart
clinical decision support systems can be applied to guide and
enhance the diagnostic procedures.

An extensive diffusion and deployment of effectively-
incorporated hardware and modern medical sensors for
unique healthcare has intended to develop a new concept
called Internet of Medical Things (IoMT). It modifies the
healthcare process and number of medical devices that use
IoT to achieve better profit in future [2]. The data, cap-
tured with the help of portable, ingestible, and incorpo-
rated sensors, mobile patterns and device usage patterns,
enable the researcher to track a user’s habits. With further
data collection, it is possible to reveal their medical status
by applying state-of-the-art as well as Machine Learning
(ML) or Deep Learning (DL)-based methods. Classical cloud
technology that relies on structures for big data analysis,
is applied to provide optimal performance, scalability and
support non-safety as well as delay-based IoT domains. How-
ever, if a patient is serious with the availability of limited
resources and when they require high degree of efficiency and
accessibility, the disconnection frommain network or latency
difference might dramatically produce negative effect and
results in dreadful consequences under emergency cases. The
rapid development of structures that examine the collabora-
tion of cloud, fog, and edge computing remains a challeng-
ing process yet. The main aim of this method is to apply
complete edge nodes and low-level fog nodes to manage
functional tasks with regards to data processing, examina-
tion, correlation, and inference. Hence, the above-mentioned
approaches produce challenging outcomes by implementing
scalable medical domain services. This occurs because the
smart mapping of processing and resource management oper-
ations overcome the nodes to satisfy the fundamental needs
of IoMT model [3].

Under the application of Artificial Intelligence (AI) mod-
els, surgical devices, and mixed reality applications, both
diagnosis and disease treatment are highly robust [4], [5].
By using AI, specific outcomes are attained from Clinical
Decision Support System (CDSS) such as the diagnosis of
hepatitis, lung tumor, and skin cancer. Further, the accuracy of

AI diagnosis has exceeded the accuracy accomplished manu-
ally. In addition, ML-based models are precise in comparison
with well-trained physicians, particularly pathologists and
imaging experts. Therefore, a remarkable and representative
product in CDSS was rolled out by IBM’s Watson. This
product has an effective cognitive mechanism and is used for
providing the best solution with the help of in-depth analysis
of medical and literature details. As a result, a drastic effect
has been experienced by healthcare professionals in diagnos-
ing both diabetes and cancer. The application of CDSS is
highly efficient and supports the physicians in enhancing the
diagnostic processes, limiting the incidence of unexploited
diagnosis as well as misdiagnosis, and enabling the users
receive timely and proper medical treatment. According to
smart diagnosis, patient’s health state and disease severity
can be defined accurately to follow a personalized treatment
procedure.

The current research work presents a new AI and IoT
convergence-based disease diagnosis model for smart health-
care system. The aim is to develop a disease diagnosis model
using AI and IoT convergence technique for the diagnosis
of diabetes and heart disease. The presented model encom-
passes different stages namely, data acquisition, preprocess-
ing, classification, and parameter tuning. IoT devices such
as wearables and sensors perform the data acquisition pro-
cess whereas AI techniques process this data to diagnose
the disease. The proposed AI and IoT convergence method
makes use of Crow search Optimization algorithm-based
Cascaded Long Short Term Memory (CSO-CLSTM) model
for disease diagnosis. Besides, isolation Forest (iForest) tech-
nique is employed in this study to remove the outliers.
In order to improve the diagnostic outcome, CSO is applied
to tune both ‘weights’ and ‘bias’ parameters of CLSTM
model. CSO is utilized here since it helps to improve the
diagnostic outcome of CLSTM method. The effectiveness
of CSO-LSTM model was validated using healthcare data.
The contributions of this research article is summarized
herewith.
• Designing and development of a novel AI and IoT
convergence-based disease diagnosis model for smart
healthcare system

• Proposed a CSO-CLSTMmodel for diagnosing diabetes
and heart disease

• Incorporated iForest technique-based outlier detection
process to improve the classification results

• Performed parameter tuning of LSTMmodel using CSO
algorithm

• Validated the performance of CSO-LSTMmodel on two
benchmark datasets.

II. RELATED WORKS
Numerous works have been conducted earlier to develop
system that senses the physiological variables and health
indicators to assess severe cases and accidents. Initially,
Mustlag et al. [5] applied Wireless Body Sensor Net-
work (WBSN) to observe the heart rate and movement of
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users, whenever they require, even from remote areas. In this
study, edge node is connected with internet and it forwards
an alert (mobile phone) to family members, whenever impor-
tant changes occur (early prediction of falls, tachycardia, or
bradycardia). In linewith this, Villarrubia et al. [6] projected a
method to monitor the patients from home and their heart rate
by computing fundamental examination of electrocardiogram
(ECG) information. In the literature [7], an emotion-aware
connected healthcare model was developed using an efficient
emotion detection module. A set of distinct IoT devices was
utilized in this study to capture speech and image signals of
a patient in smart homes.

In Kaur and Jasuja [8], the developers examined the appli-
cation of Bluemix cloud method to record the physiolog-
ical information and enable remote access by physicians.
The simulation outcome is visualized and is processed with
respect to IBM Watson IoT environment. In Alwan and Rao
[9], a case study was conducted for fever analysis using
incorporated system that frequently observes the health data
of patients. In Satija et al. [10], a real-time IoT based
ECG telemetry was projected. In this work, researchers have
depicted the efficiency of a model based on diverse activities.
Static monitoring reduces the application of domain sensors
to collect contextual data and perform multimodal process.
Followed by, Pham et al. [11] presented a model in which
ecological sensors, optitrack cameras, and smartwatch-based
sensors are employed to collect video, image, and audio
signals with particular wearables for the collection of physi-
ological variables. In literature [12], a novel smart healthcare
model was proposed which comprised of a pathology detec-
tion technique using deep learning technique. Pathogens can
be identified from electroencephalogram signals of a patient.
In this model, a smart EEG headset captures the EEG signals
and transmits it to amobile edge computing server. The server
pre-processes the signals and sends it to the cloud server.

Uddin [13] projected a solution to examine various
human activities with the help of wearable sensors as
well as Long Short-term Memory-Recurrent Neural Net-
work (LSTM-RNN) which were implemented on local fog
server and GPU acceleration. In the study conducted ear-
lier [14], additional sensors were employed for movement
tracking and to examine the application of Support Vec-
tor Machines (SVM) and Random Forest (RF) classifica-
tion method for movement forecast. Some of the recently
developed models for conducting physiological data anal-
ysis in portable sensors simulate the analysis of edge ML
approaches. However, there are issues involved in predict-
ing the abnormalities of physiological variables in terms of
edge stream computing structure. In this study, Hierarchical
Temporal Memory (HTM) was implemented in a distributed
manner. The model was implemented on edge nodes and was
used for the inference. Additionally, Queralta et al. [15] pro-
posed a fall prediction solution based on LSTMRNNmethod
which is executed at edge level. The performance of Multi
Access Edge Computing method was defined along with a
case study on Electroencephalography (EEG) information.

FIGURE 1. Working process of CSO-CLSTM method.

This led to a scenario in which the developers assumed
that the major functions are to be executed from edge side
and satisfy the application needs (data compression, feature
extraction well as classification). The accuracy of the results
was compared with existing classification models like RF,
Naive Bayes (NB), k-Nearest Neighbors (kNN), and classifi-
cation or regression trees). Alternatively, the study also used
few models to classify anomalies in ECG signals as applied
by Azimi et al. [16]. Hierarchical Computing Architecture
for Healthcare (HiCH) was introduced and its variant i.e.,
Monitor-Analyze-Plan-Execute Plus Knowledge (MAPE-K)
mechanism was implemented by IBM to share the process
among three layers called edge, fog, and cloud. In the litera-
ture [17], a CNN-based automatic EEG pathology detection
model was presented. It used 1D and 2D convolutions to
capture temporal and spatial information individually.

III. THE PROPOSED SMART HEALTHCARE DIAGNOSIS
MODEL
Figure 1 shows the overall working process. The proposed
approach is effective in terms of former wireless commu-
nications and it consumes low power with high freedom of
activity for users in external movement. In addition, tiny and
low-weight IoT devices are employed in this model which
are user-friendly. Some such IoT devices are smartphones,
wrist-band, smartwatch, and so forth.

The embedded sensors are employed to proceed with
extensive computations to estimate and distinguish normal
and abnormal heart rates. The subjects are embedded with
smart devices for instance smartphones which can be taken
anywhere in pockets. Additionally, embedded ECG as well
as temperature sensors are highly recommended to collect
data regarding heart parameters of the subject. From this data,
results of their common lifestyle can also be determined.
When data is received through low-power Bluetooth commu-
nication, smartphones process the data and categorize it as
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either healthy or unhealthy. The android platform performs
the prediction of diabetes and efficient heart rate. Initially,
IoT devices gather patient data and preprocess it to trans-
form the data into a compatible format. Pre-processing is
composed of few stages such as data transformation, format
conversions, and class labeling. Then, iForest technique is
employed to get rid of outliers exist in patient data. Followed
by, CSO-CLSTMmodel is employed to classify the data into
existence and non-existence of the disease.

A. iFOREST-BASED OUTLIER REMOVAL PROCESS
The preprocessedmedical data is fed into iForest, a tree-based
outlier prediction method with linear time complexity and
maximum precision. It can be applied for high-dimensional
and huge volumes of data. Since the abnormalities are ‘low
and varied’, it is heavily prone to isolation. In case of
data-based random tree, the records are cropped until iso-
lation is performed. Random division tends to make outlier
short length alike records with distinguishable values. Here,
it is recommended to divide in earlier division [18]. iForest is
composed of iTrees (Isolation Tree). Every iTree is referred
to as a binary tree. The steps involved in execution process
are given below.

i. Select few sample points called subsamples from
training data and place them in root node of a tree.

ii. Point the attribute and produce a cutting point ‘p’ from
recent node data. At the same time, cutting point is
produced from maximum as well as minimum values
of certain parameter in recent node data.

iii. A hyperplane is emulated from cutting point. While
the data space of recent node is classified into two
subspaces namely, data which is minimum than ‘p’ in
certain attribute and is placed on left child and the data
which is maximum than ‘p’ and is placed on right child
of the present node.

iv. Follow steps 2 and 3, till the child node reaches a single
record.

Once the iTrees are accomplished, training iForest is ter-
minated. Then the testing data is estimated with the help
of generated iForest. In case of testing records, a traversal
of all iTrees is considered and the height of each record is
determined. Followed by, the average height of a record from
each tree is determined.When the average height is minimum
than the applied threshold, a record is assumed to be an
outlier.

B. DISEASE DIAGNOSIS MODEL USING CSO-LSTM MODEL
After the removal of outliers in healthcare data, CSO-CLSTM
model is applied to perform classification process. RNNs are
special standard Artificial Neural Networks (ANNs) using
which time series of long range structural values can be
developed. A fundamental theme of RNNs is the inclusion
of time delay unit as well as feedback connection, where
the data from former state is applied in upcoming stage.
The structure of RNN is comprised of input layer, otherwise

called as sequence layer, which applies input as a series of
vectors

{
x<1>, . . . ,x<z>, . . . ,x<Z>

}
with features for every

time step; Here, network proceeds with a series of hidden
activations

{
a<1>, . . . ,a<z>, . . . ,a<Z>

}
as well as the resul-

tant vector
{
ŷ<1>, . . . ,ŷ<z>, . . . ,ŷ<Z>

}
for Z timesteps. A

primary activation 0〈0〉 is allocated as a vector of zeros.
Then, both activation as well as final prediction at time z is
illustrated as given herewith.

a<z> = g
(
Wa ·

[
a<z−1>, x<z>

]
+ ba

)
(1)

ŷ<z> = g
(
Wy · a〈z〉 + by

)
(2)

Here, the vector available in square brackets are referred to
as a vector combination of activation from existing timestep
as well as input from recent timestep, Wa and Wy denote
activation as well as output weight matrices correspondingly.
Here, ba and by imply activation and output bias terms. Addi-
tionally, operator g signifies a generic activation function.
RNN feature is a neuron of hidden layer which activates
the existing time step for computing an activation of recent
time step. Thus, for RNN, the detection of final outcome at
recent time step ŷ<z> is computed with data from input x〈z〉.
However, using the data from x<z> to x<z−1>, activation
a<z> is done at former time step. It is named as unidirec-
tional RNN since it applies data from old sequence inputs
to evaluate the prediction at specific time step. Eqs. (1) and
(2) imply forward propagation of RNN. During backward
propagation, weights and bias are upgraded with the help of
optimization method [19]. Hence, it is called Backpropaga-
tion Through Time (BPTT). One of the major complexities
in training RNN is its diminishing gradient issues. Further,
its partial derivatives are smaller in deep layers for maximum
time steps. The network parameters, in this case, cannot be
changed in consecutive iterations while the learning process
gets terminated. The above-mentioned issues are resolved
when RNN unit is replaced with gated cell unit named LSTM
unit.

LSTM unit shows a modification in remarkable RNN to
capture long-term dependencies and it enables to report the
problem of diminishing gradient. Therefore, LSTM memory
cell is composed of five modules namely, memory cell c<z>,
candidate value C̃<z> to replace the memory cell at every
timestep and three other gates such as update gate 0u, forget
gate 0f and output gate 00. Memory cell is applied to record
specific values for prolonged time during training process.
Assume three gates are derived from 0 and 1. Both weight
matrix as well as bias termmight get upgraded during training
process. Finally, forget gate enables the selection of type of
data which is thrown away and is represented as shown below.

0f = σ
(
Wf ·

[
a<z−1>,x<z>

]
+ bf

)
(3)

Here, the update gate decides whether to replace the
memory cell with candidate value which is defined herewith.

0u = σ
(
Wu ·

[
a<z−1>,x<z>

]
+ bu

)
(4)
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FIGURE 2. The Structure of CLSTM.

Consequently, output gate is a section in which activation
at recent time step is produced and demonstrated as follows.

00 = σ
(
W0 ·

[
a<z−1>,x<z>

]
+ b0

)
(5)

In former function, σ implies the sigmoid function. Hence,
the function which is used for monitoring the nature of LSTM
unit is depicted as follows:

C̃<z> = tanh
(
Wc·

[
a<z−1>,x<z>

]
+ bc

)
(6)

C̃<t> = 0u ∗ C̃
<z>
+ 0f ∗ C̃<z−1>(7) (7)

a<z> = 00 ∗ tanh
(
C<z>

)
(8)

where Wc and bc correspond to cell weight matrix and bias
term respectively. The function ∗ implies Hadamard product
and tanh denotes hyperbolic tangent function. Figure 2 shows
the structure of CLSTM model.

In this approach, a cascade of two RNNs with LSTM
units is employed. The primary network applies input as
features gained from mRMR model and executes 4-class
(W, NI-REM, N2, and N3) classification (N1 and REM
epochs are combined within a single class). The alternate
network applies the input features estimated by PCA. Fol-
lowed by, NI-REM epochs and RNN classify the epochs
into two classes (namely, Nl and REM). Therefore, RNNs
are presented in a similar model, where input layer is a
sequence layer with 30 time steps; the LSTM layers are
applied or else the features from input signals are learnt.
Further, Fully Connected (FC) layer is utilized to convert
the output size of preceding layers as the number of sleep
stages for examination process. Softmax layer is processed
as the possibility of target class. The major benefits of uti-
lizing Softmax activation function is that it can generate the
output probability range within a limited time. The numerical
expression is shown herewith.

ŷ(i)j =
ez
(i)
j

6c
j=le

z(i)j
(9)

The superscript i defines a generic training sample, sub-
script j implies a generic neuron of 0C layer, z defines the
final value of FC layer and C means the count of target
classes. Hence, cost function is reduced in network training

model, where the function of weights, W and bias term b,
represent the average of cross entropy functions for C :

J (W , b) = −
l
M

M∑
i=1

C∑
j=l

y(i)j ·log
(
ŷ(i)j
)

(10)

Here, M defines the count of training sample, y signifies
true label and ŷ depicts the measure evaluated by the system.
The measure of C is allocated as 4 for initial RNN and 2 for
secondary RNN. The major difference between these two
networks is that the first structure is a single LSTM layer
with sequence-to-label manner, whereas secondary RNN has
two LSTM layers. The first layer is composed of sequence-
to-sequence structure while the second one has sequence-to-
label manner.

C. PARAMETER OPTIMIZATION OF WEIGHTS AND BIASES
USING CSO ALGORITHM
CSO is applied in this research to optimize the weights and
bias parameters of CLSTM model. Globally, crows are con-
sidered as intelligent species in comparison with other birds.
It has high potentials and has large-sized brain compared to
body. According to brain-to-body theory, brain is marginally
lesser in humans. The intelligence of crow is established by
massive number of samples. Based on a survey, it has been
established that crows have self-experience inmirror tests and
skillful in making tools. Crows are capable of remembering
faces and it can send warning signals to other crows in case
of danger. Also, it makes use of developed tools; share the
details, and memorize the secret place of food. Moreover,
it observes other birds and chase them to find the secret place
of food and grab it, once the bird leaves the nest. Afterwards,
crow finds a safe place to store the robbed food so that the
actual bird does not find the food. Figure 3 demonstrates the
flow chart of CSO. Basically, it uses the knowledge of a thief
to speculate a thief’s action and selects a secure way to defend
its food [20].

Few standards of crows are given herewith.
• It resides in group
• It is capable of remembering the location of food stored
in secret places.

• It follows one by one to grab the food.
• It protects their food from being robbed.
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FIGURE 3. Flowchart of CSO algorithm.

Followed by, there are N-dimensional platforms which are
composed of massive crows, where C denotes the overall
count of crows and u defines the position of a crow at time in
a Search Space (SS). This has been evaluated in the function
given below.

V u,iter (p = 1, 2, . . . ,C; iter = 1, 2, . . . ,) itermax (11)

where V u,iter
=

[
V u,iter
1 ,V u,iter

2 , . . . ,V u,iter
c

]
and itermax

resemble the iterations with higher count. A crow is appli-
cable to remember the place of secret location. At this point,
the location of secret place of crow u is implied as su,iter. It is
a better location which the crow u has accomplished. Assume
the iteration in which the crow v requires to be placed in secret
location, sv,iter . At this point, crow u plans to chase crow v to
the secret place. Here, two processes are carried out as given
herewith.

Event 1: Crow v has no suggestions about which crow u
is chasing. Thus, in the outcome, crow u reaches the secret
position of crow, v. Then, the new location of crow u is

developed as given herewith.

V u,iter+1
= V u,iter

+ kj×fllu,iter ×
(
Sv,iter − V u,iter

)
(12)

where, kj implies a random value with uniform distribution
between 0 and 1, and fllu,iter refers to the flight length of crow,
u. The lower value of fll tends to have local search whereas
higher values results in global search.

Event 2: Crow v understands that crow u is tracking it.
Finally, the theft is prevented and crow v deceives crow u
by changing its actual position to alternate position of SS.
Therefore, events 1 and 2 are illustrated as follows

V u,iter+1
=


V u,iter

+ kj×fllu,iter ×
(
Sv,iter − V u,iter

)
kj

≥ AWPv,iter

a random location other wise

(13)

where AWPv,iter implies the awareness of crow v at iteration.

IV. EXPERIMENTAL VALIDATION
This section validates the performance of the presented CSO-
CLSTM model in terms of sensitivity, specificity, and accu-
racy. Besides, the results are examined on heart disease
[21] and diabetes [22] datasets under varying number of
instances. The presented model was implemented in a PC
with specifications such as Motherboard - MSI Z370 A-Pro,
Processor - i5-8600k, Graphics Card - GeForce 1050Ti 4GB,
RAM - 16GB and File Storage - 1TB HDD.

A. RESULTS ON HEART DISEASE DIAGNOSIS
Table 1 shows the classification outcome of CSO-CLSTM
model and compares it with existing classifiers with respect
to distinct measures on heart disease dataset [21]. When
analyzing the results in terms of sensitivity, it is evident that
the SVM model demonstrated poor performance over other
existing methods. Additionally, the NB-A model attempted
to showcase somewhat better sensitivity over SVM. Con-
currently, KNN and J48 models resulted in moderately
closer and competitive sensitivity values. But the presented
CSO-CLSTMmodel exhibited superior classification perfor-
mance by obtaining a higher sensitivity value. For example,
under 2000 instances, the CSO-CLSTM model reached a
maximum sensitivity of 94.80% whereas other models such
as KNN, NB-A, SVM, and J48 models accomplished low
sensitivity values of 92.60%, 87.90%, 83.20%, and 93.30%
respectively. Similarly, under 10000 instances, the proposed
CSO-CLSTM method attained a higher sensitivity of 98%
while KNN, NB-A, SVM, and J48 methodologies accom-
plished only least sensitivity values of 93.60%, 89.10%,
84.20%, and 96% respectively.

The results of specificity analysis infers that the SVM
approach yielded inferior performance over traditional mod-
els. In addition, the NB-A scheme managed to exhibit con-
siderable specificity over SVM. Simultaneously, KNN and
J48 frameworks attained acceptable and competing speci-
ficity values. However, the newly developed CSO-CLSTM
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TABLE 1. The performance analysis of existing and proposed method on
heart disease dataset.

technology accomplished high classification performance
and gained optimal specificity value. For instance, under
2000 instances, the CSO-CLSTM scheme achieved a high
specificity of 94.70%, whereas the KNN, NB-A, SVM,
and J48 technologies accomplished the least specificity val-
ues of 84.20%, 83.40%, 80.20%, and 92.60% respectively.
In line with these, under the application of 10000 instances,
the CSO-CLSTM model attained a supreme specificity of
93.80%, while the KNN, NB-A, SVM, and J48 approaches
achieved low specificity values of 89.30%, 86.40%, 90.40%,
and 93.80% respectively.

The accuracy analysis inferred that the SVM frame-
work yielded ineffective performance over other traditional
approaches. Further, the NB-A scheme managed to produce
moderate accuracy over SVM. At the same time, both KNN
and J48 approaches produced better and modest accuracy.
Thus, the projected CSO-CLSTM approach achieved heavy
classification by obtaining the maximum accuracy value.
For example, under 2000 instances, the CSO-CLSTM model
attained the maximum accuracy of 95.10%, while KNN,
NB-A, SVM, and J48 models achieved limited accuracies
of 89.40%, 76.80%, 73.40%, and 91.60% correspondingly.
At the same time, under the presence of 10000 instances,
the CSO-CLSTM technique gained a high accuracy of
97.40%, whereas the KNN, NB-A, SVM, and J48 models
obtained only minimum accuracy values of 89.30%, 82.40%,
81.60%, and 92.80% respectively.

Table 2 and figure 4 depict the results of average clas-
sification analysis of CSO-CLSTM model on the applied
heart disease dataset. The figure clearly portrays that the
CSO-CLSTM model outperformed other compared methods
by achieving an enhanced average sensitivity of 96.38%,
specificity of 94.30%, and accuracy of 96.16%.

TABLE 2. The average performance analysis of existing and the proposed
CSO-CLSTM method on heart disease dataset.

FIGURE 4. Results of average classifier analysis on heart disease dataset.

B. RESULTS ON DIABETES DATASET
Table 3 shows the classification result of CSO-CLSTMmodel
with existing classifiers with respect to distinct measures on
diabetes disease dataset [22]. When analyzing the results
in terms of sensitivity, it is clear that the SVM model
demonstrated inefficient performance over other classical
methods. Further, both NB-A and KNN model attempted
to produce considerable sensitivity over SVM. Meantime,
both J48 and FNCA approaches resulted in similar and com-
petitive sensitivity. But the presented CSO-CLSTM model
exhibited higher classification performance and obtained
high sensitivity value. For example, under 2000 instances,
the CSO-CLSTM model achieved a supreme sensitivity
of 98.10%, whereas KNN, NB-A, SVM, J48, and FNCA
models attained the minimum sensitivity values of 92%,
87.50%, 83%, 93%, and 94.50% respectively. Likewise,
under 10000 instances, the CSO-CLSTM model accom-
plished a maximum sensitivity value of 99.20%, while KNN,
NB-A, SVM, J48, and FNCA models accomplished only
minimum sensitivity values of 94.20%, 90%, 83.40%, 96%,
and 97% respectively.

When analyzing the results with respect to specificity,
it is apparent that the SVM model demonstrated poor per-
formance over other existing methods. Besides, both NB-A
and KNN models attempted to accomplish improved speci-
ficity over SVM. Further, J48 and FNCA models resulted
in close and competing specificity. However, the presented
CSO-CLSTM model achieved high classification perfor-
mance and obtained high specificity. For example, under
the presence of 2000 instances, the CSO-CLSTM model
achieved a high specificity of 98.80%, while the other mod-
els such as KNN, NB-A, SVM, J48, and FNCA method-
ologies attained the minimum specificity values of 84%,
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TABLE 3. The performance analysis of existing and the proposed method
on diabetes disease dataset.

83%, 82%, 92.50%, and 94% respectively. In line with this,
under 10000 instances, the CSO-CLSTMmodel reached high
specificity of 97.30%, whereas KNN, NB-A, SVM, J48,
and FNCA models achieved only limited specificity values
of 90%, 87%, 84%, 90.50%, and 92% respectively.

In accuracy analysis, SVMmodel demonstrated a low per-
formance over other methods. Additionally, NB-A and KNN
models achieved moderate accuracy over SVM. Concur-
rently, J48 and FNCA models resulted in similar and modest
accuracy. But the presented CSO-CLSTM model exhibited
superior classification performance and obtained a high accu-
racy. For example, under 2000 instances, the CSO-CLSTM
model accomplished the maximum accuracy of 95.70%,
while KNN, NB-A, SVM, J48, and FNCA models pro-
duced the least accuracy values of 89%, 77%, 74%,
92%, and 93% respectively. Likewise, under the existence
of 10000 instances, the CSO-CLSTM model reached a high
accuracy of 97.8%, whereas KNN, NB-A, SVM, J48, and
FNCA models accomplished only minimum accuracy values
such as 90%, 83%, 80%, 92.50%, and 94% respectively.

Table 4 and figure 5 demonstrate the average classification
outcome of CSO-CLSTMmethod on applied diabetes disease
dataset. The figure clearly implies that the CSO-CLSTM
approach surpassed the compared models and accomplished
an average sensitivity of 98.62%, specificity of 96.94%, and
accuracy of 97.26%. From the above-mentioned tables and

TABLE 4. The average performance analysis of existing and the proposed
CSO-CLSTM method on diabetes disease dataset.

FIGURE 5. The average classifier results analysis on Diabetes dataset.

figures, it is apparent that the CSO-CLSTMmodel is effective
in performance since during the experimentation, it achieved
the maximum accuracy values of 96.16% and 97.26% on
heart disease and diabetes diagnoses respectively.

V. CONCLUSION
The current research work has developed an efficient AI and
IoT convergence-based disease diagnosis model for smart
healthcare system. The presented model encompasses differ-
ent stages namely data acquisition, preprocessing, classifica-
tion, and parameter tuning. IoT devices such as wearables
and sensors collect the data while AI techniques utilize the
data to perform disease diagnosis. Then, iForest technique
is executed to get rid of outliers that exist in the patient
data. Followed by, the CSO-CLSTM model is employed to
classify the data whether the disease exists or not. In addition,
CSO is applied to optimize the weights and bias parameters
of the CLSTM model. The utilization of CSO assists in
the improvement of diagnostic outcome of CLSTM model.
The performance of CSO-LSTM model was validated using
healthcare data. During the experimentation, the CSO-LSTM
model accomplished a maximum accuracy of 96.16% and
97.26% on heart disease and diabetes diagnoses respectively.
This establishes the effectiveness of the presented model.
As a part of future scope, the performance can be improved
using feature selection techniques which reduce the curse of
dimensionality and computational complexity. In addition,
the limitations of CSO algorithm such as slow search preci-
sion and high possibility of getting into local optima can be
resolved with the help of hybrid metaheuristic algorithms.
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