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ABSTRACT Parabolic equation methods are a robust and efficient tool for modeling long-range acoustic
propagation in range-dependent waveguides. A lesser known, but equally effective, application of parabolic
equations is to the scattering problem. In this paper, we study the applicability and accuracy of themultisector
parabolic equation approach to scattering from impenetrable objects – first developed approximately two
decades ago for convex objects and recently extended to more complex scatterers – in waveguides in two and
three dimensions. We benchmark the method in two dimensions in a range-dependent waveguide consisting
of two different fluid media and find very good agreement with finite element methods for both forward
scattering and backscattering, including the case where the scatterer is located at the interface between the
media. Finally, we provide an example of scattering in a large three-dimensional waveguide, which would be
extremely computationally intensive using alternate approaches, but is practical using the parabolic equation
method.

INDEX TERMS Acoustic parabolic equation, acoustic propagation, acoustic scattering, fluid waveguide,
numerical simulation.

I. INTRODUCTION
Parabolic equation (PE) methods are often used to accu-
rately and efficiently model long-range acoustic propagation
in complex environments [1]–[3]. While wave propagation
has been the primary application of parabolic equation meth-
ods in acoustics, a PE technique was developed by Levy
and Zaporozhets for modeling scattering from impenetrable
objects [4]–[8]. The advantages of this PE-based approach,
which we will call the multisector PE method, relative to
finite-element methods (FEM), are computational efficiency
and ease of implementation [1], [9], [10].

Acoustic target scattering calculations using the Levy-
Zaporozhets approach had limitations relating to wide-
angle and multiple-scattering phenomena, which restricted
the maximum concavity of objects to which the approach
could be applied [5], and were limited in their benchmark-
ing. Recent work has established that this method works
extremely well for convex scatterers, and can be modified
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to accurately calculate scattering from a variety impenetrable
concave scatterers [10].

The goal of the present work is to interface the multisector
PE scattering method with PE-based propagation in two-
and three-dimensional fluid waveguides. Three-dimensional
scattering from objects in waveguides has historically been
computed by solving for the near-field scattering and project-
ing this to the far-field using approximate Green’s functions
[11]–[13]. While this works well for layered fluid media,
when the waveguide layers are range-dependent in depth and
sound speed, these Green’s functions become increasingly
complicated to compute.

For impenetrable objects, it has been shown that the com-
putational time using the PE to calculate scattering in the
near field is approximately the same as FEM approaches
in two dimensions, and much faster in three dimensions,
with the difference increasing exponentially with the object
size [10]. Combining the PE scattering method with PE-
based propagation allows for use of the same ‘‘back-end’’
for codes. As such, it does not involve taking propagation
results and feeding them into a separate scattering model,
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FIGURE 1. Schematic of the parabolic equation scattering method in two dimensions. The ‘‘global’’ waveguide coordinates are denoted x ′z ′ ,
while the ‘‘local’’ scattering coordinates are xz . (a) and (b) show the areas of validity (paraxial cones) of the scattering PE method when marched
across the scatterer at two different angles. In (c), the paraxial cones of the different marching angles are stitched together around the scatterer,
and are used as input values for the PE, which is used to march the field forward in the waveguide. The PE is then used to march the field
backward, using the same input values.

FIGURE 2. Sound pressure level in dB re pi (r = 1 m, z = 50 m) for a point source of frequency 250 Hz located at zs = 50 m in the
two-fluid waveguide with no scatterer present computed with the parabolic equation.

and then returning the near-field scattering result to a separate
propagation model.

In Section II, we will overview the parabolic equation
approach to propagation and scattering modeling. To show
the robustness of this model, in Sec. III, we will bench-
mark the results in two-dimensions in a sloping waveguide
against a finite-element method approach. Finally, in Sec. IV,
we demonstrate the application of this model to scattering
in a three-dimensional fluid waveguide with an ocean-like
bathymetry.

II. PARABOLIC EQUATION PROPAGATION AND
SCATTERING
For clarity, we will briefly overview the aspects of the
parabolic equation relevant to this work. The one-way two-

dimensional parabolic equation describing acoustic waves
propagating in the paraxial direction x is

∂u
∂x
= −ik(1− Q)u, (1)

where u = pe−ikx ; p is the pressure field;

Q =

√
ρ

k2
∂

∂z
1
ρ

∂

∂z
+ ñ2 ≡

√
1+ q ;

q = (ñ2 − 1)+
ρ

k2
∂

∂z
1
ρ

∂

∂z
,

k the reference wave number; ρ the density; and ñ(z) =
c0/cs(1+ iηβp) the index of refraction, with c0 the reference
speed of sound, cs the speed of sound, η = 1/(40π log10(e)),
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FIGURE 3. Sound pressure level in dB re pi (r = 1 m, z = 50 m) along lines of constant depth for a point source of frequency 250 Hz
located at zs = 50 m in the two-fluid waveguide with no scatterer present computed with the parabolic equation. The solid lines are the
PE computation, and the dashed are from the FEM model. From top to bottom, the depths corresponding to the lines are 40, 60, 80, and
100 m, with offsets of 0, 40, 80, and 120 dB, respectively.

and βp the attenuation per wavelength in dB. We assume the
pressure field has standard exp−iωt time dependence.

When modeling propagation, the standard approach is to
approximate the square root operator Q with a Padé approxi-
mant [14]. The sum form of the Padé approximant is

1− Q =
N∑
n

An,Nq
1+ Bn,Nq

, (2)

while the product form of the operator is

Q =
N∏
n

1+ Cn,Nq
1+ Bn,Nq

, (3)

with coefficients An,N , Bn,N , Cn,N for the Padé expansion of
order N . These coefficients are given as

An,N =
an,N e−iα/2

(1+ bn,N (e−iα − 1))2
,

Bn,N =
bn,N e−iα

1+ bn,N (e−iα − 1)
,

Cn,N =
cn,N

1+ bn,N (eiα − 1)
, (4)

with

an,N =
2

2N + 1
sin2

(
nπ

2N + 1

)
,

bn,N = cos2
(

nπ
2N + 1

)
,

cn,N = sin2
(

nπ
2N + 1

)
. (5)

The parameter α is the rotation angle of the approximation
in the complex plane, and appropriate choice of angle allows
for accurate treatment of evanescent waves (q < −1) [15]. As
an example of how to implement this in a numerical scheme,
we can substitute the sum form into the parabolic equation
and discretize in range with steps of size 1x. This yields an
iterative formula to propagate the field u from range stepm−1
to m:

(1+ (Bn,N − ik1xAn,N )q)u(n)

= (1+ (Bn,N + ik1xAn,N )q)u(n−1),

n = 1 . . .N , (6)

where u(0) = um−1 and u(N )
= um [3]. The finite difference

formulas used to implement the operator q can be found in
Ref. [16].

To accurately model propagation in range-dependent
waveguides, we need to account for the field backscattered
from sloping waveguide boundaries. The standard parabolic
equation conserves pressure across range steps, and there-
fore does not account for backscattered pressure, leading to
incorrect results. One way to correct for this is to enforce
energy conservation between range steps. The approximation
of energy conservation, going from region A to region B, is
given by

(kA/ρA)1/2ui = (kB/ρB)1/2ut , (7)

where ui is the incident pressure and ut is the transmitted
pressure [17]. This conservation is applied at each range step
prior to propagation, and only the transmitted pressure ut is
propagated forward using the parabolic equation.
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FIGURE 4. Sound pressure levels in dB re pi (r = 1 m, z = 50 m) for scattering from a soft ellipse with axes ar = 15 m and az = 5 m in the
water column of a fluid-fluid waveguide. The center of the ellipse is located at (r , z) = (1000 m,60 m). The top panel shows the scattered
field from the ellipse, while the bottom panel shows the total field (incident and scattered). Both fields are as computed by the parabolic
equation method.

In a domain with a scatterer, a given total field p can be
decomposed into its incident pi and scattered ps components.
The PE-scattering method solves for the scattered field, using
the incident field to calculate a source term on the boundary
of the impenetrable object. The parabolic equation for the
forward-scattered field is identical to that of the total field,

∂us
∂x
= −ik(1− Q)us. (8)

A general form of the boundary condition on an impene-
trable object is

γ
∂p
∂En
+ ζp = 0, (9)

where γ and ζ are free parameters and En is the vector normal
to the boundary of the object; the parameter cases (γ =
0, ζ = 1) and (γ = 1, ζ = 0) correspond to objects with soft
(pressure release) and hard (rigid) boundaries, respectively. In
terms of the incident and scattered fields, we have

γ
∂ps
∂En
+ ζps = −γ

∂pi
∂En
− ζpi.

This boundary condition can be written for the field us,

γ nx

(
∂us
∂x
+ ikus

)
+ γ nz

∂us
∂z
+ ζus

= −γ e−ikx
∂pi
∂En
− ζe−ikxpi, (10)

where nx , nz are the components of the normal vector to the
object.

Substituting the narrow-angle PE (Q ≈ 1+ q/2) for the x
derivative of (10) yields the boundary condition

ikγ nx

(
(ñ2 − 1)

2
+

ρ

2k2
∂

∂z
1
ρ

∂

∂z
+ 1

)
us

+γ nz
∂us
∂z
+ ζus

= −γ e−ikx
∂pi
∂En
− ζe−ikxpi, (11)

which has no range derivative dependence. All the discussion
above is identical in three dimensions, with

Q =

√
ρ

k2

(
∂

∂y
1
ρ

∂

∂y
+
∂

∂z
1
ρ

∂

∂z

)
+ ñ2.
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FIGURE 5. Sound pressure level in dB re pi (r = 1 m, z = 50 m) along lines of constant depth in a fluid-fluid waveguide for the case of a soft
ellipse with axes ar = 15 m and az = 5 m in the water column. The center of the ellipse is located at (r , z) = (1000 m,60 m). The top panel
is for the scattered field from the soft ellipse, while the bottom panel is for the total field. The solid lines are the PE computation, and the
dashed are from the FEM model. From top to bottom on each panel, the depths corresponding to the lines are 40, 60, 80, and 100 m, with
offsets of 0, 40, 80, and 120 dB, respectively.

Numerical solutions using the PE-scattering method are
implemented via a finite-difference algorithm on a Cartesian
grid in a small domain containing the scatterer. The scatterer
is discretized in a stair-step manner, and the field is marched
in different paraxial directions relative to the scatterer using
the parabolic equation, with the scattered field sourced by the
appropriate boundary conditions on the surface of the scat-
terer. For each direction of marching (denoted by coordinate
system xz, relative to the scatterer’s coordinate system x ′z′),
the pressure within the paraxial cone – with width determined
by the wide-angle form of the PE used – is the only part of
the scattered field that is valid. The different paraxial cones
are then stitched together to obtain the full near-field scat-

tered pressure around the object, hence the namemultisector.
This near-field pressure is then propagated away from the
scatterer using the standard parabolic equation formalism.
This process is illustrated in Fig. 1 for a two-dimensional
object and forward PE propagation. For further description
and examples of the scattering method, see Refs. [9], [10].

We know from previous studies that the scattering method
itself can accurately and efficiently model scatterers of var-
ious shapes and orientations for free-field target strength
calculations. The focus of this work is therefore to see how
well the PE scattering method can incorporate an incident
waveguide field to produce the near-field scattered pressure
about an object; how well that near-field pressure can be
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FIGURE 6. Sound pressure levels in dB re pi (r = 1 m, z = 50 m) for scattering from a hard ellipse with axes ar = 15 m and az = 5 m at the
interface in a fluid-fluid waveguide. The center of the ellipse is located at (r , z) = (1000 m,100 m). The top panel shows the scattered field
from the ellipse, while the bottom panel shows the total field (incident and scattered). Both fields are as computed by the parabolic
equation method.

used to accurately source a propagation model to the far-field
in a range-dependent waveguide; and how well the method
handles a changing index of refraction around the scatterer.

III. BENCHMARKING IN TWO DIMENSIONS
Wewill benchmark the performance of the scattering method
in a two-dimensional fluid waveguide consisting of two fluid
media with different acoustic properties. These cases are
easily modeled by finite-element methods and allow for com-
parison between the methods in terms of both accuracy and
speed; in this work, we will use the COMSOL Multiphysics
software [18] to obtain these benchmarks.

We begin by describing the waveguide. The water column
has depth 150 m from r = 0 m to r = 500 m, and then
a constant slope upward from 150 m to 50 m depth from
r = 500 m to r = 1500 m, and then constant 50 m
depth from r = 1500 m to r = 2000 m. The top of the
waveguide has a pressure release boundary, and below 175 m
depth, we implement a perfectly-matched layer to absorb any
incident pressure [19]. The water column has constant sound
speed cp = 1500 m/s, density ρ = 1000 kg/m3, with no
absorption. The ‘‘sediment’’ has cp = 1800 m/s, density
ρ = 2000 kg/m3, and attenuation βp = 0.1 dB/λ.

All two-dimensional examples have a point source of fre-
quency 250 Hz located at zs = 50, and pressures in this
paper are presented in dB, with the reference pressure pref ≡
pi(r = 1 m, z = 50 m), where pi is the pressure field in the
waveguide with no scatterer present.

For propagation, we use the parabolic equation with 8 Padé
terms, and a complex plane rotation angle of α = π/2 rad.
The grid spacings 1r and 1z are both set to λ/10 = 0.6 m.
For the scattering computation 1r was set to 0.3 m. The
matrix equations were solved using the Eigen linear algebra
package [20] in C++. For the propagationmodeling, we used
the implementation of the SparseLU solver, while for the
scattering computation, we used the BiCGSTAB solver. For
the finite element model, the maximum element size is set to
λ/6.

Fig. 2 is a plot of the sound pressure level computed by the
PE for this setup. Fig. 3 shows the pressures computed by the
PE and FEMmodels at depths of 40, 60, 80, and 100 m, from
top to bottom. The 40 m line is not offset, while the 60, 80,
and 100m lines are offset by 40, 80, and 120 dB, respectively.
Overall, we see excellent agreement at all depths between the
parabolic equation and finite element approaches, even when
the sound propagates into the bottom medium.
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FIGURE 7. Sound pressure level in dB re pi (r = 1 m, z = 50 m) along lines of constant depth in a fluid-fluid waveguide for the case of a
hard ellipse with axes ar = 15 m and az = 5 m at the interface between the two media. The center of the ellipse is located at
(r , z) = (1000 m,100 m). The top panel is for the scattered field from the soft ellipse, while the bottom panel is for the total field. The solid
lines are the PE computation, and the dashed are from the FEM model. From top to bottom on each panel, the depths corresponding to the
lines are 40, 60, 80, and 100 m, with offsets of 0, 40, 80, and 120 dB, respectively.

With the knowledge that our incident fields are accurate,
we will look at two illustrative examples, the first with a soft
(pressure release) ellipse in the water column, and the second
with a hard (rigid) ellipse at the interface between the two
fluid media. In both instances, the center of scatterer will be
located at r = 1000 m, and have

The first example is for a soft ellipse with axes ar = 15 m,
az = 5 m, located at r = 1000 m and z = 60 m, in the water
column above the sloping interface. Fig. 4 shows contour
plots of the scattered field (top panel) and the total field
(bottom panel), which is the sum of the scattered field and
the background pressure field shown in Fig. 2. Fig. 5 shows
the sound pressure level as computed by the PE (solid lines)

and FEM (dashed lines) methods at depths of 40, 60, 80, and
100 m, with offsets of 0, 40, 80, and 120 dB, respectively. In
general, we see excellent agreement between the twomethods
in the forward and backward directions. In the backscattering
direction, the small oscillations induced in the total field are
captured perfectly.

The area of largest difference in the scattered fields
between the two approaches is directly above and below the
scatterer. This is due to the fact that the PE, even when using
many Padé terms, has a paraxial cone that does not include
propagation completely perpendicular to the marching direc-
tion. We note that this difference is small when looking at the
total field. If one, however, is concernedwith the field directly
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FIGURE 8. The bathymetry used in the example of three-dimensional
propagation and scattering. The source is located at point S1 (the origin),
at depth z = 40 m. The scatterer is located at point S2 at depth
z = 180 m, with coordinates (r , θ) = (4000 m,2π/3), corresponding to
(x, y ) location (−2000 m, 3646 m). The dashed circles denote the ranges
modeled by the parabolic equation for the incident and scattered fields.

above or below the scatterer, it is possible to use the same
approach as done here for the forward and backward scatter-
ing to march instead in the upward and downward directions,
using the same near-field scattered field as a source. In this
approach, at the top interface, one could use a two-way PE
method to capture perpendicular reflections off the surface
from the upward march [21], [22].

The next example we show is for a hard ellipse of the
same dimensions, located at r = 1000 m and z = 100 m
depth, straddling the interface of the two media. Fig. 6 shows
contour plots of the scattered field from the hard ellipse (top
panel) and the total field (bottom panel), and Fig. 7 shows
the sound pressure level as computed by the PE (solid lines)
and FEM (dashed lines) methods at depths of 40, 60, 80, and
100 m, with offsets of 0, 40, 80, and 120 dB, respectively.
Once again, we see excellent agreement between the two
approaches, except for the region directly above the scatterer.
In this case, the rapid oscillations of the backscattered total
field are larger than that of the previous case, but are still
captured perfectly.

For these examples, using a laptop with a six-core (twelve
openMP threads) Intel i9 2.9 GHz processor, the COMSOL
solutions took 65 seconds and 71 seconds for each case (not
including meshing time), respectively, while the PE method
took 28 and 32 seconds for each case, respectively. Even
for simple two-dimensional examples, the PE approach gives
excellent results with great efficiency as compared to other
approaches. The PE is significantly faster at the propagation

FIGURE 9. (a) Sound pressure level in the example three-dimensional
waveguide at z = 180 m depth for a point source of frequency 250 Hz
located at z = 40 m depth with no scatterer present. (b) Sound pressure
level at z = 180 m depth of the scattered field from an ellipsoid of
dimensions ar = 25 m, a⊥ = 10 m located at (r , θ) = (4000 m,2π/3) in
the example three-dimensional waveguide.

portion of the problem, and the scattering takes comparable
time between the two approaches in two dimensions, depend-
ing on the size of the object [10].
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IV. THREE-DIMENSIONAL EXAMPLE
In three dimensions is where the PE approach comes
into its own. Computing long range acoustic propaga-
tion in realistic environments is extremely computationally
intensive using FEM approaches, and these calculations
generally cannot be carried out on a desktop computer.
On the other hand, modeling three dimensional propaga-
tion with the parabolic equation is efficient and accurate
[1], [3]. When computing scattering from impenetrable
objects, it has been shown that, for most three-dimensional
cases, the PE method is more efficient than the FEM,
as well [10].

For illustrative purposes, we will now provide an exam-
ple of the PE method being used to compute long-range
scattering in a three-dimensional fluid waveguide with an
ocean-like bathymetry. The bathymetry used for this model
is shown in Fig. 8. The source, at the location marked S1
(the origin), is point source with frequency 250 Hz and
depth 40 m. The scatterer is a soft ellipsoid with axes
ar = 25 m, a⊥ = 10 m, at the location marked S2, with
coordinates (r, θ, z) = (4000 m, 2π/3, 180 m). The ranges
modeled for the initial propagation and the scattered field are
denoted by the dashed circles of radius 5 km around each
location.

The propagation computation for the incident field was
carried out in cylindrical coordinates with five Padé terms
in the z and θ directions, with grid spacing 0.6 m in the
r and z directions and 1/1440◦ in the θ direction. The
matrix equation was solved using an alternating direction-
implicit scheme, as implemented in Ref. [3]. The local
scattering computation had grid spacing 0.6 m in the y
and z directions, and 0.3 m in the x direction, and the
outward propagation of the scattered field was computed
using the same parameters as the propagation of the incident
field.

Fig. 9a shows the pressure field without the scatterer
present at depth 180 m. Fig. 9b shows the subsequent scat-
tered field propagating outward from the scatterer at depth
180 m. The pressures are presented in dB with reference
pressure pref ≡ pi(r = 1 m, z = 40 m).

In terms of computational time, the entire modeling pro-
cess (initial propagation, scattering calculation, and propaga-
tion of the scattered field) took 38.5 CPU hours, of which
1.6 CPU hours (4.1%) were for the scattering computa-
tion. One should note that the solver back end for both
portions is identical, and thus any computational speedup
in solving the matrices in the propagation portion of
the code directly translates to the scattering computation,
and therefore the proportion will remain approximately
the same.

V. SUMMARY
Parabolic equation approaches have long yielded efficient
computational models for long-range propagation of pres-
sure fields in waveguides. In this work, we have shown that

the previously established techniques for computing acoustic
scattering from impenetrable objects using the multisector
parabolic equation can be interfaced with propagation mod-
els to yield accurate far-field scattered pressures in fluid
waveguides. In two dimensions, we benchmarked the results
against finite-element methods, and found excellent agree-
ment between the two approaches. We then provided an
example of computing propagation and scattering in three-
dimensions, which, using the parabolic equation method,
is practical to carry out on a standard desktop computer. In a
fluid-elastic waveguide, which would be more representative
of an oceanwith a solid bottom, this methodworks identically
for impenetrable acoustic scatterers in the water column. For
penetrable or elastic scatterers, or scatterers embedded in a
solid medium, further study is necessary.

ACKNOWLEDGMENT
The authors thank M. D. Collins and J. F. Lingevitch for
useful discussions.

REFERENCES
[1] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Com-

putational Ocean Acoustics. New York, NY, USA: Springer, 2000, doi:
10.1007/978-1-4419-8678-8.

[2] M. D. Collins, ‘‘Foreword to the special issue,’’ Wave Motion, vol. 31,
pp. 97–99, Feb. 2000, doi: 10.1016/S0165-2125(99)00037-2.

[3] F. Sturm, ‘‘Numerical study of broadband sound pulse propagation in
three-dimensional oceanic waveguides,’’ J. Acoust. Soc. Amer., vol. 117,
no. 3, pp. 1058–1079, Mar. 2005, doi: 10.1121/1.1855791.

[4] A. A. Zaporozhets and M. F. Levy, ‘‘Modelling of radiowave propa-
gation in urban environment with parabolic equation method,’’ Elec-
tron. Lett., vol. 32, no. 17, pp. 1615–1616, 1996, doi: 10.1049/
el:19961060.

[5] M. F. Levy and A. A. Zaporozhets, ‘‘Target scattering calculations with
the parabolic equation method,’’ J. Acoust. Soc. Amer., vol. 103, no. 2,
pp. 735–741, Feb. 1998, doi: 10.1121/1.421198.

[6] A. A. Zaporozhets, ‘‘Application of vector parabolic equation method
to urban radiowave propagation problems,’’ IEE Proc.-Microw.,
Antennas Propag., vol. 146, no. 4, p. 253, 1999, doi: 10.1049/ip-
map:19990567.

[7] A. A. Zaporozhets and M. F. Levy, ‘‘Bistatic RCS calculations
with the vector parabolic equation method,’’ IEEE Trans. Antennas
Propag., vol. 47, no. 11, pp. 1688–1696, Nov. 1999, doi: 10.1109/
8.814948.

[8] M. Levy and A. Zaporozhets, ‘‘Parabolic equation techniques for scatter-
ing,’’Wave Motion, vol. 31, pp. 147–156, Feb. 2000, doi: 10.1016/S0165-
2125(99)00042-6.

[9] M. Levy, Parabolic EquationMethods for Electromagnetic Wave Propaga-
tion (IEE Electromagnetic Waves Series), vol. 45. Edison, NJ, USA: IET,
2000, doi: 10.1049/PBEW045E.

[10] A. Ramamurti and D. C. Calvo, ‘‘Multisector parabolic-equation approach
to compute acoustic scattering by noncanonically shaped impenetrable
objects,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 100, no. 6, Dec. 2019, Art. no. 063309, doi: 10.1103/PhysRevE.
100.063309.

[11] M. D. Collins and M. F. Werby, ‘‘A parabolic equation model for scatter-
ing in the ocean,’’ J. Acoust. Soc. Amer., vol. 85, no. 5, pp. 1895–1902,
May 1989, doi: 10.1121/1.397896.

[12] M. Zampolli, A. Tesei, G. Canepa, and O. A. Godin, ‘‘Computing the
far field scattered or radiated by objects inside layered fluid media using
approximate Green’s functions,’’ J. Acoust. Soc. Amer., vol. 123, no. 6,
pp. 4051–4058, Jun. 2008, doi: 10.1121/1.2902139.

[13] A. Sarkissian, B. Houston, J. Bucaro, and L. Kraus, ‘‘Near-field to far-
field projection algorithm for free-field or buried scatterer,’’ J. Acoust.
Soc. Amer., vol. 133, no. 2, pp. 912–917, Feb. 2013, doi: 10.1121/
1.4773860.

45076 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-1-4419-8678-8
http://dx.doi.org/10.1016/S0165-2125(99)00037-2
http://dx.doi.org/10.1121/1.1855791
http://dx.doi.org/10.1049/el:19961060
http://dx.doi.org/10.1049/el:19961060
http://dx.doi.org/10.1121/1.421198
http://dx.doi.org/10.1049/ip-map:19990567
http://dx.doi.org/10.1049/ip-map:19990567
http://dx.doi.org/10.1109/8.814948
http://dx.doi.org/10.1109/8.814948
http://dx.doi.org/10.1016/S0165-2125(99)00042-6
http://dx.doi.org/10.1016/S0165-2125(99)00042-6
http://dx.doi.org/10.1049/PBEW045E
http://dx.doi.org/10.1103/PhysRevE.100.063309
http://dx.doi.org/10.1103/PhysRevE.100.063309
http://dx.doi.org/10.1121/1.397896
http://dx.doi.org/10.1121/1.2902139
http://dx.doi.org/10.1121/1.4773860
http://dx.doi.org/10.1121/1.4773860


A. Ramamurti, D. C. Calvo: Multisector PE Method for Scattering From Impenetrable Objects in Fluid Waveguides

[14] M. D. Collins, ‘‘Higher-order Padé approximations for accurate and stable
elastic parabolic equations with application to interface wave propaga-
tion,’’ J. Acoust. Soc. Amer., vol. 89, no. 3, pp. 1050–1057, Mar. 1991, doi:
10.1121/1.400646.

[15] F. A. Milinazzo, C. A. Zala, and G. H. Brooke, ‘‘Rational square-
root approximations for parabolic equation algorithms,’’ J. Acoust.
Soc. Amer., vol. 101, no. 2, pp. 760–766, Feb. 1997, doi: 10.1121/
1.418038.

[16] M. D. Collins and W. L. Siegmann, Parabolic Wave Equations With
Applications. New York, NY, USA: Springer, 2019, doi: 10.1007/978-1-
4939-9934-7.

[17] M. D. Collins and E. K. Westwood, ‘‘A higher-order energy-conserving
parabolic equqation for range-dependent ocean depth, sound speed, and
density,’’ J. Acoust. Soc. Amer., vol. 89, no. 3, pp. 1068–1075, Mar. 1991,
doi: 10.1121/1.400526.

[18] COMSOL AB, Stockholm, Sweden. COMSOL Multiphysics V. 5.4.
Accessed: Mar. 18, 2021. [Online]. Available: https://www.comsol.com

[19] J. P. Berenger, ‘‘A perfectly matched layer for the absorption of
electromagnetic waves,’’ J. Comput. Phys., vol. 114, pp. 185–200,
Oct. 1994.

[20] G. Guennebaud and B. Jacob. (2010). Eigen V3. [Online]. Available:
http://eigen.tuxfamily.org

[21] M. D. Collins and R. B. Evans, ‘‘A two-way parabolic equation for acous-
tic backscattering in the ocean,’’ J. Acoust. Soc. Amer., vol. 91, no. 3,
pp. 1357–1368, Mar. 1992, doi: 10.1121/1.402465.

[22] J. F. Lingevitch, M. D. Collins, M. J. Mills, and R. B. Evans, ‘‘A two-
way parabolic equation that accounts for multiple scattering,’’ J. Acoust.
Soc. Amer., vol. 112, no. 2, pp. 476–480, Aug. 2002, doi: 10.1121/
1.1490364.

ADITH RAMAMURTI received the A.B. degree
in mathematical physics and music from Brown
University, Providence, RI, in 2013, and the Ph.D.
degree in physics from Stony Brook University,
Stony Brook, NY, in 2018.

While at Stony Brook University, his research
focused on studying non-perturbative phenomena
of quantum chromodynamics in heavy-ion colli-
sions. He is currently a Research Scientist with
the U.S. Naval Research Laboratory, Washington,

DC, USA, where his research focuses on numerical methods for underwater
scattering and propagation.

DAVID C. CALVO received the B.S. degree in
mechanical engineering from Carnegie Mellon
University, Pittsburgh, PA, in 1995, and the M.S.
and Ph.D. degrees in mechanical engineering from
the Massachusetts Institute of Technology, Cam-
bridge, MA, in 1997 and 2001, respectively.

He is currently the Head of the Advanced
Acoustic Systems Development Section with the
Acoustics Division, U.S. Naval Research Labora-
tory, Washington, DC, USA. His research interests

include underwater acoustic propagation and scattering, acoustic sensing,
sound isolation and production, acoustic metamaterials, numerical methods,
marine electromagnetics, and nonlinear dispersive wave theory.

VOLUME 9, 2021 45077

http://dx.doi.org/10.1121/1.400646
http://dx.doi.org/10.1121/1.418038
http://dx.doi.org/10.1121/1.418038
http://dx.doi.org/10.1007/978-1-4939-9934-7
http://dx.doi.org/10.1007/978-1-4939-9934-7
http://dx.doi.org/10.1121/1.400526
http://dx.doi.org/10.1121/1.402465
http://dx.doi.org/10.1121/1.1490364
http://dx.doi.org/10.1121/1.1490364

