
Received February 18, 2021, accepted March 3, 2021, date of publication March 17, 2021, date of current version April 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066789

Efficient Computation Offloading in Edge
Computing Enabled Smart Home
BOCHENG YU1, XINGJUN ZHANG1, ILSUN YOU 2, (Senior Member, IEEE),
AND UMER SADIQ KHAN 1
1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Information Security Engineering, Soonchunhyang University, Asan 31538, South Korea

Corresponding author: Ilsun You (ilsunu@gmail.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1001701, and in
part by the Soonchunhyang University Research Fund.

ABSTRACT Mobile edge computing which provides computing capabilities at the edge of the radio access
network can help smart home reduce response time. However, the limited computing capacity of edge servers
is the bottlenecks for the development of edge computing.We integrate cloud computing and edge computing
in the Internet of Things to expand the capabilities. Nevertheless, the cost of leasing computing resources
has been seldom considered. In this paper, we study the joint transmission power and resource allocation
to minimize the users’ overhead which is measured by the sum of energy consumption and cost leasing
servers. We formulate the problem as a Mixed Integer Linear Programming which is NP-hard and present
the Branch-and-Bound to solve it. Due to high complexity, a learning method is proposed to accelerate the
algorithm. The branching policy can be learned to reduce the time-cost of the Branch-and-Bound algorithm.
Simulation results show our approach can improve the Branch-and-Bound efficiency and performs closely
to the traditional branching scheme.

INDEX TERMS Deep learning, integer linear programming, mobile edge computing, smart home, task
offloading.

I. INTRODUCTION
With the rapid development of the Internet of things (IoT) [1],
the increasing number of smart devices are emerging, such as
eldercare and childcare application [2], [3], for the intelligent
living environment to bring more convenience to people’s
lives. However, IoT terminals are usually limited by bat-
tery lifetime, computing capabilities, and network connec-
tions [4]. At the same time, the IoT devices with limited
computation resources have difficulties to deal with the large
amount of data generated by smart homes. Therefore, com-
putation offloading is one of the feasible schemes to tackle
the above challenges.

Mobile cloud computing (MCC) used to be regarded as
a potential approach to solve these challenges [5]. How-
ever, mobile and IoT devices may suffer long latency by
offloading the computing task. Instead of depending on a
remote cloud, a new paradigm called mobile edge com-
puting (MEC) is proposed. The core idea of mobile edge

The associate editor coordinating the review of this manuscript and

approving it for publication was Sherali Zeadally .

computing is to place computing, storage resources at Inter-
net’s edge near the mobile and IoT devices to release the
burden on backhaul networks, reduce response latency and
promote resource-intensive IoT applications [6]. In particu-
lar, idle computing resources, such as laptops, tablets, and
smartphones, are deployed at the network edge to process
offload tasks from resource-starved devices, e.g., IoT devices.
Therefore, edge computing can reduce network bandwidth,
response time and the risk of network data leakage [7], [8],
which can help improve people’s home life in a smart home.

In this paper, we propose a hierarchical network architec-
ture consisting of edge computing and cloud computing to
improve the efficiency of cloud resource utilization in a smart
home. Our basic idea is to flexibly allocate tasks position to
minimize the overhead. For instance, edge computing is a
hopeful technology that brings smart home to a new level.
A range of smart devices generates a great amount of data
stream. It is hard to react promptly to emergencies by trans-
ferring data to cloud servers for processing. By offloading
critical tasks to the edge server, the latency-sensitive applica-
tion can get real-time analysis and response. And, non-critical

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 48631

https://orcid.org/0000-0002-0604-3445
https://orcid.org/0000-0001-7134-3068
https://orcid.org/0000-0002-5982-8190


B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

data is collected and sent to a cloud server for further process.
In reality, users also need to consider the lease computing
resources (from edge server or cloud server) to meet the
offload demand and the energy consumption of a smart home.
Hence, we study the joint optimization of user cost and energy
of the smart device. It may be the first research on user cost
in edge computing so far.

To minimize the overhead and meet the tasks latency
requirement, radio resources allocation and server assignment
for the offloading task is formulated as a mixed integer linear
programming problem (MILP), which is generally consid-
ered as NP-hard problem. Although the NP-hard problem can
theoretically be solved by exhaustive search, for even small
size instances, when the instance size increases, the compu-
tational time will be significantly raised, therefore it is hard
to find the global optimal solutions [9]. Branch and Bound is
seemed as one of the most effective approach to solve MILP
problem [10], [11]. The Branch-and-Bound (B&B) algorithm
is an iterative algorithm. In each iteration, we solve linear
programming (LP) relaxation of each sub-problem and to
find an integer feasible solution. However, in each step of
the search, the branch of the variable will double the size
of the tree resulting in a very large search tree and high
computational complexity. An essential challenge of B&B is
to appropriately choose variable to branch.Many studies have
shown the branching strategy affects the size of the search tree
[12], [13]. An effective variable selection scheme may have
a huge impact on the search scope of the tree and reduce the
time to find the optimal solution. We adopt deep learning to
imitate branching policy based on the Strong Branching (SB)
approach. Strong branching, can reduce 65% node search
compared with hybrid branching, thoroughly test the vari-
ables on each node, and select the suitable one based on the
gap with the current best feasible solution [14]. Specifically,
we study the computation offloading among multiple mobile
devices in an integrative network ofMEC andMCC, in which
weminimize themobile devices’ overhead of cost and energy.
We then propose a novel approach to learn branching policy
to accelerate the B&B algorithm. To our knowledge, it is
the first to joint optimization for devices’ cost and energy
in multi-layer networks, and attempt to adopt deep learning
to mimic variables selection. The main contributions of our
paper are as follows,

1) Our work integrates cloud computing and edge com-
puting for computation offloading. We model the over-
head of each mobile user as the weighted-sum of the
computation cost and energy consumption; We for-
mulate the problem of joint transmission power and
resource allocation for minimizing the overhead while
complying with the Signal-to-Interference-plus-Noise
Ratio (SINR) and task deadline.

2) Because the formulated problem is MILP, the branch
and bound is the most effective solution to solve it,
while the approach high a time overhead. We present
learning branching to improve the performance of
B&B. We collected the decisions made by strong

branching strategy about variable selection as a train-
ing dataset. Next, we train a deep learning model for
imitation branching policy. The approach transfers the
calculation burden in the training phase to reduce the
calculation time.

3) The evaluation shows that our optimization can help
mobile users save their costs and decrease energy con-
sumption. Meanwhile, our method improves signifi-
cantly the B&B algorithm and reduces calculation time
over traditional branching policy.

The rest of this paper is structured as follows. In Section 2,
related works are surveyed; in Section3, the system model
is presented and the performance metric is considered; then
in Section 4, we formulate the system as an Integer Lin-
ear optimization problem; Section 5 details the proposed
solution; simulation results are shown in Section 6. Finally,
Section 7 concludes the paper.

II. RELATED WORK
Smart home technology combines sensors, monitors, inter-
faces, applications, and devices, and realize the automation,
localization, and remote control through the network [15].
In recent years, with the development of Internet technol-
ogy, a large number of novel intelligent applications are
emerging. For example, in healthcare, people are monitored
by various sensors and actuators, and doctors can make a
proper diagnosis and decisions based on the data generated
by these devices [16]. At the same time, it also brings fur-
ther demands for much more computational capabilities and
low-latency [17].

Mobile cloud computing, providing computation and stor-
age performance, can help to solve the above problems
[18], [19]. In [20], a new application is developed as an inte-
gration of a smart home, IoT, and cloud computing. The new
benefits of the composite systems are compared to individual
components. In [21], a scheme is proposed to manage power
consumption monitoring through IoT and cloud computing.
In [22], A novel multi-layer cloud architecture is developed
to realize the efficient interaction of heterogeneous devices in
smart homes based on the Internet of Things, and ontology is
adopted as an effective method to alleviate the heterogeneity
issues.

However, offloading tasks from large-scale IoT devices
will cause backhaul congestion for a cloud server. Further-
more, due to the long transmission latency, cloud computing
cannot meet the latency-critical applications [23]. Edge com-
puting as a promising technology can overcome the weakness
of traditional cloud computing [24]. Recently, several works
have been carried out to study the applying of edge com-
puting to a smart home. Reference [25] designed a method
named edgeIoT to solve the scalability problem. The method
can effectively distribute packets to reduce the data stream
and delay via SDN technology. Aim to the resource lim-
itation of smart home in computing resources, a technol-
ogy based on containerization is proposed. With the help of

48632 VOLUME 9, 2021



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

technology, a deep learning model depends on fewer hard-
ware resources [26]. Due to data processed localized, edge
computing is also considered a secure paradigm to protect pri-
vacy. An intrusion detection system based on a convolutional
neural network is presented to categorize traffic and generate
intrusion detection dataset [27]. Due to limited computational
capability and complex topology, the edge computing net-
work needs to be optimized to maximize its effectiveness.
Reference [28] considered a computation offloading problem
that aims to minimize the delay and energy consumption.
Specifically, the authors formulated the problem as the curse-
of-dimensionality and solved it via dynamic programming
techniques. In [29], authors designed an energy management
strategy of edge computing. The scheme enabled edge com-
puting while reducing the energy consumption up to 86%
in a smart home. Reference [30] proposed an offloading
algorithm COM to optimize the execution time and energy
consumption. However, few studies have considered the cost
of using edge servers. This article will consider the joint opti-
mization of energy consumption and cost in edge computing,
and the problem is formulated as MILP problems, which are
generally considered as NP-hard.

To solve the integer programming, most effective approach
is B&B algorithm [31]. B&B alogirthm set up an optimization
tree, and each node of the tree denotes an initial problem
with integer constraints which is from the relaxed fractional
variables. Which fractional variable is selected for branching
determines the size of the optimized tree. Meanwhile, it is
necessary to find a tradeoff between time spend of decision
made by branching strategy and the overall optimization time.
Therefore, the branching strategy is one of the important com-
ponents that determine the efficiency of the B&B algorithm.
To reduce the time cost and guarantee the accuracy, machine
learning has been introduced to imitate branching strategy.
Reference [32] learned the node searching stategy to improve
B&B. The approach achieve better performance compared
with open-source solvers. In [33], authors use machine learn-
ing for configuration of search tree. The experiments show
the method can reduce the tree size. Reference [34] adopted
machine learning to mimic the branching strategy, which can
significantly reduce the size of search tree. However, they
applied traditional machine learning algorithms, which need
human intervention to decide features of data set. We adopt
deep learning for automatic learning of branching strategies
to reduce human intervention.

III. SYSTEM MODEL
We consider the integration of MCC and MEC to meet the
computation-intensive and latency-sensitive applications in
smart home. As depicted in Fig. 1, we denote the set of base
station (BS) as S = {1, . . . , S} and the set of mobile users
as N = {1, 2, . . . ,N }, respectively. Each BS j ∈ S equipped
with server of f ej (CPU frequency) which provide offloading
services for mobile users. Every user has a task, which can be
executed either at local or offloading on a server. The decision
binary variable is xij, ∀{i, j} ∈ {N , S}, where xij = 0 means

FIGURE 1. The system of edge computing networks.

TABLE 1. Summary of notation.

that the task is processed at local device, xij = 1 implies
that the mobile user i offload the task through the BS j. The
task Tn (n ∈ N ) cannot be divided into subtask, represented
by tuple {dn, cn, ln}, where dn denotes input data size, cn is
the workload of the task i.e., the number of CPU cycles to
accomplish the task, and ln is the latency thresholds. The key
notations used in the paper are summarized as follow,

A. LOCAL COMPUTING
If the task Tn is executed locally, the decision variable xij =
0. Let f ln (CPU cycles per second) represents the computing
capability of local device u. The execution time of the task Tn
is:

t ln =
cn
f ln

(1)

When the task is performed on the user device, we calculate
the energy consumption via the execution energy model E =
kf 2 [35], where k is energy coefficient and f is frequency of
the CPU. Therefore, the energy consumption for executing
the task Tn that requires CPU cycles cn to complete the task

VOLUME 9, 2021 48633



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

is:

E ln = k(f ln )
2cn, ∀n ∈ N (2)

B. OFFLOAD COMPUTING
Offloading task Tn to servers consists of two main phases:
data transmission and task processing. Since the size of the
result is often small, we neglect to consider the download
step [36]. Each stage of task offloading incurs an additional
overhead such as energy consumption, delay, and cost.

1) TRANSMISSION MODEL
In this work, OFDMA is used for uplink between mobile
devices and servers, in which the whole spectrum B Hertz
is divided into N sub-carrier and each device is assigned to
one sub-band. A fraction αn (αn ≥ 0, where

∑
n∈N αn = 1)

of bandwidth is scheduled for mobile devices to transmit the
task. Since the devices offload tasks to the same BS through
their allocated sub-band, we assume that each device and
BS has only one antenna like [37]. Let pn and hns denote
the transmission power of user n and channel gain between
device n and server s, respectively. In this case, the users
also suffer from the inter-cell interference. The Signal-to-
interference-plus-noise ratio from mobile device n to server s
is:

γus =
pnhns
σ 2 (3)

where σ 2 is the noise variance. Since one task only offload-
ing on one sub-band, the achievable transmission rate
bits/seconds can be written as,

Rn(pn, αn) = αnB
∑
s∈S

log2(1+
pnhns
σ 2 ) (4)

User n can offload task to only one BS, the constraint of
the relationship between user and BS is given as,∑

j

xij ≤ 1 (5)

2) LATENCY MODEL
Both MEC servers at the Base Stations and remote cloud
server can provide computing service to multi-devices. When
a task Tn is offloaded, computational resources fn[cycles/s] >
0, n ∈ N is allocated to execute the task and return the output
result to the user. Hence, given the computation capability,
the execution latency expressed as,

texen =
cn
fn

(6)

where more allocated resource fn will decrease the execu-
tion time of task Tn, but will increase the cost. The time
of offloading task from the user n to the BS s depends on
the transmit power and bandwidth. We also assume that BS
transmit data to the remote cloud server via backhaul links
with enough high bandwidth, and the transmission delay can

be ignored [38]. Therefore, the transmission time can be
calculated as (where dn is the data size of task),

tupn =
dn

Rn(pn, αn)
(7)

3) ENERGY MODEL
The consumed energy (millijoule) of offload task Tn equals to
product of transmission power and latency [39]–[41], which
can be derived as,

Eupn =
pnt

up
n

εn
, ∀n ∈ N (8)

where εn is the power amplifier efficiency of user n. Without
loss of generality, we assume that εn = 1. The transmission
energy consumption of user Tn is presented as,

Eupn (pn, αn) = pntupn =
dnpn

Rn(pn, αn)
(9)

Therefore, according (2) and (9), we can compute the
energy consumption of mobile user as,

En(xij, pn, αn) = xijE ln + (1− xij)Eupn (pn, αn) (10)

4) COST MODEL
The offloading cost depends on the unit cost of computing
resources δs at edge server and δ at cloud server. The cost
model can prevent the task from being offloaded too concen-
trated on the edge server with high computation capability
and cloud server. For instance, more computing resourceswill
be used in a cloud server, thus δs < δ. Offloading the tasks
to remote cloud servers will incur a high cost, which may go
over budget. We define binary variable yi = {0, 1}, i ∈ N ,
where yi = 0 means the task i is offloaded to cloud server;
yi = 1 means the task is executed at the edge server. The
computational cost can be evaluated as,

Cn(xi, yi, fn) = fn(1− yi)δ +
∑
j∈S

xijyifuδs (11)

IV. PROBLEM FORMULATION
Our goal is to minimize the sum of energy consumption
and cost while meeting the task’s deadline. We optimize the
parameters of devices, like transmission power, sub-band, and
assigned computational resources, to reduce the overhead.
This can be formulated as follows,

min
∑
n∈N

((λeEn(xij, pn, αn))+ λcCn(xi, yi, fn)) (12a)

s.t. (1− xij)t ln + xij(t
up
n + t

exe
n ) ≤ ln, n ∈ N (12b)∑

n∈N

αn = 1 (12c)

xijyifu ≤ f ths, j ∈ S (12d)

xij, yi,∈ {0, 1}, ∀{i, j} ∈ {N , S} (12e)

pn, αn, fn ≥ 0, n ∈ N (12f)

where λe and λc are the weights for energy consumption
and cost, respectively. Constraint (10b) meets the latency

48634 VOLUME 9, 2021



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

of each task. Constraint (10c) means the whole bandwidth
is allocated to the users. Constraint (10d) make sure the
computational resources of each edge server is respect. It can
be seen that the objective (12a) and (12e) indicate the problem
as a mixed-integer program, which is hard to solve.

V. PROPOSED SOLUTION
We adopt the B&B algorithm to solve the problem (12).
Since the Problem (12) is NP-hard, the B&B algorithm can
obtain the global optimal solution through iteration search
the binary tree. The lower bound can be found among the
feasible solutions in the given region. And we linearize the
integer problem by relaxing the constraints to find the upper
bound. The basic idea of B&B is to constantly search and
update the upper and lower bound of the problem. If the upper
and lower value is equal, the algorithm terminates. That is,
a feasible solution is optimal. If the upper and lower bound
are not equal, the algorithm reselects the node to partition and
repeats the search process.

A. OPTIMAL BRANCH-AND-BOUND ALGORITHM
We summarize the B&B algorithm for the formulated prob-
lem(12). B&B algorithm sets up a search tree in which the
root node is a problem(12). In each iteration, B&B uses
a node selection scheme (we adopt Best-bound-first search
in this paper [42]) to select a leaf node and then adopt a
branching policy to choose a variable xi to partition. Let Q+i
(Q−i ) denote the reformulated problem with the constraint
xi = 1 (xi = 0) as a linear programming problem. Then we
solve the linear problem and get the solutions.

1) The optimal solution to Linear programming of Q+i
(Q−i ) is also the feasible solution of original problem,
then update the lower bound to the objective value of
Q+i (Q−i )

2) If the Q+i (Q−i ) is infeasible, the node will be pruned.
3) The objective vale of Q+i (Q−i ) is smaller the current

lower bound, the node will be pruned.

B. LEARN TO BRANCHING
In the B&B search process in Algorithm 1, there are three
main parts: node selection, calculation of solution and vari-
able branching [43]. Most of the time is spent in the branch-
ing process, and a good branching strategy can significantly
improve the efficiency of the algorithm. The more accurate
branching variable is found; the less computational time is
spent. Our goal is to find branching variables as accurately
as possible to speed up the algorithm’s B&B search pro-
cess. However, the current branching strategy is either spend
much more time to calculate or not accurate. In the follow-
ing, we propose a deep learning method to assist in branch
scheme. Deep learning approach transfers the computational
burden to the training phase, therefore it can significantly
reduce the time cost of B&B algorithm.

The B&B search process can be expressed as a
decision-making process. In each search node, we need to

Algorithm 1 Optimal B&B Algorithm
1: initial a search tree T , the root of the tree consists of the

problem (12);
Let L∗ = −∞ be the objective value
Set list of leaf nodes = N

2: while N 6= ∅ do
3: Select a leaf n in N through a node selection policy
4: if Q corresponding to n is infeasible then
5: Go to the step 2
6: else
7: Using learning method to choose a variable xi
8: Let Q+i (Q−i ) be the MILP problem with the con-

straint xi = 1 (xi = 0)
9: for Q̂ ∈ {Q+i ,Q

−

i } do
10: if Q̂ is feasible then
11: x̄ is an optimal solution and L̄ is the objective

value
12: if L∗ < L̄ then
13: Set L∗ = L̄
14: else if L∗ > L̄ then
15: x̄ is not the optimum solution. Prune the

branch
16: end if
17: else
18: Prune the node
19: end if
20: end for
21: end if
22: end while

determine which variable in the node to choose for branch-
ing. The set of all the fractional variables is V . We pro-
pose a learning-assisted branching framework to provide
an effective and efficient approach. The idea is to apply
learning-based methods to help optimize algorithms to solve
the most difficult and time-consuming part of optimization.
With the increasing of variables, it will spend a lot of time
to find a proper variable to partition like Strong Branching
policy. We are training a deep neural network (DNN) for
Strong Branching.We fed the best solution to train the model.
A well-trained DNN can be used to provide a prediction of
the branching variable to limit the scope of the search. For
instance, the set of the fractional variable V is regarded as
input and the branching variable can be obtained as output.
The algorithm is shown in Algorithm 2.

1) INPUT DATA
The input data set V is obtained from Strong Branch-
ing. To get a proper variable xi from the candidate vari-
able set, consider the node with LP relaxation value
Q, with solution L∗. The two subproblem of varible i
are Q+i and Q−i , which have the LP value L+i and
L−i , respectively. If the Q

+

i (Q−i ), is infeasible, we set the L
+

i
(L−i ) to a very large value. The changes of the objective value

VOLUME 9, 2021 48635



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

Algorithm 2 Learning-Assisted Branching Policy
Input: The set of fractional variable V

The current lower bound L∗

1: Training Phase:
2: Generate training set, validation set and test set from

Strong Branching
3: Training the DNN
4: Online Operation Phase:
5: while V 6= ∅ do
6: Branch on the variable and solve the LP relaxation

problem
7: if objective value < lower bound or no feasible solution

then
8: Prune the branch, and choose another variable
9: else
10: Update the lower bound to objective value. If objec-

tive value equals upper bound, stop and obtain the
optimum solution

11: end if
12: end while
Output: The best solution of the node

is δ−i = L−i − L
∗ and δ+i = L+i − L

∗.

SBi = sore(max(δ−i , ε),max(δ
+

i , ε)) (13)

where ε is small constant (e.g. 10−6). A product is adopted for
sore(a, b) = a×b, SB try to find the variable with maximum
score.

2) OUTPUT DATA
The learning model is aimed to forecast the probability of
each candidate variable to get the best feasible solution.
hence, the output layer can be viewed as vector with the same
length as the number of fraction variable of the node.

For the output layer, we just need only one variable, we use
binary value to define the output vector, whis is,

y =

{
1 the variable is used to branch
0 otherwise

(14)

The binary value indicates that we focus more on whether a
variable will be selected to partition. For our learning model,
the length of output vector corresponds to the input data.
If there are N input variables, the output vector will be a
N dimensional vector, where only 1 element represents the
suitable variable, and all other elements are 0. We assume
a DNN network with a 3-layer network, and the number of
neurons in each layer is N , N1, and N . Taking a sample N ∗ 1
for training, two matrix multiplications require N ∗ N1 and
N1 ∗ N calculations respectively. The time complexity of
Forward propagation for a sample should be O(N1). In the
Back propagation stage, assuming there are a total of V train-
ing samples, and each sample is trained only once, the time
complexity of training a neural network should beO(V ∗N1).

3) TEST SAMPLES
We generated the test samples using SB policy. The value of
output unit is between 0 and 1 in our model. The output value
is represented to probability distribution via normalization
or softmax function. The transformed values indicate the
possibilities that the variable can be partitioned to obtain
the best feasible solution. In our problem, the output can be
used to express the probability of whether a variable will
be branched and the sum of output values equals 1. We can
choose the maximum value of the variable as the suitable one.
We compare the selected variable with the test samples, and
adjust the parameters based on the result.

VI. PERFORMANCE EVALUATION
In this section, simulation results are presented to evaluate
the performance following different scenarios. We consider a
hierarchical network architecture consisting of edge comput-
ing and cloud computing. There are 6 mobile devices which
can offload the task to 4 edge servers or cloud server. The
bandwidth is randomly divided into n sub-channels. Themain
simulation parameters are presented in Table 2.

TABLE 2. Simulation parameters.

We adopt IBM ILOG CPLEX 12.6.1 to implement vari-
ous strategies using control callbacks, in single-thread mode.
In this paper, we compare the branching scheme based on
deep learning with 3 strategies, which is shown in Table3.
CPLEX is the default variable selection of the solver. SB
refers to Strong Branching, and PC refers to pseudocost
branching [46]. From Table 1, we can see that the compu-
tation time based on our optimal algorithm is considerably
reduced than the computation time of the conventional opti-
mization algorithm. And as the scale of the instance increases,
the computation time of the conventional algorithm increases
significantly, while the time increase of the algorithm based
on our algorithm is not obvious.

TABLE 3. Time cost (seconds) of branching strategies.

In Fig. 2, we compare the convergence performance
between the B&B algorithm and the Deep learning assisted

48636 VOLUME 9, 2021



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

FIGURE 2. Convergence between the B&B and Deep learning method.

method. There are 6 mobile devices and 4 edge server in
the instance. As expected, the deep learning-based algorithm
takes about 100 iterations to keep steady. The traditional B&B
with the default sets of CPLEX spends around 300 iterations
to converge, which means B&B slowly obtain the optimal
solution.

In Fig. 3, we study the objective value with different
latency threshold and the computational capacity of the
edge server. First, increasing the latency threshold results
in a decrease in the objective value. The reason is that
mobile devices will consume more computational resources
to reduce its task execution time to keep up with the
large threshold, which will incur higher costs. Addition-
ally, increasing the latency threshold will allow users to use
fewer resources at the server, thereby reducing overall costs.
Secondly, the objective value decreases as the edge servers
have a high computational capacity. The edge server with
high computational capability will afford more resources and
lower cost (Compared with cloud server) to mobile devices,
which reduces the need to offload tasks to the cloud server.

FIGURE 3. Comparison of latency threshold.

Meanwhile, edge servers with less computational resources
are easy congestion, thereby mobile devices have to seek
more computation service at a high cost. That is why the
gap between curves gets smaller and overlap under the high
latency.

In Fig. 4, we study the objective value under a different
number of devices. First, the objective value is advanced with
the growth of devices. This is caused by the increase in the
number of resources: energy and computing. Additionally,
it means more devices offload tasks to servers, which incurs
higher costs. Secondly, adding more edge servers may be
useful to address high device requests in dense areas, which
will decrease cost by reducing the high utilization of the cloud
server.

FIGURE 4. Comparison of number of devices.

As show in Fig. 5, we show the changes in the weight λc

affect the cost. Specifically, we compare the cost under differ-
ent λc. As the λc increase, the cost on each device decrease.
A higher weight is given to the cost goal, the function will
give priority to allocating devices with small computational
resources with lower unit costs, thereby reducing the overall
cost. But on the other hand, this may lead to an increase
in energy consumption in terms of wireless channels. The
channel state is not the best to communicate with the edge
server of low capability, so the devices will be forced to
increase its transmission power to keep up with the required
deadline of the task, resulting in higher energy consumption
in the process.

The Fig. 6 shows the impact of weight λe on energy
consumption. We vary the weight λe and study the change
on energy consumption of device under different values of
the latency. As we can see, with decrease in λe, the energy
consumption increase. These observations are due to the fact
that when the weight λe on sub-target energy of objective
function is increased, the optimization solutions will make
device to choose a base station with better channel condi-
tions to reduce the transmission power, therefore the device’s
energy consumption is reduced.

VOLUME 9, 2021 48637



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

FIGURE 5. Comparison of cost of computational resource.

FIGURE 6. Comparison of energy consumption.

VII. CONCLUSION
We study the cost and energy efficiency of task offloading
in a hierarchical network architecture that consists of edge
computing and cloud computing. To the best of our knowl-
edge, it is the first time to study the problem of cost and
energy efficiency in a multi-layer network for smart home.
We expoit a learning approach to improve the B&B algorithm
to solve the formulated MILP problem. The learning method
addresses the variable selection issue to speed up the most
time-consuming process of the B&B algorithm. Simulation
experiment showed the results of our proposed algorithm
closely to the B&B algorithm and significantly reduce the
calculation time. Meanwhile, we evaluated the key factors in
energy and cost of task offloading in different environments.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’

Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
[2] L. C. De Silva, C. Morikawa, and I. M. Petra, ‘‘State of the art of smart

homes,’’ Eng. Appl. Artif. Intell., vol. 25, no. 7, pp. 1313–1321, Oct. 2012.
[3] Y. A. Shichkina, G. V. Kataeva, Y. A. Irishina, and E. S. Stanevich, ‘‘The

use of mobile phones to monitor the status of patients with parkinson’s dis-
ease,’’ J. Wireless Mobile Netw., Ubiquitous Comput., Dependable Appl.,
vol. 11, no. 1, pp. 55–73, 2020.

[4] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, ‘‘Mobile-
edge computing architecture: The role of MEC in the Internet of Things,’’
IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, Oct. 2016.

[5] I. Kholod, A. Shorov, and S. Gorlatch, ‘‘Efficient distribution and process-
ing of data for parallelizing data mining in mobile clouds,’’ J. Wireless
Mobile Netw., Ubiquitous Comput., Dependable Appl., vol. 11, no. 1,
pp. 2–17, 2020.

[6] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, ‘‘Edge
cloud offloading algorithms: Issues, methods, and perspectives,’’ ACM
Comput. Surv., vol. 52, no. 1, pp. 1–23, Feb. 2019.

[7] H. Kim, ‘‘5G core network security issues and attack classification from
network protocol perspective,’’ J. Internet Services Inf. Secur., vol. 10,
no. 2, pp. 1–15, 2020.

[8] M. Alizadeh, K. Andersson, and O. Schelén, ‘‘A survey of secure Internet
of Things in relation to blockchain,’’ J. Internet Services Inf. Secur., vol. 10,
no. 3, pp. 47–75, 2020.

[9] G. J. Woeginger, ‘‘Exact algorithms for NP-hard problems: A survey,’’
in Combinatorial Optimization—Eureka, You Shrink. Berlin, Germany:
Springer, 2003, pp. 185–207.

[10] A. H. Land and A. G. Doig, ‘‘An automatic method for solving discrete
programming problems,’’ in 50 Years of Integer Programming 1958-2008.
Berlin, Germany: Springer, 2010, pp. 105–132.

[11] A. N. Letchford andA. Lodi, ‘‘An augment-and-branch-and-cut framework
for mixed 0-1 programming,’’ in Combinatorial Optimization—Eureka,
You Shrink. Heidelberg, Germany: Springer, 2003, pp. 119–133.

[12] T. Achterberg. (2007). Constraint Integer Programming. [Online]. Avail-
able: http://opus.kobv.de/tuberlin/volltexte/2007/1611/

[13] T. Achterberg and R. Wunderling, ‘‘Mixed integer programming: Analyz-
ing 12 years of progress,’’ in Facets of Combinatorial Optimization. Berlin,
Germany: Springer, 2013, pp. 449–481.

[14] T. Achterberg and T. Berthold, ‘‘Hybrid branching,’’ in Proc. Int. Conf.
AI OR Techn. Constriant Program. Combinat. Optim. Problems. Berlin,
Germany: Springer, 2009, pp. 309–311.

[15] D. J. Cook, ‘‘How smart is your home?’’ Science, vol. 335, no. 6076,
pp. 1579–1581, Mar. 2012.

[16] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach, ‘‘Healthedge: Task
scheduling for edge computingwith health emergency and human behavior
consideration in smart homes,’’ in Proc. Int. Conf. Netw., Archit., Storage
(NAS), Aug. 2017, pp. 1213–1222.

[17] J. Ren, H. Guo, C. Xu, and Y. Zhang, ‘‘Serving at the edge: A scalable IoT
architecture based on transparent computing,’’ IEEE Netw., vol. 31, no. 5,
pp. 96–105, Sep. 2017.

[18] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ‘‘A survey of mobile cloud
computing: Architecture, applications, and approaches,’’ Wireless Com-
mun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, Dec. 2013.

[19] E. Ahmed, A. Gani, M. Sookhak, S. H. A. Hamid, and F. Xia, ‘‘Application
optimization in mobile cloud computing: Motivation, taxonomies, and
open challenges,’’ J. Netw. Comput. Appl., vol. 52, pp. 52–68, Jun. 2015.

[20] M. Domb, ‘‘Smart home systems based on Internet of Things,’’ in Internet
Things (IoT) for Automated Smart Applications. Rijeka, Croatia: Intech,
2019.

[21] E. Orsi and S. Nesmachnow, ‘‘Smart home energy planning using IoT and
the cloud,’’ in Proc. IEEE URUCON, Oct. 2017, pp. 1–4.

[22] M. Tao, J. Zuo, Z. Liu, A. Castiglione, and F. Palmieri, ‘‘Multi-layer
cloud architectural model and ontology-based security service frame-
work for IoT-based smart homes,’’ Future Gener. Comput. Syst., vol. 78,
pp. 1040–1051, Jan. 2018.

[23] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[24] J. Ren, G. Yu, Y. He, and G. Y. Li, ‘‘Collaborative cloud and edge comput-
ing for latency minimization,’’ IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 5031–5044, May 2019.

[25] X. Sun and N. Ansari, ‘‘EdgeIoT: Mobile edge computing for the Internet
of Things,’’ IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, Dec. 2016.

[26] N. Gupta, K. Anantharaj, and K. Subramani, ‘‘Containerized architecture
for edge computing in smart home: A consistent architecture for model
deployment,’’ in Proc. Int. Conf. Comput. Commun. Inform. (ICCCI),
Jan. 2020, pp. 1–8.

[27] A. S. Almogren, ‘‘Intrusion detection in edge-of-things computing,’’
J. Parallel Distrib. Comput., vol. 137, pp. 259–265, Mar. 2020.

[28] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, ‘‘Joint computation
offloading and multiuser scheduling using approximate dynamic program-
ming in NB-IoT edge computing system,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 5345–5362, Jun. 2019.

[29] X. Chang, W. Li, C. Xia, J. Ma, J. Cao, S. U. Khan, and A. Y. Zomaya,
‘‘From insight to impact: Building a sustainable edge computing platform
for smart homes,’’ in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst.
(ICPADS), Dec. 2018, pp. 928–936.

[30] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and L. Qi, ‘‘A com-
putation offloading method over big data for IoT-enabled cloud-edge com-
puting,’’ Future Gener. Comput. Syst., vol. 95, pp. 522–533, Jun. 2019.

[31] T. Achterberg, T. Koch, and A. Martin, ‘‘Branching rules revisited,’’ Oper.
Res. Lett., vol. 33, no. 1, pp. 42–54, Jan. 2005.

48638 VOLUME 9, 2021



B. Yu et al.: Efficient Computation Offloading in Edge Computing Enabled Smart Home

[32] H. He, H. Daume, and J. M. Eisner, ‘‘Learning to search in branch and
bound algorithms,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014,
pp. 3293–3301.

[33] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, ‘‘Learning to
branch,’’ 2018, arXiv:1803.10150. [Online]. Available: http://arxiv.org/
abs/1803.10150

[34] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, ‘‘Learn-
ing to branch in mixed integer programming,’’ in Proc. 30th AAAI Conf.
Artif. Intell., 2016, pp. 1–8.

[35] X. Chen, ‘‘Decentralized computation offloading game for mobile
cloud computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[36] S. Josilo and G. Dan, ‘‘A game theoretic analysis of selfish mobile compu-
tation offloading,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2017, pp. 1–9.

[37] X. Lyu, H. Tian, C. Sengul, and P. Zhang, ‘‘Multiuser joint task offloading
and resource optimization in proximate clouds,’’ IEEE Trans. Veh. Tech-
nol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[38] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, ‘‘Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,’’ IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug. 2017.

[39] T. X. Tran and D. Pompili, ‘‘Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[40] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, ‘‘Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,’’
IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, Jun. 2018.

[41] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W.Wu, and X. S. Shen, ‘‘TOFFEE:
Task offloading and frequency scaling for energy efficiency of mobile
devices in mobile edge computing,’’ IEEE Trans. Cloud Comput., early
access, Jun. 20. 2019, doi: 10.1109/TCC.2019.2923692.

[42] T. Ibaraki, ‘‘Theoretical comparisons of search strategies in branch-and-
bound algorithms,’’ Int. J. Comput. Inf. Sci., vol. 5, no. 4, pp. 315–344,
Dec. 1976.

[43] J. Clausen, ‘‘Branch and bound algorithms-principles and examples,’’
Dept. Comput. Sci., Univ. Copenhagen, København, Denmark, Tech. Rep.,
1999, pp. 1–30.

[44] S. M. Lopez, ‘‘An overview of D2D in 3GPP LTE standard,’’ in Proc.
Indofrench Workshop D2D Commun. 5G IoT Netw., 2016, pp. 1–34.

[45] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘‘Delay-optimal computation
task scheduling for mobile-edge computing systems,’’ in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2016, pp. 1451–1455.

[46] J. T. Linderoth andM.W. P. Savelsbergh, ‘‘A computational study of search
strategies for mixed integer programming,’’ INFORMS J. Comput., vol. 11,
no. 2, pp. 173–187, May 1999.

BOCHENG YU received the M.S. degree in
software engineering from the University of
Southampton, U.K., in 2011. He is currently pur-
suing the Ph.D. degree with the School of Com-
puter Science and Technology, Xi’an Jiaotong
University. His current research interests include
mobile edge computing, network optimization,
and machine learning.

XINGJUN ZHANG received the Ph.D. degree in
computer architecture from Xi’an Jiaotong Uni-
versity, China, in 2003. From January 2004 to
December 2005, he was a Postdoctoral Fellow
with the School of Computer, Beihang Univer-
sity, China. From February 2006 to January 2009,
he was a Research Fellow with the Department
of Electronic Engineering, Aston University, U.K.
He is currently a Full Professor and the Dean of
the School of Computer Science and Technology,

Xi’an Jiaotong University. His research interests include high performance
computing, big data storage systems, and machine learning acceleration.

ILSUN YOU (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from Dankook University, Seoul, South Korea,
in 1997 and 2002, respectively, and the sec-
ond Ph.D. degree from Kyushu University, Japan,
in 2012. From 1997 to 2004, he was with
Thin Multimedia Inc., Internet Security Company
Ltd., and Hanjo Engineering Company Ltd., as a
Research Engineer. He is currently an Associate
Professor with the Department of Information

Security Engineering, Soonchunhyang University. His current research inter-
ests include the Internet security, authentication, access control, and formal
security analysis. He is also a Fellow of the IET (based on document
published on September 2019). He has been serving as a Main Organizer
for international conferences and workshops, such as MobiWorld, MIST,
SeCIHD, AsiaARES, and IMIS. He is also the Editor-in-Chief of the Jour-
nal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications (JoWUA). He is also on the Editorial Board of Intelligent
Automation and Soft Computing (AutoSoft), the Journal of Network and
Computer Applications (JNCA), the International Journal of Ad Hoc and
Ubiquitous Computing (IJAHUC), Computing and Informatics (CAI), Jour-
nal of High Speed Networks (JHSN), and Security and Communication
Networks (SCN).

UMER SADIQ KHAN received the Master of
Computer Science degree from the Kohat Univer-
sity of Science and Technology Kohat, Pakistan,
in 2009. He is currently pursuing the Ph.D. degree
with the School of Computer Science and Tech-
nology, Xi’an Jiaotong University, Xi’an, China.
His research interests include computer vision,
image processing, pattern recognition, and com-
puter graphics.

VOLUME 9, 2021 48639


