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ABSTRACT Emergency Department (ED) crowding is a major public health challenge since it can seriously
impact patient outcomes; and accurate prediction of patient flow in EDs is essential for improving operational
efficiency and quality of care. We present a deep learning framework to predict patient flow rates in EDs,
namely the rates of arrival, treatment, and discharge for patients across all triage levels. Our model detects
short-term and long-term temporal dependencies within the time-series data of a given patient-flow variable,
as well as dependencies between time-series data of different patient-flow variables. We implement this
framework as a convolutional neural network, which we call PatientFlowNet. Our proposed model learns
simultaneously from multiple flow variables over a long temporal window and predicts future values of
arrival, treatment, and discharge rates in the ED. We benchmark our model against state-of-the-art methods
on data from EDs in three different hospitals. Results show that PatientFlowNet achieves superior prediction
accuracy, compared to the baseline methods, and yields a mean absolute error that is 4.8% lower than
the leading baseline. Furthermore, we provide a visual and interpretable representation of the learned
dependencies by our model, between patient-flow variables in EDs.

INDEX TERMS Health information management, machine learning, neural networks, public healthcare,

supervised learning.

I. INTRODUCTION

Emergency Department (ED) crowding is a public health
challenge [1], [2]. It is caused by external factors, such as
fluctuations in patient arrivals, and by internal factors, such as
lack of available beds or unexpected human delays [3]. This
problem is also exacerbated by unexpected external shocks
such as a global pandemic [4], [5] due to unusually increased
patient flow [6], [7]. In such circumstances, the need to
rapidly modify admission procedures [8], [9] demands accu-
rate forecast of the patients’ arrival rate and their movements
through the system until their discharge.

A large body of research has been dedicated to prediction
of ED crowding [10]-[12] and to mitigate its effects [3], [13].
Sources of ED crowding include unexpected large volume of
patients arriving at the ED, delays in triaging and starting their
treatment, and impediments in discharging patients whose
treatment has been completed. Accurate prediction of arrival,
treatment, and discharge rates helps understand when and
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where such crowding occurs, leading to efficient allocation
of resources or development of cost-effective interventions
to streamline the processes.

Accurate estimation of flow rates can also help predicting
other ED workflow variables, such as time-to-treatment and
length-of-stay [14] when the ED is modeled as a queueing
system. In [15], flow variables that mimic arrival and treat-
ment rates are combined with machine learning to estimate
time-to-treatment for each patient, and in [16], [17], a queue-
ing theoretic version of that approach is used to estimate
the length-of-stay for each patient. Approaches that model
the ED as a queueing system are hindered by unexplained
queue pre-emption and delays (see Section IIT). Thus, a more
aggregated approach where per-interval patient-flow rates are
considered instead of per-patient timelines is more desirable.

Most studies on prediction of patient-flow rates use either
time-series methods such as variations of autoregressive inte-
grated moving average (ARIMA) [18]-[21], or use parame-
ters that encode some seasonality information (such as day of
the week or moving window average) and perform a regres-
sion [22], [23]. Such models either have a rigid structure
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or require manual feature engineering. ARIMA’s use of a
small number of difference terms leads to only short-term
dependencies being considered, while the use of manually
encoded parameters leads to loss of information prior to the
application of regression. Such deficiencies suggest that a
more general model that does not require feature engineering
(like deep learning models) may be more suitable.

Deep learning models are more generalized than classical
machine learning models and can better capture the depen-
dencies when data is not directly amenable to feature engi-
neering is. In fact, recurrent neural networks (RNNs) have
been used to predict patient-flow rates with mixed degrees
of success [24]-[26]. The models used in these papers are
vanilla version of long short-term memory (LSTM) networks
and they outperformed baseline time-series methods, as they
used sequence input data and can learn from a large temporal
window. Nevertheless, they suffer from two main shortcom-
ings: (1) slow training and (2) lack of cross-learning from
multiple time-series data. The latter is significant, as a patient
flow variable in the ED depends on other factors, besides its
own history (see Section III).

Convolutional models that use dilations, such as WaveNet
[27], offer a viable solution to the problem (1) compared to
RNN:S, as they can be trained faster. In addition, exponentially
large receptive fields of WaveNets enables them to learn
long-term dependencies. The size of such models increases
in the log order of dilation size, i.e., they can capture long
term dependencies without being excessively large. In [28],
convolutional models are outperform RNNs on a variety of
sequence modeling tasks. Variations of WaveNet are used
in other time-series tasks, e.g., in [29], parametrized skip
connections are added to WaveNet to extract dependencies
between financial tickers; in [30], pre- and post-processing
tools in addition to WaveNet are used to estimate blood
glucose levels; and in [31], interleaving dilated temporal
and spatial convolutions are proposed to classify multiple
time-series variables.

However, WaveNet is very effective in single variable
sequence-prediction tasks such as audio synthesis, it only
uses historical values of a single variable to predict its future
values, not addressing the aforementioned shortcoming (2)
of RNNs. In this paper, we address this by proposing a
deep learning model that can simultaneously learn tempo-
rally (from the history of a flow variable) and spatially (by
extracting dependencies between different flow variables).
We implement this model as a convolutional neural network,
which we call PatientFlowNet. This model relies on stacks
of flow convolutions, i.e., 2-dimensional convolutional filters
that are exponentially dilated in time. This enables our model
to learn from multiple patient-flow variables in a large tempo-
ral window. Furthermore, we will show that the convolutional
filters in our design allow for interpretability by visualizing
the dependencies between patient-flow variables in EDs.

Using ED data from electronic medical records of three
different hospitals, we will show that PatientFlowNet out-
performs the state-of-the-art supervised learning methods in
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one-step-ahead prediction of patient-flow rates. We also
use our model to extract dependencies between different
patient-flow variables in EDs.

The remainder of this paper is organized as follows.
We discuss the existing methods for patient-flow prediction
in Section II. Section III contains problem statement and
describes ED workflow as well as variables-of-interest in the
dataset. In Section IV, we develop a mathematical model
for multivariate time-series forecasting and describe how it
manifests into PatientFlowNet as a deep learning model.
We describe our dataset in Section V, and in Section VI,
we benchmark PatientFlowNet against existing methods by
using data from 3 different EDs. We conclude with remarks
in Section VIL.

Il. OTHER RELATED WORKS
Classical Machine Learning Models: Classical machine-
learning approaches to patient-flow prediction have been
mostly centered around variations of ARIMA, exponential
smoothing, and regression [22], [23], [32], [33]. In [18], flow
data from one ED in Brazil was used to show that simple sea-
sonal exponential smoothing was the most accurate at jointly
predicting arrival rates for all triage levels, while seasonal
ARIMA was more accurate at predicting arrival rates for a
specific triage level. In [34], a hybrid model of ARIMA and
linear regression was developed that outperforms variations
of either model in predicting arrival rates at two EDs in China.
In [19], flow data from one ED in China was used to show that
a combination of single exponential smoothing and seasonal
ARIMA is more accurate than either model alone. In [21],
a host of machine learning methods were used on data from
one ED in Portugal to show that seasonal ARIMA outper-
forms moving window average and exponential smoothing
in predicting daily arrival counts. The main drawback of the
models in the above cited works is that their input size is
small, meaning that either predictions were based on a short
temporal window or manual feature engineering was needed.
As we will show next, more flexible models that can use a
larger input size can provide more accurate predictions.
Deep Learning Models: Feed forward and recurrent neu-
ral networks have also been used to predict patient flow
in hospitals. In [35], a hybrid model of ARIMA and feed
forward neural network was developed that outperforms
ARIMA, linear regression, or a hybrid of both in predicting
arrival rates in one ED in Turkey. In [36], a feed forward net-
work whose feature selector is based on a genetic algorithm
was developed that outperforms a host of models including
ARIMA and linear regression in predicting flow rates in one
ED in Hong Kong. In [25], it was noted that random forest is
more accurate than long short-term memory (LSTM) in pre-
dicting discharge rates, as it can combine data from multiple
flow variables. An extensive study of neural network models
was done in [24], where it was shown that a sequence-to-
sequence LSTM which uses a long history of flow variables
outperforms a host of baselines including seasonal ARIMA,
linear regression, and feed forward network in predicting
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arrival rates in one pediatric clinic. The two drawbacks of
this approach is that LSTM does not combine information
from multiple variables and is slow to train. In contrast, our
model can provide more accurate predictions by learning
from multiple variables, while having faster training due to
its convolutional design.

While convolutional models have been used for other
time-series prediction and classification tasks [27]-[29], [31],
they have not been used for patient flow prediction. Our con-
volutional model considers dependencies between multiple
patient-flow variables and utilizes their long-term history to
provide accurate predictions.

lIl. BACKGROUND AND PROBLEM STATEMENT

A. ED WORKFLOW

Patient flow in EDs is shown in Figure 1. Once a patient
arrives at the ED, she is first registered (arrival time) and then
triaged (triage time), where she is assigned a triage level from
1 to 5 denoting the acuity of her condition. Level 1 indicates
the highest and level 5 denotes the least acuity. The patient
then waits in a first-come-first-serve (FCFS) queue to start
her treatment (treatment time). High acuity patients (triage
levels 1 and 2) are given preemptive priority over low acuity
patients (triage levels 3 to 5) and usually jump to the front
of the queue. Hospitals in this study implement a separate
fast-track queue during certain periods of the day, whereby
they process patients who require minimal treatment (usually
triage levels 4 and 5) separately to reduce the overall wait
time. Fast-track is in effect from 8am to 11pm daily. Once
treatment of a patient is completed, she is discharged and
leaves the ED.

Length of Stay

f——————— Time-to-Treatment ——————— ]

{ Registration H Triage ]—{ Treatment ]—{ Discharge }

Discharge Time

Arrival Time Triage Time Treatment Time

Time

FIGURE 1. Patient flow in EDs. Triage time is not available.

From the above, EDs may appear to be simple queueing
systems, but our data in Section V indicates that this paradigm
is not closely followed. Table 1 shows the probability of
a patient jumping ahead of the line, grouped by expected
scenarios. Red cells correspond to high acuity patients being
admitted, where the probability of jumping ahead is expected
to be close to 1. Yellow cells correspond to patients admitted
via fast-track. Since fast-track is in operation only during 8am
to 11pm of weekdays, we expect these values to be some-
where between 0 and 1. Green cells correspond to patients
not expected to jump ahead, and values are expected to be
near zero.

Red cells have generally larger values than the rest, but
there are numerous unexplained violations of the aforemen-
tioned expectations. Factors such as unavailability of facil-
ities or deteriorating condition of a waiting patient may be
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TABLE 1. The value in row i, column j denotes the probability that in
Hospital 1 an arriving patient in triage level i will be served ahead of a
patient in triage level j who has arrived earlier and is in the queue.

| 1 2 3 4 5
025 067 076 075 065
032 037 070 071 059
012 011 028 034 028
012 011 027 025 0.5
025 019 042 037 0.9

[ R O S

conducive to such violations. The above examples indicate
that a model-based (e.g., queueing model) approach in which
per-patient flow metrics are considered may not work well
because violations of the model (e.g., preemptions) are unex-
plained. Thus, we focus on a more data-driven approach for
prediction of patients’ arrival, treatment, and discharge rates
in fixed-length consecutive intervals.

B. PROBLEM STATEMENT

We wish to accurately forecast patient flow in EDs. Specifi-
cally, our focus is on predicting future values of arrival (1),
treatment (u), and discharge (§) rates by utilizing historical
values of these flow variables. The term rate is defined as
the raw count of patients in a specific triage level for a fixed
interval of 1 hour. For instance, w;, is the number of patients
of triage level i who are treated in the 1 hour interval of
t — 1 to t. Our aim is to predict the aforementioned rates for
all triage levels at time ¢ 4 1, using the history of all rates
at all triage levels in a fixed window of length k. Suppose
we have a flow variable o that we wish to predict, where
o € {A,u,8}). Givenaset S = {(x, yir)lt1 <t < B},
where x; = A1, ..., A5 U1y ---s 54,0145 --.,05, and
Yi+l = Oli+1,-..,05:+1, we want to find the mapping
f*: R — R’ that minimizes the loss. That is,

f* = argmin Z g(f(x),y)),
(x,y)eS

where g is a loss function. This enables us to predict the
number of patients in different triage levels who arrive, are
treated, and are discharged from the ED in the next hour. The
one-hour-ahead prediction window is sufficient for predicting
short-term ED workflow variables such as wait times. For
longer-term predictions, one can continue feeding the pre-
dicted values back into the model to obtain farther estimates
as is done in sequence-to-sequence models.

IV. METHOD

The ED has no control over the arrival rates and once a
patient arrives, it is not possible to turn her away. Thus,
the arrival rate is exogenous to the system, but the treatment
and discharge rates depend on the system, and are therefore
endogenous. In what follows, we first develop a model to pre-
dict future values of an exogenous variable (e.g., A) by using
its own history. We then expand this model to predict future
values of an endogenous variable (e.g., u and §) from the
history of multiple time-series variables. Finally, we explain
how this model is implemented as a neural network, namely
PatientFlowNet.
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A. PREDICTING EXOGENOUS VARIABLES

Let a be an integer valued time-series variable. We wish to
predict its value at time ¢ 4 1, denoted by a,1, from its
k previous observations. One can use conditional probability
p(as+1lar—k+1, - - - , ar) to predict a,4 1. By sliding a window
of length k over the time-series data, one can estimate the
conditional probability distribution (CPD). Let N = max;(a;)
denote the upper bound of a. There are N* possible combi-
nations of values a;_k+1, ..., a;. At the same time, kK must
be large to observe a long enough history. Hence, a fully
non-parametric approach to CPD estimation requires expo-
nentially large data (scaling with N* for a large k), which is
infeasible.

To mitigate the above mentioned infeasibility, we use a
parametric paradigm in which parameters are inter-related via
a tree structure. We first model g, as a linear combination
of past observations of a, i.e.,

k
ap1 =Y Oittisi i, ey
i=1

where the values of 6; are to be learned. This approach is
computationally more efficient in the sense that it only needs
k parameters instead of N¥ parameters to predict a,41, but
may be less accurate when the future value is not best mod-
eled by a linear combination of past observations.

Since the size of 6 scales with k, if one aims to look at
a large enough (e.g., 2!') window of past variables, it soon
becomes infeasible. Thus, in what follows, we propose a sec-
ond assumption to reduce the number of parameters repre-
senting 6. A linear combination can be viewed as applying a
1-dimensional convolution filter in a neural network with no
padding, so we write (1) as 6 ® a, where 8,a € Rk, Next,
we enrich this convolution by a series of nested convolutions
that are explained below. Let k = 2¢ for some £. Normally,
the value of 6 ® a is obtained for some 6, which needs 2¢
parameter values. In what follows, we show how to stack
convolutions together and use 2¢ parameter values instead.
Specifically, for y(l), R y(e) € R2, we obtain convolutions
in a serial manner. Let @@ = q, and obtain aj(.l) for i =

I,....,¢andj=2"1+1,...,2by
. N N
) =y"a "V 4y ) @
Since the interval between indices of a increases exponen-
tially with i, they are exponentially dilated convolutions. This
is graphically shown in Figure 2. It follows that

21{
0 _ 7.0 A
a;" = Zelaj—H-l =60 ®a,
i=1
where
4
A _ (k)
Gi - l_[ yi,k+1a
k=1

and f; ; is the kth digit from the right in the binary rep-
resentation of i. Note that aj@ is the convolution of 6
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FIGURE 2. Causal and exponentially dilated convolutions. Note that
dependencies form a binary tree and the last element of a® is the
convolution of all 8 elements of a(©).

and a, obtained by using all elements of a and the products
of y, ..., y©. This means that the convolution is obtained
by using 2¢ parameter values instead of 2¢ parameter values.
To put things in perspective, we made two assumptions in (1)
and (2) that reduce the required data from N 2" 0 2¢ and then
from 2¢ to 2¢, respectively.

The set up in (2) ensures that convolutions are causal,
i.e., they only look at past values. This allows us to slide the
stacked convolutions over the input stream to obtain a causal
output stream, as shown by dotted arrows in Figure 2. This
scheme is also used in WaveNet [27], where residual and skip
connections are added to a stack of causal and exponentially
dilated convolutions, where convolutions are interleaved by
an activation function mimicking the switching mechanism
in gated recurrent units [37] to improve accuracy.

B. PREDICTING ENDOGENOUS VARIABLES

While the above scheme works for an exogenous variable
such as the arrival rate, it lacks cross-learning that is needed
for endogenous variables. For instance, the treatment rate
depends not only on its own history, but also on that of the
arrival rate. If there is an uptick or a slowdown in arrivals,
a similar pattern will be observed in treatment rates with a
delay. Thus, we need a model that can learn from multiple
time-series variables to predict future values of an endoge-
nous variable.

We adapt our scheme to accommodate for endogenous
variables that depend not only on their own history, but on
other time-series variables as well. In doing so, we predict
the value of endogenous variable b at time ¢ + 1, denoted by
b;1, from the previous k observations of m input variables,
where one of these variables is the past observations of b
itself. Collectively, we denote these inputs as a, where q; ;
fori=1,...,mandj=t—k+1,...,t. Note that the input
size is m x k. One can estimate the conditional probability
p(bis1lai t—k+1, - - - » am,r) by sliding a window of size k over
the m time-series variables. Let N = max; j(a; ;) be an upper
limit to a. We need to collect probabilities for m x k combi-
nations of N variables, resulting in N probability values.
As this is infeasible, we model b;11 as a linear combination
of past values, i.e.,

m k
by = Z Zei,jaj+z—k, 3
i=1 j=1
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where & € R is to be learned. This can be represented
as applying a 2-dimensional convolution filter in a neural
network with no padding on the input data, meaning that
(3) can be represented by 0 ® a.

We aim to learn long-term dependencies of time-series
variables, which requires k to be large. Since the size of 6
scales with k, learning 6 soon becomes infeasible. To mitigate
this, we propose a systemic representation of 6 that requires
the number of parameters to be in the order of logk. To do
so, we use a stack of 2-dimensional convolutions, spanning
across multiple time-series variables (spatial dimension) over
a fixed time window (temporal dimension). These convolu-
tions are causal and exponentially dilated in the temporal
dimension to create a receptive window large enough to utlize
long-term history and maintain causality between the input
and the output. We call such convolutions flow convolutions
(FCs). In what follows, we describe how FCs can be stacked
to represent 0. Let k = 2° and y® be a set of m; 2D
convolutional filters of size m;_1 x 2 for some m;, where
i=1,...,¢, mo=mand my = 1, where y(i) € Rmixmi-1x2
Let a® = (a;_g+1, ..., a;), where a; is the ith column of a.
We obtain a® fori =1, ..., £ by

a) = yd "+ a) )

Note that yl(’), )/2(’) € R™>Mi-1 meaning that ¢ € R™i*k
with a®® = b. The indexing of elements in (4) ensures
that the elements of a” are derived from past values in the
lower layer, hence causality is maintained. The exponentially
increasing dilation ensures that the temporal receptive win-
dow increases as we go higher in the stack, while the spatial
length is m;. This stacking of flow convolutions is shown
in Figure 3. Thus, the output of the stack (a(zi)) is the result
of convolutions of the past 2¢ observations of a®. Note that
by setting a(zi) = b;11, we have replicated (3) by using a
stack of y@s. Since the size of y @ is 2m;_m;, the number of
parameters needed for this scheme is 2 Zf: | mi—1m;, which
isin order of £ = log k. Thus, by expressing future values as a
linear combination of past values and utilizing a stack of flow
convolutions, we reduce the number of required parameters
from an order of N*, to an order of logk.

output 43 output a®
~(3)
o
e

o

A1

input a(®  input al®

Time

FIGURE 3. Flow convolutions in the temporal (left) and spatial (right)
dimensions. In the temporal view, a binary and causal spanning tree is
formed; and in the spatial view, a fully connected neural network is
formed.

This structure ensures that the output is learned from mul-
tiple time-series variables on an exponentially large temporal
window. Besides, this structure depends on y ) that represent
a set of flow convolutions. This is illustrated in Figure 4.
Learning in the temporal dimension is as it was in

45556

O O O O O O O O

OOOO’Q’Q’Q

w N a W a

outputs

inputs

Time

FIGURE 4. Depiction of flow convolutions, in both temporal and spatial
dimensions. The output layer (top) is obtained by applying a 2D filter that
is causal and exponentially dilated in the temporal dimension on the
input. For simplicity, we only show how the middle element in the output
layer is obtained.

Section IV-A for a single time-series variable, but now we
have concurrent learning in the spatial dimension across mul-
tiple time-series variables. By using a stack of such convo-
lutions, we temporally use an exponentially large receptive
field. We can change the size of spatial dimension as we go
higher in the stack by changing the value of m;.

C. PatientFlowNet ARCHITECTURE AND
IMPLEMENTATION

We use the framework that we have developed so far, and
inspire from [27] to build our convolutional neural net-
work, namely PatientFlowNet. The core idea behind Patient-
FlowNet is using a stack of flow convolutions. The input
is passed to the first layer of the stack, where in each
layer, we first apply the flow convolution filter, followed by
independent applications of the tanh and sigmoid activation
functions and subsequent multiplication of the results, which
mimics the activation function in [27]. We discovered that
an additional 1-dimensional convolution across time-series
variables (i.e., in the spatial dimension) improves the perfor-
mance. The output of this spatial convolution is passed to
the next layer, and with each layer the size of the receptive
field is doubled. We continue adding layers until the size of
the receptive field matches the temporal input size that we
desire. We also add residual and skip connections between
and within layers to enable training deeper networks. The out-
put of the topmost layer is the result of a causal convolution
of all elements in the receptive field as noted in Section I'V-B.
We subject this output to a series of additional spatial con-
volutions and ReLU activation. Finally, we apply a dropout
layer to avoid overfitting, followed by a 1-dimensional spatial
convolution and a linear activation function to provide a
continuous output. This architecture is shown in Figure 5.

V. DATASET
The data used in this paper comes from EDs in three teaching
hospitals in New York City that did not provide permission to
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residual

causal conv

input output

FIGURE 5. PatientFlowNet applies flow convolutions in each layer,
followed by a switching activation function. It then applies spatial
convolution to the results and passes the output to the higher level.
Residual and skip connections are added to train deeper models. The
outputs of all layers are combined in the post-processing step as shown
on the right-hand side of dashed boxes.

be named, and so are called Hospitals 1, 2, and 3. The datasets
have per-patient information, namely triage level, arrival
time, treatment time, and discharge time over a roughly 2 year
period from 2011 to 2013. We discard invalid patient data,
which include those whose discharge time is prior to their
treatment time or whose treatment time is prior to their arrival
time. We also discard the data of any patient whose time-to-
treatment is longer than 24 hours. The above exclusions leads
to discarding of 1.23% of data.

For each hospital, we extract the number of arrivals (1),
treatments (u), and discharges (§) for different triage levels
over fixed consecutive intervals of T = 60 minutes. Let A;
be the number of patients in triage level i who arrive during
the kth interval. Similarly, let u;x and §;x be the number
of patients in triage level i who are treated and discharged
during the kth interval, respectively. Thus, when there are
T intervals, we have A, u, 8 € R3*T | The data has a long
tail distribution as shown in Figure 6a. Hence, we apply a
“log 1p” transformation (defined by log 1p(x) = log(1 + x))
to shrink the long tail.

VI. RESULTS

In this section, we present experiments on the three datasets
described in Section V. For each dataset, we report the predic-
tion error on arrival (1), treatment (1), and discharge (§) rates.
In each experiment, we predict the one-step-ahead values of
each of the above rates for all triage levels, given the values
of the last k observations of all rates and triage levels for a
given value of k. That is, the input data consists of the past k
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observations of A, , and § for triage levels 1, ..., 5, and the
output is the next observation of the variable of interest for
triage levels 1,...,5. Since some of the baseline methods
cannot effectively utilize a long input size, we conduct two
sets of experiments:

1) Short-term experiments, whose input size k is short.

2) Long-term experiments, whose input size k is long.

Since the data exhibits a strong 24-hour cyclic behavior as
in Figure 6b, we set the input window size to k = 24 for short-
term experiments. For long-term experiments, we consider
window size of k = 2!!, which roughly includes 3 months
of observations.

3000
2500
2000

8 1500

. mh Jﬂmhr, 1

0
00 25 50 75 100 125 150 175 200 o 10 20 30 40
Treatment rate Hours

FIGURE 6. (a) Histogram of treatment rate having a long tail, and
(b) autocorrelation of treatment rate showing a 24-hour
cyclic behavior in Hospital 2.

A. EXPERIMENT SETUP

For each hospital, we segment the corresponding dataset
(consisting of time-series values of A, w, and § as described
in Section V) into 4 non-overlapping partitions, where each
partition consists of a train/validation/test split as shown
in Figure 7. There are 720 labels (equal to 30 days) in each
of the training, validation, and test sets and these labels do
not overlap. We use a walk-forward approach [38], where
the value of each label is predicted by using k previous
observations.

e ]
-

split 2

‘ it ‘ ‘ it ‘ ‘ it

Time

FIGURE 7. The 4-fold training/validation/test walk-forward split used in
benchmarking. The labels (in blue) are predicted using previous
observations (in red). Each blue tile corresponds to 1 month of labels and
each red tile corresponds to 3 months of observations.

Since patient-flow patterns are dependent on external and
internal factors in the ED, we expect short-term correlation
between patient-flow patterns. Factors such as ambulance
routing or patient registration processes may change over
time, which in turn may significantly change patient-flow
patterns over longer periods, which makes patient-flow rates
non-stationary. When the training set and the test set are
far apart, their distribution becomes inherently different
and a model trained on the training set would not be a
good predictor on the test set. To avoid such instances,
the train/test/validation splits need to be temporally close
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to each other. Hence, the train/validation/test boundaries are
chosen in such a way that their corresponding labels (marked
in blue in Figure 7) are adjacent to each other and do not
overlap. The input data in different sets (marked in red) may
overlap, but the blue labels of the test set, in which the
prediction errors are reported, does not overlap with the other
data. This is in fact standard evaluation practice [38].

For each segment, we train the models on the training
set, monitor the errors on the validation set, and report the
error over the test set for the model that has the lowest
validation error. We use several error metrics to compare the
models in our experiments, namely the mean absolute error
(MAE), the mean absolute percentage error (MAPE), root
mean square error (RMSE) and the coefficient of determi-
nation (R?). We use the Adam optimizer [39], and train each
model for 4000 epochs using early stopping with tolerance
of 100 epochs over loss on the validation set. We repeat each
experiment 10 times with random initializations and report
the mean error over the test set which offsets the influence of
random events.

B. EXPERIMENTS

We compare the performance of our model against the
below-mentioned state-of-the-art baselines in patient-flow
prediction:

o Gaussian Process Regression (GPR) consisting of exp-
sin-squared and white kernels. The exp-sin-squared ker-
nel has a length scale size of 1 and periodicity of 24 and
the white kernel has a noise level of 1.

+ Random Forest (RF) [25] with a maximum depth of 4
and 500 estimators.

o Seasonal ARIMA [20] with autoregressive order of 1,
differencing order of 1, moving average of 2, and sea-
sonality period of 24.

« Lasso Linear Regression (Lasso-LR) [24] which is lin-
ear regression with ¢; regularization (Lasso) to avoid
overfitting. We used path length of 1075 and tolerance
of 1074,

o« LSTM [24] with a sequence-to-sequence architecture
and 2 LSTM layers of 32 units.

o Feed forward network (FF) [24] with one hidden layer
of 64 units and ReLU activation function.

o WaveNet-Short (WN-S) [27] with 4 layers and filter
sizes of 3, 2, 2, and 2 to match input size of k = 24.

o WaveNet-Long (WN-L) [27] with 11 layers and filter
size of 2 in each layer to match input size of k = 2!1.

o PatientFlowNet-Short (PFN-S) as in Section IV-C with
input size k = 24, 4 layers, and 16 filters with temporal
length of 3, 2, 2, and 2.

« PatientFlowNet-Long (PFN-L) as in Section I'V-C with
input size k = 2!'!, 11 layers, and 16 filters with
temporal length of 2.

Parameter values for GPR, PFN-S, PFN-L were chosen
based on cross-validation on the portion of datasets from
all three hospitals that were not used for the rest of the
experiments. Parameter values for the rest of the baselines
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are exactly the same as those in their respective cited papers.
We used the TensorFlow and Scikit-learn Python packages
for our experiments.

C. DISCUSSION

In what follows, we present observations based on MAE
values in Table 2 for the test sets. Experiments are repeated
for other loss metrics such as the mean absolute percentage
error (MAPE) and the root mean squared error (RMSE), and
the results are included in Table 2. RMSE values are of the
same order of magnitude as MAE values, indicating that our
log 1p transformation of the values was effective in reshaping
the long-tail distribution. The MAPE values are sensitive to
small values of labels, and we observe inflated MAPE values
due to patient-flow rates being very small for high-acuity
triage levels. We observe similar performance gaps between
models regardless of the choice of the error metric, Hence,
we focus on MAE values.

In short-term experiments, GPR, Lasso-LR, WN-S, and
PFN-S are the most accurate in predicting the arrival rate (1).
Models in long-term experiments such as LSTM, WN-L, and
PEN-L outperform those in short-term experiments, as they
take as input a longer history to predict future values. Note
that with respect to A, there is not a large gap in prediction
accuracy between PFN-L and WN-L despite the fact that
PFN-L learns from multiple time-series inputs. This is due to
the fact that X is exogenous and its dependence on other time-
series variables is minimal. Thus, cross-learning from other
time-series variables is not significant while temporal learn-
ing from a longer history provides better predictions for A.

We observe the reverse when it comes to treatment (i)
and discharge (§) rates, which are endogenous. As endoge-
nous variables are dependent on other variables, we observe
that as expected, cross-learning is significant. Models in
short-term experiments that learn from multiple time-series
variables, even with a shorter receptive field, generally out-
perform those in long-term experiments that learn from a
single variable, such as LSTM and WN-L. This indicates
that dependencies between endogenous variables are mostly
short term, and a 24 hour observation can capture most of
cross-learnings. Note that PEN-L outperforms the rest of the
models in short-term experiments by learning from multiple
time-series variables using a long temporal receptive field.

We observe that PatientFlowNet produces more accurate
predictions than the rest of the baselines when using a short
input window, and it can further improve its accuracy when
the length of the input window is increased. PEN-S has a
higher prediction accuracy than the rest of the models in
short-term experiments for all rates, indicating that it is able
to better learn dependencies between different flow vari-
ables when using a short input window. Furthermore, WN-L
and PFN-L outperform their short-term versions respectively.
Therefore, while there is a strong 24-hour cyclic behavior in
the data, these models use their large receptive field and learn
patterns beyond the 24-hour cycle to make more accurate
predictions. This serves as an ablation study of our model,
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TABLE 2. Comparison of models used in short-term experiments (Gaussian process regression (GPR), Lasso linear regression (Lasso-LR), random forest
(RF), feed forward networks (FF), WaveNet-Short (WN-S), and PatientFlowNet-Short (PFN-S)) and long-term experiments (ARIMA (AR), LSTM,
WaveNet-Long (WN-L) and PatientFlowNet-Long (PFN-L)) in terms of MAE, MAPE, RMSE, and R2 (corresponding to models

that minimize MAE) for the arrival (1), treatment (1), and discharge (8) rates in hospitals H1, H2, and H3.

Metric Model A o [

HI H2 H3 H1 H2 H3 HI H2 H3
GPR 0.277 | 0327 | 0.316 | 0.241 | 0.295 | 0.284 | 0.243 | 0.291 | 0.282
Lasso-LR | 0.276 | 0.324 | 0.314 | 0.238 | 0.294 | 0.285 | 0.240 | 0.290 | 0.280
RF 0.275 | 0.328 | 0.318 | 0.235 | 0.295 | 0.284 | 0.244 | 0.300 | 0.286

FF 0.271 | 0.343 | 0.325 | 0.245 | 0.329 | 0.312 | 0.247 | 0.314 | 0.311
MAE WN-S 0274 | 0329 | 0.314 | 0.267 | 0.330 | 0.314 | 0.267 | 0.337 | 0.319
PEN-S 0.269 | 0.326 | 0.310 | 0.221 | 0.285 | 0.270 | 0.231 | 0.286 | 0.275
AR 0.289 [ 0367 | 0.350 | 0.291 | 0.369 | 0.349 | 0.285 | 0.369 | 0.354
LSTM 0.265 | 0.324 | 0.311 | 0.267 | 0.327 | 0.311 | 0.269 | 0.334 | 0.316
WN-L 0.256 | 0.326 | 0.309 | 0.260 | 0.325 | 0.309 | 0.258 | 0.336 | 0.318
PEN-L 0.251 | 0.320 | 0.303 | 0.213 | 0.277 | 0.264 | 0.227 | 0.280 | 0.263

GPR 60.2 67.4 69.8 532 61.5 62.3 52.0 63.0 61.1

Lasso-LR 61.1 67.4 68.9 52.4 61.1 62.1 59.6 64.6 63.4

RF 60.6 68.3 71.2 51.5 61.0 62.7 54.3 65.4 63.4

FF 58.5 72.1 71.7 53.6 67.6 68.5 54.7 70.7 67.9

MAPE WN-S 60.7 68.3 69.3 58.2 70.5 69.1 56.6 75.1 70.0
PEN-S 59.8 69.1 66.7 47.5 58.9 59.5 50.6 62.5 59.6

AR 64.3 78.0 78.0 63.2 75.1 75.9 62.7 81.5 77.2

LSTM 57.9 66.0 69.4 59.7 67.7 68.9 59.9 73.0 70.8

WN-L 56.9 69.0 674 58.0 68.1 69.3 57.2 74.2 69.7

PEN-L 55.6 66.8 66.2 47.9 58.7 57.7 49.5 61.8 59.6
GPR 0420 | 0.494 | 0.482 | 0.368 | 0.463 | 0.439 | 0.361 | 0.445 | 0.422
Lasso-LR | 0.424 | 0.492 | 0.481 | 0.366 | 0.449 | 0.434 | 0.367 | 0.442 | 0.429
RF 0.423 | 0.501 | 0.489 | 0.360 | 0.451 | 0.437 | 0.377 | 0.458 | 0.434

FF 0.408 | 0.535 | 0.505 | 0.372 | 0.490 | 0.480 | 0.376 | 0.490 | 0.475
RMSE WN-S 0.411 | 0.505 | 0.470 | 0.402 | 0.512 | 0477 | 0.402 | 0.522 | 0.489
PEN-S 0.416 | 0.496 | 0.475 | 0.339 | 0.435 | 0411 | 0.355 | 0.438 | 0412

AR 0.442 | 0.553 | 0.538 | 0.443 | 0.567 | 0.532 | 0.436 | 0.570 | 0.545
LSTM 0.408 | 0.500 | 0.472 | 0.407 | 0.505 | 0.472 | 0410 | 0.511 | 0.476
WN-L 0.392 | 0.494 | 0.475 | 0393 | 0.499 | 0472 | 0.392 | 0.514 | 0.490
PEN-L 0.386 | 0.488 | 0.458 | 0.325 | 0.428 | 0.406 | 0.341 | 0.428 | 0.407

GPR 0.847 | 0.830 | 0.805 | 0.889 | 0.866 | 0.835 | 0.880 | 0.865 | 0.848

Lasso-LR | 0.850 | 0.830 | 0.802 | 0.886 | 0.862 | 0.840 | 0.881 | 0.862 | 0.842

RF 0.849 | 0.826 | 0.797 | 0.890 | 0.860 | 0.840 | 0.881 | 0.855 | 0.839

FF 0.856 | 0.804 | 0.789 | 0.883 | 0.828 | 0.803 | 0.881 | 0.839 | 0.807

R? WN-S 0.848 | 0.828 | 0.804 | 0.859 | 0.823 | 0.809 | 0.864 | 0.813 | 0.795
PFN-S 0.853 | 0.821 | 0.811 | 0.902 | 0.873 | 0.856 | 0.894 | 0.870 | 0.855

AR 0.835 [ 0.787 | 0.750 | 0.830 | 0.779 | 0.757 | 0.836 | 0.777 | 0.746

LSTM 0.860 | 0.828 | 0.806 | 0.853 | 0.829 | 0.809 | 0.850 | 0.819 | 0.806

WN-L 0.868 | 0.828 | 0.810 | 0.863 | 0.827 | 0.807 | 0.866 | 0.812 | 0.794

PFN-L 0.870 | 0.836 | 0.816 | 0.906 | 0.877 | 0.862 | 0.897 | 0.872 | 0.859

indicating that its superior prediction accuracy derives from
both its cross-learning as well as its large temporal window.
When averaged over all rates in all hospitals, PFN-L has an
MAE that is 4.8% lower than the leading baseline.

The MAE values along with standard errors are shown
in Figure 8. Note that deep learning models generally have
higher variations than classical machine learning methods
such as regression and random forest as their initialization
is more stochastic. For the exogenous variable, i.e., A, while
deep learning models generally outperform classical machine
learning models, the performance is within the margin of
error. For the endogenous variables, i.e., u and &, while the
error-bars for deep learning models is still large, the per-
formance gap between PFN-L and the remaining models
is significant. Thus, by efficiently learning from multiple
flow variables over a long temporal window, PFN-L has a
slightly better prediction accuracy for exogenous variables,
while having a significantly better accuracy in predicting
endogenous variables in the ED.
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Since PatientFlowNet can simultaneously learn from mul-
tiple time-series variables, we can extract dependencies
between patient-flow variables in retrospect. To do so,
we examine flow convolution filters in PatientFlowNet.
Figure 9 shows normalized values of flow convolution filters
in the first layer of PatientFlowNet-Long for each hospital.
The values are normalized in such a way that the sum of
values in each filter is 1. Thus, darker shades denote stronger
dependency. Note that A is best estimated using its own
history, u is best estimated using past values of A and p, and
4 is highly dependent on past values of 1 and §. This validates
our earlier assumption on the exogenous nature of A. Lack of
dependency of 1 on § indicates that slowdowns and speed ups
in discharging patients do not significantly affect treatment
rates. Besides, lack of dependency of § on X indicates that
patients are not necessarily rushed out when arrival rates
spike. This analysis is based on historical data in our data
sets that were taken during non-distress times; and can change
during distress times.
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FIGURE 8. Average test error and its confidence interval for predicted rates for different models in 3 hospitals. The length of the error
bar for each variable is 2 x the standard error of test error across 4 folds. Note that for endogenous variables (x and §),
PatientFlowNet-Long outperforms other models by a large margin. Its average MAE for exogenous variables (1) is also less than other

models, but within the margin of error.
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FIGURE 9. Normalized values of the first layer flow convolutional filters
for all hospitals. The level of darkness in row (i, j) indicates the
dependence of predicted variable i on input variable j. Darker shades
indicate larger filter values and higher dependency.

TABLE 3. Comparison of MAE values for predicting variables in rows
using variables in columns when using PFN-L for the three
hospitals in our study (H1, H2, and H3).

A 2 s M) | (A6 | 1,0) | (Mg, 0)

X [ 0250 | 0267 | 0.284 | 0251 | 0253 | 0271 | 0.251

HI | p | 0227 | 0271 | 0279 | 0215 | 0231 | 0273 | 0.213
5 | 0238 | 0234 | 0262 | 0235 | 0244 | 0230 | 0.227

X [ 0319 | 0335 | 0.347 | 0320 | 0321 | 0341 | 0320
H2 | p | 0285 | 0323 | 0341 | 0283 | 0.294 | 0331 | 0277
5 | 0301 | 0285 | 0329 | 0283 | 0287 | 0.281 | 0.280

X [ 0299 | 0321 | 0.327 | 0301 | 0.303 | 0323 | 0303
H3 | p | 0277 | 0271 | 0279 | 0265 | 0.281 | 0273 | 0.264
5 | 0275 | 0270 | 0284 | 0273 | 0270 | 0.265 | 0.263

We also perform an ablation study on the set of input
parameters to our model and to assess their importance
in predicting future values. Table 3 shows MAE values of
PFEN-L for predicting patient-flow parameters using differ-
ent input configurations in the three hospitals in our study.
We observe the same dependency pattern discussed above,
where the exogenous variable (1) is best predicted using its
own history while the endogenous variables (x and §) are best
predicted by using the history of all variables. While the use
of additional input parameters is expected to add uncertainty
to the model and reduce its prediction accuracy, we note
that for the exogenous variable such reduction is minimal as
PEN-L learns and adapts to such dependencies, as observed
in Figure 9.
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VII. CONCLUSION

In this paper, we presented a convolutional neural net-
work model, called PatientFlowNet, to forecast patient flow
in emergency departments. The design of PatientFlowNet
enables it to learn simultaneously from multiple flow vari-
ables over an exponentially large input window, while keep-
ing the model size manageable. We have shown that our
PatientFlowNet achieves better prediction accuracy than
the current state-of-the-art models used for patient-flow
forecasting. While PatientFlowNet has a slightly better
prediction accuracy for exogenous variables such as patient
arrival rates, it produces substantially more accurate predic-
tions for the endogenous flow variables such as treatment
and discharge rates. The short-term predictions by Patient-
FlowNet can be used to estimate workflow variables such
as wait times. We also described how dependencies between
flow variables in the emergency department can be deduced,
in a data-driven fashion, by inspecting the learned parameters
in the first layer filters of PatientFlowNet.
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