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ABSTRACT In large-scale software development environments, defect reports are maintained through bug
tracking systems (BTS) and analyzed by domain experts. Different users may create bug reports in a non-
standard manner and may report a particular problem using a particular set of words due to stylistic choices
and writing patterns. Therefore, the same defect can be reported with very different descriptions, generating
non-trivial duplicates. To avoid redundant work for the development team, an expert needs to look at all new
reports while trying to label possible duplicates. However, this approach is neither trivial nor scalable and
directly impacts bug fix correction time. Recent efforts to find duplicate bug reports tend to focus on deep
neural approaches that consider hybrid representations of bug reports, using both structured and unstructured
information. Unfortunately, these approaches ignore that a single bug can have multiple previously identified
duplicates and, therefore, multiple textual descriptions, titles, and categorical information. In this work,
we propose SiameseQAT, a duplicate bug report detection method that considers information on individual
bugs as well as information extracted from bug clusters. The SiameseQAT combines context and semantic
learning on structured and unstructured features and corpus topic extraction-based features, with a novel
loss function called Quintet Loss, which considers the centroid of duplicate clusters and their contextual
information. We validated our approach on the well-known open-source software repositories Eclipse,
NetBeans, and Open Office, comprised of more than 500 thousand bug reports. We evaluated both the
retrieval and classification of duplicates, reporting a Recall@25 mean of 85% for retrieval and 84%AUROC
for classification tasks, results that were significantly superior to previous works.

INDEX TERMS Duplicate bug report, deep learning, deep neural networks, semantic context-based,
Siamese network, loss function, quintet, triplet, attention mechanism, BERT, MLP, LDA, topic modeling.

I. INTRODUCTION
Bug Tracking Systems (BTS) are tools used to coordinate
and manage bug detection and fixing in large software devel-
opment environments. Bugs may be reported by different
sources, e.g., developers, testers, and users in general, with
inconsistent levels of detail [1]. Typically, the bug triage
process can be divided into three phases [2]: (i) understand-
ing, (ii) selection, and (iii) correction. Understanding (i) and
selecting (ii) a bug report are not trivial tasks, since different
users may write reports using their own words, causing ardu-
ous work for an expert triager, who is liable to understand
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and separate these documents. Correction (iii) is the last phase
when the development team fixes the reported bug. A triager
is a developer who should be able to understand all reports
published in a day, while screening for possible duplicated
reports, avoiding rework on redundant tasks [3], [4].

This triage work is not easily scalable in a situation of
rising reports pending analysis. Thus, solutions that automate
triage processes can directly impact software management
costs, aiding decision-making and avoiding development
rework during the bug fix. Many researchers have explored
automatic approaches for selecting duplicate reports, which
can be roughly divided into information retrieval (IR) and
machine learning/deep learning (DL) based methods. IR-
based methods usually deploy variations of Vector Space
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Models (VSM) [5]–[9] to represent bug reports based on
features like word frequency or topic distribution, extracting
syntax and context from the reports. On the other hand,
the most recent machine learning-based methods tend to cen-
ter on deep neural networks [10]–[17]. These models extract
automatic latent features based on embedding representations
from structured and unstructured content. This manifests
a different way of extracting lingering patterns from bug
reports, capturing semantic and syntactic context about the
content of the documents.

While those previous works achieved satisfactory results,
in this work, we believe that the duplicate bug detection task
results found can be further improved by exploring three new
approaches to enhance the bug report representation through
embedding vectors: First, attention-based textual embeddings
[18]. Second, bug report corpus context for embeddings using
topic modeling, and third, using duplicate cluster information
to improve bug representation:
Attention-based textual embedding. We propose to

improve text representation of bug reports, where we use
attentionmechanisms instead ofmore traditional models used
in previous works [10]–[17].

In previous works, the context of words is not weighted
individually, resulting in representations that describe the
sentences of the documents and not also the word context.
Hence, these previous approaches dismiss specific challenges
of the bug report documents (e.g., semantic variation and
natural and non-natural language content, with stack traces,
logs, and source code). Consequently, an attention-based net-
work should understand the context of sequences via weights
in the vocabulary, smoothing the detection of non-natural
language, and context changes in the text. In the literature,
the Bidirectional Encoder Representations from Transform-
ers (BERT) is a language model considered a state-of-art for
textual representation, a model that enables learning based on
attention mechanisms. Thus, we pretend to use it to generate
embedding of textual features, as [19] have employed in the
context of commit messages in software engineering tasks.
This way, we will deliver rich textual embedding for the bug
report documents.
Textual context using topic modeling. We enhance our

bug text representation by extracting latent topics from
the report corpus and adding the extracted topic distribu-
tion to each bug report, thus adding information regard-
ing the relation of a specific report to all others. This is
done by applying topic modeling methods [20] to cap-
ture the shared topics between the reports, in hopes that it
can increase the detection accuracy, similarly to what was
demonstrated in [6].
Replicated cluster information using centroid. In order to

improve bug representation, we introduce a new loss function
that also considers information pertaining to duplicated bug
report clusters. Our proposed function, named Quintet Loss,
uses an optimization strategy that extends the use of the
Triplet Loss function [21], including duplicate clusters infor-
mation in its learning process, by also bringing the anchor

instance closer to its positive cluster centroid while distancing
it from a negative duplicate cluster centroid. In the literature,
a Triplet Loss function can boost the learning of features
on bug reports, and according to [21], this loss is used in
problems to detect the similarity between objects. In this way,
we first investigated the use of duplicates group information
to train this set of triplets together with their centroid groups.
On the other hand, Ge et al. [22], and Wu et al. [23] explain
that Triplet loss treats all triplets as equally important, using
of the same weights used for all triplets. This has a negative
impact if the training set includes triplets too much deviant
from the global data distribution due to artifacts in sampling.
Therefore, we assume that using the information on whole
clusters of duplicates may help the model to better orga-
nize the duplicates in the latent space, reducing the equally
important triplet effect, minimizing duplicate set overlaps,
and improving report discrimination tasks.

In this context, as a way to automate the selection of
duplicates and reduce the time spent on the triage processes,
we propose SiameseQAT, a Siamese approach to detect
duplicate bug reports, using attention-based, topic-based
context representation embeddings and the Quintet Loss
function.

In summary, we present the significant research contribu-
tions of SiameseQAT:

(i) We propose a novel clustering loss function, Quin-
tet Loss, which uses the centroids of duplicate clus-
ters while generating its bug report representation to
improve replicas’ discrimination. The source code1 is
available for the research community enabling its use in
any clustering problem, just as we employed in dupli-
cated bug detection.

(ii) The deployment of semantic context-based learning
behind topic modeling and BERT language modeling in
tandem with a Siamese architecture to generate contex-
tual relations in structured and unstructured information
from bug reports.

(iii) We evaluated our approach on large popular open-
source projects, comparing with two state-of-the-art
[10], [12]. The experimental results show that we
outperform the two works for duplicate bug report
detection on tasks of detection, classification, and
retrieval.

Our paper is organized as follows. In Section II, we illus-
trate the challenges in duplicate bug reports. Section III
gives an overview of the related literature. In Section IV-A,
we cover theminimal prerequisites to understand the key con-
cepts of deep learning. In Section IV, we describe the Siame-
seQAT approach and its architecture. Section V describes
the experiments and discusses the results. Then, we con-
clude the paper and describe future research opportunities in
Section VI.

1https://github.com/thiagomarquesrocha/siameseQAT
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FIGURE 1. An example of duplicate reports extracted from [24]. Report
#6325 is the master and all other are duplicated reports. Every report X is
referenced by Y , denoted as Y− > X .

II. MOTIVATION
Bug reports are documents created by bug tracker systems
like Bugzilla2 and Atlassian,3 tools that maintain many
reports describing software defects. For each bug report,
we have structured and unstructured information filled by
different users, such as developers, testers, or other users [1].
Structured information is all numeric or categorical attributes
present in a bug report such as product, component, priority,
bug severity, resolution, bug status, and version, attributes
describing the software or the defect. Unstructured informa-
tion is all attributes such as short description and description
which contain textual descriptions about the defect.

Each duplicate bug report receives a manual label given
by a specialist referencing the duplicate ID from the first bug
report published related to the same problem [2]. A duplicate
bug reportmeans that two bug reports are describing the same
defect using the same or different vocabulary. Thus, if a bug
report references an older duplicate, the relationship between
them could be visualized as a tree with the first report found
(the root node) known as the master report. Which represents
the set of duplicates (its child nodes), as shown in Figure 1.

To detect duplicate bug reports, an algorithm based on deep
models need to determine bug embeddings that describe the
duplicate content and the similarity between the documents.
However, as our examples in Table 1 show, bug reports have
five characteristics: project uniqueness; natural language;
non-natural language; semantic variation; and imbalanced
data. These characteristics are critical issues in duplicate bug
reports detection and are detailed below:

1) Project uniqueness: Users of different projects often
have different conventions when reporting software
defects, using project domain keywords such as word,
doc, eclipse, or java.

2https://www.bugzilla.org/
3https://br.atlassian.com/

2) Natural language: Bug reports are usually described
using natural language. However, there is no guarantee
that non-natural text may be present in the description.

3) Non-natural language: Moreover, it is not unusual for
developers and testers usually attach stack traces, logs,
steps to reproduce the problem, and other evidence to
help understand the software defect. This data is pasted
mixed with natural language.

4) Semantic variation. The same semantic concept can
be described in many domain-related forms, such as
OO or OOo, that means Open Office, or NullPointerEx-
ception and NP, which means the null reference on
runtime, and FS word that means File System, among
many other examples.

5) Imbalanced data. The ratio of duplicate bug report pairs
in a project can be low compared to non-duplicate bug
reports, as Table 3 displays. This characterizes a clas-
sic problem of imbalanced data for classification and
retrieval tasks.

To address the above challenges, we propose SiameseQAT,
an approach for detecting duplicate bug reports in classifi-
cation and retrieval tasks. Our approach learns various bug
reports latent features from structured and unstructured inputs
through embedding representations, thus removing the need
for manual feature engineering, solving challenges 1, 2, and
3. Also, it extracts semantic and context meaning from bug
features through embedding vectors, covering challenge 4.
To overcome the imbalanced data issue, our approach uses the
Siamese strategy to train always on balanced inputs, giving a
random bug report, its positive, negative, and their centroids
at the same time.

III. RELATED WORK
Duplicate bug report detection approaches can use struc-
tured and unstructured information while also being divided
between information retrieval (IR) solutions and machine
learning/deep learning (DL) techniques. Unstructured infor-
mation is textual features, usually extracted from fields like
short description and description to generate a text document.
Structured information consists of categorical fields such as
product, component, priority, bug severity, resolution, bug
status, and version. Hybrid-structured information methods
use textual features and categories together, and in some
cases, include execution information like stack trace or logs.

A. INFORMATION RETRIEVAL FOR DUPLICATE REPORT
DETECTION
Earlier work on duplicate bug report detection was intro-
duced by [3], who used a document feature vector based on
a Bag of Words (BOW) approach to describe bug reports
and applied cosine similarity between report vectors to find
candidate duplicates through its content similarity. It achieved
an accuracy of up to 40% in detecting duplicates in a private
dataset from Sony Ericsson Mobile Communications. The
main disadvantage of applying BOW in this method is to
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TABLE 1. Examples of duplicate bug reports from three open-source software projects.

ignore the word placement context. It also only considers
word frequency in its vector representation. Nevertheless,
it remains a simple and computationally inexpensive method.

Sun et al. [25] improve the previous approach by using
feature vectors based on Inverse Document Frequency (IDF)
to learn the weights of all words in a bug report. Candidate
duplicates are also retrieved by cosine similarity. The corpus
in this paper considered fields such as short_description,
description, and the concatenation of both fields. Then, a Sup-
port Vector Machine (SVM) is applied to a pair of reports
to classify whether they are duplicates. Their results show
accuracy levels between 50% and 70% on three datasets,
Eclipse, Firefox, and Open Office.

The proposal of [26] employs both natural and non-natural
texts extracted from description fields, stack traces, and logs.
The idea is to calculate two similarity scores combining
natural and non-natural information from bug reports, vec-
torizing them using TFIDF, and retrieving candidates by
cosine similarity. They have reached an accuracy of 71%
and 82% to detect the duplicates in Eclipse and Firefox
datasets, respectively. In future works, we intend to study
techniques to process non-natural text separately for duplicate
retrieval.

Jalbert and Weimer [27] developed a classifier mixing bug
severity, date fields, a similarity score from textual fields, and
graph informationwith links between the bugs to discriminate
duplicates. Their strategy reached 43% of accuracy in the
Mozilla dataset.

Sun et al. [5] have proposed REP, a retrieval method based
on BM25Fext to vectorize textual and categorical fields. This
method supports long text queries and learns weights through
stochastic gradient descent. BM25Fwas developed to address
the lack of normalization and standardization in all fields of
BM25. The proposal achieved from 68% to 72% of accuracy
in the Eclipse, Open Office, and Mozilla datasets.

Nguyen et al. [6] have used the BM25Fext combined with
Latent Dirichlet Allocation (LDA), a topic model describing
the duplicates based on shared topics, calculating the similar-
ity score between the bugs. The feature vector generated by
LDA is the probability distribution of topics in a bug report,
one strategy that worked well in Eclipse, Open Office, and
Mozilla datasets, with an accuracy of around 80%.

Aggarwal et al. [28] have created a contextual method
using a specific vocabulary extracted from software engineer-
ing books and technical documents. This approach produces
a richer corpus, using BM25F to calculate the similarity score
between bugs, detecting 90% of duplicates in Android, Open
Office, Mozilla, and Eclipse.

Neysiani and Babamir [16] introduced a study focused
on evaluating the best automatic bug report detection consid-
ering IR-based or ML-based solutions. The study separated
some classifier as KNN and Logistic Regression (LR) com-
bining with algorithms like Support Vector Machine (SVM),
Information Gain Ratio (IGR), Chi-Square(CS), Gini Index
(GI), Principal Component Analysis (PCA) to represent the
documents.

VOLUME 9, 2021 44613



T. M. Rocha, A. L. D. C. Carvalho: SiameseQAT: A Semantic Context-Based Duplicate Bug Report Detection

It demonstrated that the ML-based approaches are more
efficient than IR-based, using hybrid-structured information
in all experiments. For classification tasks, these methods
were able to predict the duplication up to 97% accuracy, while
for retrieval tasks, 51% of replicas were correctly retrieved.
The study was evaluated only in the Android dataset.

B. DEEP LEARNING FOR DUPLICATE REPORT DETECTION
More recently, deep learning-based approaches have success-
fully been deployed to detect duplicate bug reports.

Kukkar et al. [17] proposed a system based on a deep learn-
ing model for relevant feature extraction using a Convolution
Neural Network (CNN) in a Siamese architecture to capture
local features and examine all vocabulary in a bug report
from multiple perspectives. The approach used structured
and unstructured information from bug reports calculating
the similarity between the reports. The words were encoded
via Word2Vec with 300 dimensions. The study reported an
accuracy average between 85% to 99% for classification tasks
while retrieval tasks took a recall@20 rate between 79%
and 94%. The dataset evaluated considered Mozilla, Eclipse,
NetBeans, Gnome, Open Office, Firefox, and the combined
base.

He et al. [15] extended the use of Convolution Neu-
ral Network (CNN) with a Dual-Channel CNN (DC-CNN),
a method to combine two matrices of report features, extract-
ing them from reports provided in a deep learning archi-
tecture. The approach uses hybrid-structured information as
input, demonstrating the impact of unstructured information
(e.g., product, component) to detect the replicas. To represent
the document words, they have used Word2vec Continuous
Bag of Words (CBOW) vectors [29] with 300 dimensions.
Their study achieved in Open Office, Eclipse, Net Beans,
and combined datasets an accuracy average of about 95% to
discriminate when a pair of reports are replicas.

Poddar et al. [14] introduced a neural architecture able
to detect bug report replicas and aggregate them into latent
topics, a model that uses semantic notion and attention mech-
anism to perform the two tasks of duplicate detection and
topic-based clustering. Through a neural model for multitask
learning, the method proposes a custom loss function that
can run both tasks of supervised duplicate classification while
performing topic clustering in an unsupervised fashion. The
study considered uses shared Bi-gated recurrent neural net-
work (Bi-GRU), Word Embedding, and self-attention mech-
anisms as well as conditional attention in their components.
Also, it used the title and product feature to detect when a
pair is a replica achieving an accuracy average of 70%, 87%,
88%, and 95% on Snap S2R, Eclipse Platform, Eclipse JDT
and Mozilla Firefox datasets.

Xie et al. [13] propose a deep framework model based on
hybrid-structured information combining Convolution Neu-
ral Network (CNN) feature with domain fields. The strat-
egy was to extract semantic and syntactic patterns from bug
reports in a deep architecture to acquire various information.
The words for a document are represented by word embed-

ding (Random, Glove, Word2vec [29], [30]) and concate-
nated with domain fields (e.g., component, bug severity, issue
time) outputting the final bug representation. To discriminate
a pair of reports the model classifies in the last layer as
replicate or not. This classification happened within many
hidden CNN layers that extracted the latent features from the
reports. The study achieved an accuracy between 82% and
94% in four datasets, Hadoop, Hdfs, MapReduce, and Spark
from Jira bug tracking tool.

Budhiraja et al. [10], [11] introduced a pair-based deep
classification model for detecting whether a pair of reports
are duplicated or not named Deep Word Embedding Neural
Network (DWEN). The model uses the title and description
of bug reports, with words being represented by CBOW and
Skip-Gram [29] vectors. Classification is done using an MLP
layer and a Sigmoid output layer to discriminate whether
the pair is replicate or not. It reported retrieving 77% of
duplicates on retrieval task and 94% on classification in Open
Office and Firefox dataset.

Deshmukh et al. [12] uses a deep Siamese architecture,
receiving a hybrid input, with textual (title, description)
and categorical (version, component, product) features. The
Siamese Network is composed of three kinds of Networks:
MLP, Bidirectional Long-Short Term Memory (BiLSTM),
and Convolution Neural Network (CNN). The output of
processing these three kinds of features is combined in an
embedding vector representing the report. The network is
trained using a Triplet loss function, which in each instance
uses a candidate, a negative and a positive example, aiming
to maximize the similarity between duplicates and minimize
between non-duplicates. It reached accuracy between 50%
and 81% in retrieval tasks while achieved between 72% and
82% classification accuracy in the Eclipse, NetBeans, and
Open Office datasets.

C. DISCUSSION BETWEEN THE DUPLICATE REPORT
DETECTION APPROACHES
For many years IR-based solutions were the state-of-art
methods to detect duplicate bug reports. Unlike these
approaches, which represented bug reports as bags-of-words,
our approach does not discard the order of words and
sentences missing the whole text meaning. Moreover, our
method extracts automatic latent features that best describe
the bug reports considering syntactic and semantic sense,
without manual techniques to select features.

Deep Learning-based solutions became the state-of-art
for detect duplicate bug reports, bringing a plethora of
new techniques. SiameseQAT differs from these approaches
introducing a new framework system that combines seman-
tic context-based learning behind LDA topic modeling and
BERT language, modeled in a Siamese architecture to make
automatic representation for bug reports while also consid-
ering information extracted from duplicated clusters. Our
proposal performs duplicate detection based on multitask
learning to classify and retrieval the bug report replicas.
Based on a cross-entropy loss to classify and a novel loss
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function to aggregate the bug replicas as clusters, we extract
automatically bug features to calculate the similarity and
discriminate the replicas. Furthermore, we validate the exper-
iments in popular open-source projects that demonstrate the
model effectiveness.

Aiming to easily visualize the core differences between
all related works, we summarize in Table 2 describing the
approach used, authors, information used, dataset, meth-
ods, task evaluated, and performance of detection. We can
observe that all more recent works are based on DL solutions
started a new trend of solutions to detect replicas based on
deep architectures. While the IR-based solutions presented a
high detection accuracy, it is unfair to directly compare all
solutions based on their detection accuracy because of all
distinct datasets and different heuristics to divide the pair
of replicas, and previous works comparing them with DL
based methods showed that the latter vastly outperformed
them [10], [11], [17].

IV. SiameseQAT: A SEMANTIC CONTEXT-BASED
DUPLICATE BUG REPORT DETECTION METHOD USING
REPLICATED CLUSTER INFORMATION
In this section, we present our proposed method, Siame-
seQAT. First, we cover preliminary knowledge about DL
models, the different layers used in our model, and Siamese
topologies for neural networks.We then introduce our general
framework for duplicate bug report detection, describing the
SiameseQAT model to encode bug reports and outputting an
embedding vector. Finally, we present the customized loss
function proposed in this paper, Quintet Loss, as an improve-
ment for the triplet loss function.

A. DEEP LEARNING PREREQUISITES
1) DEEP LEARNING MODELS WITH MULTILAYER
PERCEPTION (MLP)
A classic structure used in neural networks is the percep-
tron, and the simplest deep learning models use stacks of
layers of densely connected perceptrons, called Multilayer
Perceptron (MLP) [31]. When processing any input X, this
model extracts semantic knowledge as output, a vector Y
comprised by the combination of input X with a weight W
and any bias b denoted by Y = X .W + b. When stacking
perceptron layers, the output Y of a layer is used as the
input X of the next layer, creating a chain of multiple layers.
With a few MLP layers, it is possible to extract semantic
relationships from input data. Its output is a latent vector of
size D that describes the knowledge acquired by the model
and is usually applied in classification, clustering, or other
tasks. MLPs were used to detect whether a given bug report
is a defect or not, based on textual content, in the work of
Terdchanakul et al. [32], which also used N-Gram Inverse
document frequencies (IDF). Budhiraja et al. [10] usedMLPs
to encode bug reports and then used these encoding to detect
duplicates.

2) DEEP LEARNING MODELS WITH BIDIRECTIONAL
ENCODER REPRESENTATIONS FROM TRANSFORMERS
(BERT)
Attention mechanisms are a way to weigh the input features
based on their importance for a given task [33]. Researchers
such as [12] cite the possibility of using attention in a
customized deep architecture but did not experiment with
them. Since the introduction of attention mechanisms by [34]
and [35], hard problems involving a long sequence of texts
like machine translation showed significant improvements in
quality. Previous solutions usually deployedRNNs andCNNs
are thus becoming less usual in textual processing contexts,
giving rise to new concepts such as transformations, which
were introduced by Vaswani et al. [33].
The most popular natural language tasks have seen signifi-

cant improvements using attention techniques [35]–[38], with
models based on the Bidirectional Encoder Representations
from Transformers (BERT) [39] being particularly success-
ful. An approach used for general-purpose natural language
processing deploys attention mechanisms to learn contextual
relations between words in a text [18]. Its attention vectors,
which form the central core of BERT, works as weighted
features. For example, imagine a sequence X formed by n
words {X1, X2, .., and Xn}, with each word identified by a
continuous vector (word embedding) of size m representing
its learned latent features. A high-level view of the attention
output generated by BERT is one matrix of n lines and m
columns to represent each weighted word that the model gen-
erated, transformed by a positional function f . For each line
in the attention matrix, a new vector of size m is calculated
from an average of all X input dot with weights, as defined in
(1).

attention[n,m] =
1
n

n∑
i=1

f (Xi).w (1)

BERT can be useful inmany tasks such as question answer-
ing, natural language inference, and paraphrase detection
[40], [41]. The problem studied can be seen as similar to
paraphrase detection, since we are trying to detect whether
two texts (along with their categorical features) of duplicate
bug reports are describing the same subject using a different
vocabulary.

3) SIAMESE MODELS TO COMPARE BUG REPORTS VIA
TRIPLET LOSS
Siamese models are neural networks modeled to compare
pairs of objects, which has a high capacity to generalize repre-
sentations about the compared objects and to learn latent sim-
ilarities between the instances. This architecture is modeled
to accept all kinds of entries through any number of networks
[42]. In the NLP community, several works predominantly
employ Siamese architecture [43]–[45]. In this architecture,
the inputs can be images, texts, or another object. Moreover,
while these entries are transformed into latent vectors in the
same resource space, the model shares weights between their
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TABLE 2. Comparison between related works for duplicate bug report detection.

networks [46]. Aiming to illustrate the approach, Figure 2
details a case of two networks, Network A and Network B,
where they learn to encode two entries, Input A and Input B,
to space Y , reducing the vector distance between similar
inputs while increasing the distance between distinct through
its similarity function. The main idea of this strategy is to
use grouped neural networks that share weights W , ensuring
that latent embeddings are learned in the same feature space.
Moreover, the A and B networks can be neural networks with
any configuration of layers.

The shared weights can be seen as an advantage since this
means the network uses a comparably smaller number of
parameters (while representing two objects, only one set of
parameters is used). Moreover, they also lead to advantages
in training, since the weights are adjusted for both exam-
ples at each backpropagation gradient computation, while
also producing a single embedding spacing for visualization,
grouping, and other purposes [47]. In the context of duplicate
bugs, this strategy was used by [12], aiming to reduce the
distance of the duplicates in the embedding space produced
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FIGURE 2. Siamese model to compare two objects.

by the model while increasing the distance between non-
duplicates. To do so, it uses the Triplet Loss (TL) as its loss
function, which was originally introduced by [21] for the face
recognition problem.

The TL is a loss function defined as a measure to orient
how well the model learns and gives directions to improve its
learning [44], [48], aiming to maximize a similarity metric
between similar instances and minimize between dissimilar.
In this context, the Siamese model receives three instances,
an input anchor, a duplicate of the anchor (the positive
example), and a non-duplicate (the negative example). Thus,
the loss value has a continuous range output as (2), which is
the variation of TL used [12] demonstrates.

Max{0,C + Cosine(FA,FP)− Cosine(FA,FN )} (2)

The C constant applies a distance margin between the
similarity values, and is usually set to 1 but can be freely set
according to model needs. The instance A is the candidate,
called anchor, P is a positive example of a duplicate of A,
N is a non-duplicate or negative example regarding A. The
instances (A,P,N ) received a function F transforming in
(FA,FP,FN ) that generates an associated representation for
each instance. The function TL then aims to maximize the
cosine similarity 4 between the embedding vector of FA and
FP, while minimizing for FA and FN . In a duplicate detec-
tion scenario, this function brings duplicates closer while
pushing away non-duplicates, and was used by [12] for the
duplicated bug report task. However, Triplet Loss will cluster
two duplicated instances in the latent space, disregarding
information on thewhole cluster of duplicates of the instances
during this training step. In SiameseQAT, we expand on
this idea by introducing information regarding clusters of
duplicated reports during training, as we will better describe
in Section IV.

4While [12] using cosine similarity, any distance metric could be used

B. DUPLICATE DETECTION FRAMEWORK
Duplicate bug report detection can be formulated as either
a duplicate retrieval or a binary classification task, and the
framework we propose in this paper can be applied for both
tasks. Figure 3 shows an overview of our framework. Our pro-
posal is to generate bug report embeddings and to use these
representations on retrieval and classification tasks, training
ourmodel using quintet instances, containing a random report
(the anchor), a duplicate (the positive example), and a non-
duplicate report (a negative example), as well as two extra
elements: an embedding of the group of all duplicates of the
positive example (the positive centroid) and the same for the
group of all duplicates of the negative example (the negative
centroid).

Our training is driven by the Quintet Loss function if
training for generating bug report representations for the
retrieval task or binary cross-entropy for the duplicate pair
classification task. Our framework can be divided into three
main stages: (1)Model Training, (2)Duplicate Retrieval, and
(3) Duplicate Classification. Those three stages are further
explained below:

1) Model training: In this phase, we train SiameseQAT
using bug report examples. First, each bug report is pre-
processed, extracting textual tokens, topic distributions
extracted using Latent Dirichlet Allocation [20] applied
to the whole training dataset, and one-hot-encoding rep-
resentations for categorical information. This dataset
is used to generate example quintets for training our
models (the details of the models are better explained in
section IV-C). The retrieval model is trained first in order
to generate the bug report embeddings. Then the clas-
sification model is trained using the same embeddings
generated by the retrieval model, i.e., the weights of the
SiameseQATmodel trained for retrieval are used to gen-
erate the binary classifier model’s input. The stage’s out-
put is two neural networkmodels, one for generating bug
report embeddings and one for classifying two reports.
Besides these models, embedding representations of all
reports used in training are also stored in a dataset for
future retrieval tasks.

2) Duplicate retrieval: In this phase, the framework
receives as input a new bug report and retrieves the top-k
reports most likely to be a duplicate of the input. To do
so, it must first generate its embedding representation
by going through the same preprocessing process and
using SiameseQAT. This embedding representation is
then used to retrieve the duplicate bug reports with a
higher probability of being a duplicate to the query,
and a triager (or a user, or an automatic classifica-
tion method) can identify whether these candidates are
indeed replicas.

3) Duplicate classification: Our framework can also be
used to automatically determine whether a pair of
reports are duplicates or not. The reports must also be
preprocessed and have their embeddings generated by
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FIGURE 3. Framework to detect duplicate bug reports split into three phases: (1) Model training; (2) Retrieval; and (3) Classification.

the SiameseQAT model. Then, the previously trained
binary classifier can be used to evaluate whether they are
indeed duplicates. By using the same model to generate
the embedding for the retrieval and classification tasks,
the embeddings of previously-stored reports can be used
without repeating the whole process, making it simpler
to compare a larger number of reports.

C. SiameseQAT: A SIAMESE ATTENTION-BASED AND
SEMANTIC CONTEXT-AWARE NEURAL NETWORK FOR
DETECTING DUPLICATED BUG REPORTS USING
DUPLICATED CLUSTER INFORMATION
Figure 4 presents a high-level representation of SiameseQAT,
a deep Siamese neural network for representing bug reports
through embeddings. Our approach builds and improves the
initial idea by [12] on three fronts: (1) An improved loss
function that also takes into consideration the information on
clusters of duplicated reports; (2) attention-based embedding
of textual features to better represent bug report titles and
descriptions and (3) inclusion of topic modeling-based infor-
mation to boost the textual embedding of the report, which,
according to [6] can also improve the detection of duplicates
and add global information to the reports.

Thus, the objective of our model is to learn bug report
embeddings by extracting semantic context-based features
from the title, description, and categorical features of not only
the anchor report and the positive and negative examples, but
also an aggregate embedding of their same groups/clusters

(both positive and negative). In Figure 4, this information is
shown as centroids CP and CN , respectively the aggregate
embedding of the duplicates of the anchor/positive examples,
and the duplicates of the randomly picked negative example
duplicates. Our model is composed of five components: (i)
input, (ii) model, (iii) embedding learning, (iv) loss function,
and (v) output:

(i) Input: Each instance in the input layer receives three
bug reports: the anchor, a positive, and a negative exam-
ple, represented by their titles, descriptions, LDA topic
distributions extracted from the concatenation of those
two textual fields, and categorical information (encoded
as one-hot vectors). In this component, SiameseQAT
receives as input a quintet (A, P, N, CP, CN ), where
A is an anchor bug report, P a positive example of a
duplicated report, and N a negative example. Besides
these three reports, it also receives two embedding vec-
tors representing duplicated report clusters CP and CN ,
where CP is the embedding centroid of the cluster of
positives examples (the group of reports to which A
and P belong), CN is the centroid of the cluster of the
negative example N . A centroid is the average of the
embedding vectors of all reports in a given duplicate
cluster. Negative example instances are selected using
the semi-hard triplet method suggested by [21], where
distance(A,P) < distance(A,N ) < distance(A,P) +
margin.
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FIGURE 4. SiameseQAT: Deep Siamese model to learn duplicates bug report embeddings and matches quintet examples
using an anchor, a positive, a negative, and their centroids.

(ii) Model: This component is responsible for generat-
ing semantic context-based embedding for bug report
documents, building learning patterns, and it receives
its input from component (i). The three boxes tagged
as bug embedding learning in Figure 4, are Siamese
deep learning models formed by two types of neural
network layers, BERT and MLP. Two sets of BERT
layers are used for processing textual features, short
description and description separately, similar to what
was done in [12], except that we replace LSTM and
CNN layers by attention-based BERT layers. The MLP
layers are used for processing two kinds of information:
categorical features (product, component, priority, bug
severity, resolution, bug status, and version) and LDA
topic distribution. Thus, as illustrated in Figure 5, bug
embedding learning is composed of four sets of layers:
BERT layers for the title, BERT layers for description,
MLP to process topics, and MLP to process categori-
cal information. The output of those four sets is then
combined by a concatenation layer, which is the embed-
ding representation of the bug report. The architecture
is shown in Figure 4 is a Siamese network, where a
single set of weights is used to learn the latent feature
of the 3 bug reports in the input, which is a com-
mon approach for duplicate detection using deep neural
networks [12].

(iii) Embedding Learning: This component is a concate-
nation of the four embedding representations learned
by the model described in Figure 5. In Siamese-
QAT, each component embedding has the same size
D, and thus the final embedding representation of a
bug report is a vector with a size of 4D. This vec-
tor can then be used for retrieval and classification
tasks.

(iv) Loss Function: This component may apply one of two
mathematical functions, depending on the task at hand:
Quintet Loss and binary cross-entropy. The Quintet
Loss aims to model the similarity between anchor bug
report’s embedding vectors, the positive/negative exam-
ples, and their respective centroids generated by com-
ponent (iii). The objective is to minimize the distance
between the anchor report and its positive examples
while maximizing the negative example distance, which
can then be used to generate report embedding datasets
for retrieval tasks. Its output is an (weighted or not)
average of these distances. The details of our motiva-
tions and the effect of using Quintet Loss are explained
in section IV-D. The binary cross-entropy aims to min-
imize the error between the predicted value and the real
value for the binary classification of pairs of duplicate
reports.

(v) Output: The output of SiameseQAT is embedding bug
report representations as vectors in a latent feature
space. As the training progresses, we expect that dupli-
cated reports end closer than non-duplicated reports.

D. QUINTET LOSS (QL): A LOSS FUNCTION BASED ON
REPLICATED CLUSTER INFORMATION
The Triplet Loss (TL) function was introduced by [49] and
[21], aiming to make the latent space generated by a deep
learning model cluster similar instances [50]. This loss does
not consider a global data distribution since training over all
possible triplets is expensive and usually is employed via
random sampling [22]. Furthermore, all triplets are treated
equally with a constant that violates the margin distance
between the instances, which motivates approaches to inves-
tigate re-weighting distribution in training samples [23].
Inspired by these issues, we decided to improve on the TL
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FIGURE 5. Bug embedding learning proposed to extract a semantic context-based features.

function, introducing a novel loss, Quintet, which also adds
information about duplicates groups alongside individual
examples, by including duplicate cluster centroid information
in tandem with positive and negative examples.

Thus, the idea behind Quintet Loss is twofold: (i) to avoid
the equal importance issue of the original triplet training by
adding centroids and new loss function weights, also (ii) to
make the model generate more well-defined and discriminate
clusters, by adding information regarding all replicas of the
anchor present in the batch (the centroid).

In doing so, we expect to improve the learning of training
instances aiming to avoid examples with equal influence on
the training phase described by [23], through added weights
and a compound equation system. Thus, in Quintet Loss we
compute two components, (3) and (4), which are combined
in the new loss function (5).

Q1 = Max{0,C + Cos(FA,FP)− Cos(FA,FN )} (3)

Q2 = Max{0,C + Cos(FA,CP)− Cos(FA,CN )} (4)

Lquintet =
(Q1.W1 + Q2.W2)

(W1 +W2)
(5)

On (3), (4), (5), the C constant is a constant value (set to
1 in our experiments), applying the distance margin between
the cosine values for positives and negatives instances. This
value, however, can be freely chosen according to the task
at hand. The instance FA is an embedding representation of
a bug report chosen as an anchor, FP is the embedding of a

duplicate of FA, FN is the embedding of a bug report that
is not a duplicate of FA. Then, CP is the centroid vector of
all duplicates of FP (including itself). This centroid is the
average of those vectors. Similarly, CN is a centroid vector of
all duplicates of FN in the dataset. The Q1 component is the
same as the original Triplet loss for FA, FP, and FN , while the
Q2 equation minimizes the distance between the anchor FA
and the centroid of the positive cluster CP while maximizing
its distance to the centroid of the negativeCN . In our proposed
method, we use the cosine between vectors as the similarity
metric.

The cosine similarity in theQuintet Loss formula is defined
by (7), where Q is the query vector, and J is the vector that
has been compared. The CosDistance function in (6), measures
the cosine distance between vectorsQ and J . Thus, the cosine
distance finds the similarity using the Euclidean dot product,
resulting in ranges of −1 when the vectors are opposite, and
1 when they are identical. A zero value indicates orthogonal-
ity or no correlation.

CosDistance(Q, J ) =

∑N
i=1QiJi√∑N

i=1Q
2
i

√∑N
i=1 J

2
i

(6)

Cos(Q, J ) = 1− CosDistance(Q, J ) (7)

The overall loss function in (5) is the weighted average
of Q1 and Q2. In this paper we propose two alternatives
to set these weights. Our first approach is simply to use
the same weights for both components, turning the Quintet
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TABLE 3. Dataset statistics over all duplicates and features from bug reports.

Loss function into a simple average of the two components.
The second approach is to add those two weights as trainable
parameters in SiameseQAT and let the training help chose the
fittest weights for the training dataset.

V. EXPERIMENTS AND RESULTS
In this section, we present the experiments we performed to
evaluate the impact of using SiameseQAT in the retrieval
and classification of duplicated bug report tasks compared
to our baselines. We also present a qualitative analysis of
the embedding representations of reports generated by the
evaluated methods.

The model and baselines were implemented using Keras
[51], a high-level open-source deep-learning library written
in Python. All experiments were carried on an Intel i7-
7700 server with 64GB RAM and two Nvidia GeForce GTX
1080 Ti video cards. All source code and datasets are avail-
able on a public repository5 for reproducibility purposes.

A. DATASETS
In our experiments, we used three bug report repositories of
large open-source projects that are popular for this detection
task in the literature: Eclipse, NetBeans, and Open Office,
collected and published by [52]. These datasets contain a
large number of reports and the ground truth regarding their
duplicates. We present many auxiliary statistics of those
datasets in Table 3. To evaluate our approach, we split the
datasets into train and test sets of 90% and 10% of the total
duplicate clusters, respectively. Reports without duplicates
were considered as clusters containing a single report for
the split. Table 4 shows the number of duplicate pairs used
for each division. These splits are used to train and test the
retrieval and classification model.

5https://github.com/thiagomarquesrocha/siameseQAT

TABLE 4. Train and test split.

The attributes used for training the retrieval and classifica-
tion models were textual (short description and description)
and categorical (product, component, priority, bug severity,
resolution, bug status, and version). Attributes such as date
(delta_ts and creation_ts) or bug_id were ignored.

B. PREPROCESSING BUG REPORTS
We truncate each bug report textual field, such as short
description and description, at the first 100 tokens. We also
performed preliminary experiments truncating at 20, 50, 150,
and 200, and found 100 achieved the best results. Then,
we applied LDA to extract topics of the whole training
dataset, where a document was comprised of a concatenation
of its short description and description. We chose to extract
30 topics from the datasets, after evaluating topic sizes 10, 20,
30, 40, and 50. Those configurations are exhaustively tested
via Grid Search.6 We also represented all categorical features
as one-hot encoded vectors.

C. BASELINES
We compared SiameseQAT with two state-of-the-art base-
lines to detect duplicate bug reports. We focused our
evaluation on Deep Learning-based approaches since [10]
demonstrated they achieved significantly superior results
compared to previous IR-based methods. It is important to
note that none of the two baselines have presented a direct

6https://scikit-learn.org/
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comparison between them using the same datasets, and nei-
ther cites the other. Thus, this paper will also present this
comparison.

The two chosen baselines are:

• DWEN: Deep Word Embedding Neural Network
(DWEN) proposed by [10] and [11]. The approach was
modeled to classify a pair of bugs as duplicated or not,
considering only textual features on a model based on
the Skip-Gram method. The model outputs an embed-
ding vector for the bug and the candidate, then encod-
ing the pair using a Sigmoid function to generate as
output the probability of them being duplicated. The
original approach [10] does not evaluate the model
for classification tasks. However, in [11] examination,
the authors have extended the research to include classi-
fication experiments. Thus, in our experiments, we use
the Sigmoid layer from DWEN for binary classification.
Then, the layer before the Sigmoid layer was used to
encode the bug reports for all datasets and employed for
retrieval tasks. In comparisonwith SiameseQAT,DWEN
does not extract nor use text topics from the datasets,
does not employ attention mechanisms, and disregards
bug report challenges with stack traces, logs, and source
code among textual content. Also, they have not used
categorical features.

• DMS: A Deep Siamese Model (DMS) proposed by [12]
creates a single vector made by combining the short
description, description, and categorical (product, com-
ponent, priority, bug severity, resolution, bug status, and
version) of bug reports. This baseline used three kinds
of neural network layers: Multilayer Perceptron (MLP),
Convolution Neural Network (CNN), and Bidirectional
Long-Short Term Memory (BiLSTM) to generate bug
report embeddings. DMS is similar to our approach
since it also uses a Siamese topology, textual and cat-
egorical features, and is evaluated both in classifica-
tion and retrieval tasks. However, it uses the traditional
Triplet Loss, does not use attention mechanisms, and
also does not include topics extracted from the bug
report representation dataset.

We employed the same settings and parameters described
in the respective papers in all baseline implementations.

D. EVALUATION METRICS
1) RECALL@K
Previous works, such as [10] and [12], use recall rate as a
metric to evaluate the quality of their methods in retrieving
duplicate bugs given a new report as a query. The output of
this query is a ranked list of possible duplicated bug reports,
ordered by likelihood of being duplicated. The recall rate is
the ratio of reports with at least one duplicated report in their
top-k lists over the total number of reports evaluated. The

measure is expressed by (8).

Recall@K =
1
k

k∑
t=1

duplicate
1

duplicate=

{
1, If found at least one duplicate in K bugs
0, otherwise

(8)

In equation 8, the K value is the number of reports consid-
ered in the evaluated queries, and duplicate is the conditional
equation to detect when at least one duplicate bug is returned.

2) ACCURACY
In the classification task, we used the traditional accuracy
measure. For each pair of reports evaluated, the accuracy is
the percentage of pairs that are correctly classified.

3) AREA UNDER THE RECEIVER OPERATING
CHARACTERISTIC CURVE (AUROC)
We also use AUROC as a classification metric, used to dis-
tinguish the separability between two classes. It measures the
relationship between the True Positive Rate (TPR) and False
Positive Rate (FPR). Given that TP is the number of true
positives, TN the number of true negatives, FP the number
of false positives, and FN the number of false negatives. The
TPR is expressed in (9), while the FPR is formulated in (10),
and Specificity in (11).

TPR =
TP

(TP+ FN )
(9)

FPR = 1− Specificity (10)

Specificity =
FP

(TN + FP)
(11)

The best performance is a score of 1, with 0.5 being the
score of a random model that classifies 50% of the time
as positive and 50% as negative. We used this metric to
evaluate the probability of discovering duplicates considering
the sensibility over the false positives.

4) SILHOUETTE SCORE
One of the expected effects of representing bug reports as
embedding vectors in latent feature space using SiameseQAT
is that it should lead to a clustering effect, i.e., duplicated
reports should be represented close to each other in this space.
Thus, it should be interesting to measure the separability of
those duplicate clusters, and for this, we use the Silhouette
metric. It assumes that there exist K clusters on data. Then
the Silhouette coefficient can be defined as equation (12).

Silhouette = (b− a)/max(a, b) (12)

where a is the mean distance between a sample of the same
cluster and b is the distance between a sample and the near-
est cluster that the sample is not a part of. The Silhouette
ranges from −1 to +1, where a high value indicates well-
discriminated clusters, and a negative value can indicate low
separability and overlaps.
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TABLE 5. Proposed variations.

E. TRAINING AND HYPERPARAMETERS
To better understand the individual contributions of our
proposal, we performed experiments with some variations
of SiameseQAT. The variations are based on using or not
either topic information or Quintet Loss, and in the case of
using Quintet Loss whether the weights are averaged or with
learned weights. For easier visualization in the results,
we added letters in the method name suffix to better identify
which components are used, as shown in Table 5.
Neural Network Setup: On our SiameseQAT method and

its variations, we have two sets of BERT layers (for encod-
ing textual information) and two sets of MLP layers (to
encode categorical information and topics), with the final
bug report embedding vector having 1.200 neurons, where
every 300 neurons are for each feature set, as shown in fig-
ure 4. Similarly, variations without topic distribution features
had 900 neurons. We used 100 words as sentence length
for each textual feature, and 30 topics for each bug report
document. The BERT layers were pre-trained with the model
‘uncased_L-12_H-768_A-12’, which has weights for a bil-
lion tokens pre-trained on a large corpus.7 The MLP layers
have 600 fully connected units using hyperbolic tangent as
its activation function.

For BERT, we used 12 layers present in the architecture
of [18], thawing eight layers for training. This adopted archi-
tecture is inspired by [39] recommendations, which clarify
the use of BERT as a feature extractor to encode textual
sequences and output semantic embeddings.

We used the model layer in architecture Figure 4 to encode
incoming bug reports for the duplicate retrieval task. Also,
we used the same layers present in the retrieval model and
transferred their pre-trained weights while freezing them
from further modification for the classification task. Then we
added two MLP layers with 64 dimensions, using softmax as
its output and binary cross-entropy as the loss function. All
models and baselines have been trained using ADAM [53] as
the optimizer.

F. RESULTS
In this section, we present the results achieved by Siame-
seQAT and the baselines. We divided our evaluation into
retrieval, classification, and qualitative analysis. Deshmukh
et al. [12] used the Eclipse, NetBeans, and Open Office
datasets, while [10] used Open Office and Firefox. Despite
using the same datasets, there is no information around the

7https://github.com/google-research/bert

instances chosen by these authors in the holdout split. Thus,
the numbers presented in our experiments are not a perfect
match to those presented in those papers. In these datasets,
given a duplicate set, all possible pairwise combinations of
duplicated elements are considered a positive example.

1) PERFORMANCE UNDER DUPLICATE REPORT RETRIEVAL
Figure 6 shows the results obtained by the best variations
of our methods, SiameseQAT and SiameseTAT compared
to the baselines in terms of Recall@k. As can be seen,
the proposed method achieves consistently superior results
even when considering very few candidates, revealing recall
rate levels between 8% and 18% better. In the Open Office
dataset, the recall improvement was even steeper, with an
increase of around 18% in recall rate when compared with
the best baseline, DMS. This is a strong indication that the
contributions proposed in this paper had a significant impact
on separating distinct bug reports while keeping duplicates
close. When comparing SiameseQAT and SiameseTAT, they
achieved similar results in all datasets, with a slight advantage
for SiameseTAT, albeit not statistically significant, as is pre-
sented in table 11. Thus, we believe that it is also important to
understand the contribution of each component SiameseQAT
in this visible increase in recall compared to the baselines.

Tables 6, 7 and 8 show the results achieved by all variations
of the components of SiameseQAT, and the baselines, for the
three evaluated datasets.
Effectiveness of BERT: When examining the atten-

tion/BERT component, we could see an improvement of 19%
to 25% in top@k at level 1 and 8% to 18% in top@k at
level 25 in recall levels compared to the baselines for all
variations proposed, including variations that do not include
topic modeling information (SiameseQA and SiameseTA).
Overall, the addition of attention did indeed show gains as
expected from its use in other NLP tasks.
Effectiveness of Topic Modeling: In the evaluation of the

topic probabilities feature, we can see that in all datasets, their
inclusion leads to consistent increases in recall for all values
of K considered in comparison to the same variation without
topics, with absolute increases ranging from 0.01 and 0.04 on
the Eclipse and NetBeans. On the Open Office, this increase
was slightly smaller, ranging from no increase to 0.03.
Effectiveness of Quintet Loss: When considering the

impact of using Quintet Loss, in the Eclipse and Net-
Beans datasets, using SiameseQAT-W, SiameseQAT-A, and
SiameseQA-A lead to superior or equal results when com-
pared to using Triplet Loss (SiameseTA and SiameseTAT),
with gains around none to 0.01 for all recall levels, an
improvement that, while small is consistent for all recall lev-
els with statistically relevant gains, as will be better explained
below. However, using Triplet Loss leads to better results on
Open Office, even though for R@1 and R@25 SiameseQAT-
W achieved better results. We believe that this difference
in recall levels can be explained due to this dataset having
a much smaller number of clusters and duplicates than the
other two. This may indicate that Quintet Loss is more suited
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for datasets with a large number of duplicates. Nevertheless,
the proposed improvements all lead to quality improvements
in numerous scenarios.

Regarding the comparison between using the sameweights
versus trainable weights in Quintet Loss, as can be seen in
tables 6, 7, and 8, the retrieval levels achieved were very
similar, with slight advantages for using the same weights
in Eclipse and NetBeans, and for trainable weights in Open
Office. However, none of these differences were statistically
significant, as will be more explored below.
Statistical Comparison Between All Methods:We summa-

rize in Tables 9, 10, and 11 a comparison of the relative
gain levels between all methods, with the value being the
relative gain/loss percentage of the line method over that of
the column in terms of R@5 for the three data sets, where
we compared if the difference between them was statistically
significant through the student’s t-test considering p <0.05 as
rejecting the null hypothesis, represented by the value being
underlined. Although we are showing the results for R@5,
the results for other recall levels lead to similar conclusions,
especially as the k value increases, and will be suppressed for
brevity.

Something visible in Tables 9, 10, and 11 is that the gains
obtained by the variations proposed in this work were sub-
stantial and statistically significant compared to baselines.
When analyzing the result for each dataset, we can see that in
the Eclipse and NetBeans datasets, although the gain values
are different, the relationship between the methods and the
statistical significance is similar in most comparisons.

The tables show that, regarding the addition of topics,
it leads to statistically significant gains when comparing a
method to its similar variation without topics in all datasets
except for OpenOffice. The same effect can be seen regarding
Quintet Loss, with its use leading to statistically significant
gains in Eclipse and NetBeans while having a statistically
significant loss in Open Office when compared with using
Triplet Loss in a similar configuration. Nevertheless, as is
presented in Section V-F2, using Quintet Loss leads to sub-
stantial gains in classification tasks in all datasets, including
Open Office, which might offset this small perceived loss in
retrieval levels.
Performance of Our Approach: In general, we can state that

the use of the proposed improvements in our approach pre-
sented itself as a more robust alternative in terms of retrieval
levels in all datasets used. The recall levels observed are up
to 80%, as observed in Figure 6. This fact shows that in the
majority case we can recover duplicates correctly with very
few tries, considering all datasets.

2) PERFORMANCE UNDER DUPLICATE REPORT
CLASSIFICATION
To evaluate the classification task, we used twometrics, accu-
racy and AUROC, to confirm how many times the models
correctly classify a pair of duplicate reports. Table 12 shows
the results for all methods, with the best performance in bold.

As can be seen, SiameseQAT has reached the overall best
results with both metrics for all datasets with varying margins
of difference between the approaches using BERT, topics,
Quintet Loss (SiameseQAT-W and SiameseQAT-A), being
technically tied in some scenarios and is the best result in
the Open Office dataset using just BERT and Quintet Loss.
Regarding DMS, its results were much more competitive.
However, SiameseQAT was superior in terms of accuracy in
all datasets, with its largest improvement being in the Open
Office dataset (7.0%). In terms of AUROC, the increase was
more modest, from 0.75 to 0.82 in this same dataset, with
improvement on the other two datasets of 3%, a small margin
of difference.

When comparing the components of SiameseQAT,
the combination of all components leads to consistently
superior results for Eclipse and NetBeans, however in the
Open Office the use of Quintet Loss and BERTwithout topics
leads the best result.
Effectiveness of BERT: Unlike the retrieval results, using

just the BERT component with Triplet Loss and topics via
SiameseTA and SiameseTAT did not achieve better results
than DMS. This is a clear indication that components that
aid the retrieval of duplicates may not be enough to cre-
ate separation hyperplanes for classification tasks. The best
result was obtained by combining BERT with Quintet Loss
which presented substantial enhancements to accuracy levels,
demonstrating the impacting of our proposed loss function for
this task.
Effectiveness of Topic Modeling: When comparing the

use of topics, we could see that it lead to consistent
small improvements in the results, both when using Triplet
Loss or Quintet Loss with BERT, except for the Open Office
dataset.
Effectiveness of Quintet Loss: In the classification task,

even when using our proposed method with BERT and
Quintet Loss without topics (SiameseQA) it is better in
all datasets in comparison to methods using Triplet Loss
and BERT (with and without topics), demonstrating that
the proposed Quintet Loss heavily impacts the classification
task and can improve the accuracy of results. The results
showed a strong indication that the use of Quintet Loss
can lead to expressive improvements to classification results
while also achieving competitive results in retrieval tasks,
even when using all other components proposed in this
paper. Regarding using average or learned weights in Quintet
Loss, again unlike the retrieval task, the results obtained by
using trainable weights were similar to simply averaging
weights.
Performance of Our Approach: From the experimental

results and bar chart presented in Figure 7, we could see that
the variations of our methods that included the use of Quintet
Loss achieved superior or at least tied results compared to the
best baseline, DMS, especially in the Open Office dataset,
which is a strong indication that the use of Quintet Loss lead
to more well-defined clusters in the embedding space, aid-
ing classification efforts. Our method using attention layers,
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FIGURE 6. Recall rate of retrieval model for various values of K, and all baselines in comparison to the SiameseQAT and SiameseTAT.

TABLE 6. Recall@K rate for Eclipse and all approaches.

TABLE 7. Recall@K rate for NetBeans and all approaches.

topic distributions, and Quintet Loss achieved classification
accuracy levels above 80% in all datasets.

3) PERFORMANCE OF CLUSTERING THE DUPLICATE BUG
REPORTS
We explore how Quintet Loss and semantic context-based
features through topic modeling and BERT organized the
reports in the embedding space. To do so, we evaluate two
aspects: (1) qualitative measures and (2) quantifiable mea-
sures, evaluating how well are given the duplicate clusters.

(1) Qualitative Measures of Duplicate Clustering: We
selected a few duplicate clusters randomly to verify how
the different methods arrange them in the space. For each
method, we plotted the embedding space of 16 randomly
sampled bug report duplicate clusters in a bi-dimensional
space using t-SNE,8 to better visualize how this space is
organized. For brevity, we present this visualization only for
the Open Office dataset, but similar behavior was found in all
three datasets.

8https://scikit-learn.org/
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TABLE 8. Recall@K rate for Open Office and all approaches.

TABLE 9. Evaluation of the relative statistical gain among the recall@k values in the top 5 using the t-test for Eclipse in all approaches.

TABLE 10. Evaluation of the relative statistical gain among the recall@k values in the top 5 using the t-test for NetBeans in all approaches.

TABLE 11. Evaluation of the relative statistical gain among the recall@k values in the top 5 using the t-test for Open Office in all approaches.

In Figure 8(c), we can see the latent embedding space
for SiameseQAT, where after training the selected duplicate
clusters are well-formed, with almost no intersection between
clusters. Figure 8(b) shows the plot for SiameseTAT where
it can be seen the existence of some clusters with some
mixing, such as the duplicates of 76895 and 23263. Finally,
Figure 8(a) shows the same for DMS where not only the
clusters aremuchmoremixed, but there is also the presence of
an outlier as a duplicate report of 93239 next to the duplicates

of 23263. This fact is observed in SiameseTAT and Siamese-
QAT latent space, where there are fewer examples with the
same behavior. These results may help explain the classifica-
tion accuracy of SiameseQAT compared to the others since it
has more well-formed clusters, which would make finding a
separation hyperplane between a report and its non-duplicates
easier. Moreover, those outlier’s presence may harm recall
tasks, especially if the query report is one of those outliers,
where regardless of the k used, it would be tough to retrieve
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TABLE 12. Accuracy and AUROC for binary classification, label duplicate or non-duplicate, 1 or 0.

FIGURE 7. Classification comparison for all baselines and approaches
using Accuracy metric.

a duplicate using the nearest neighbor approach. Thus, those
outliers demand to be verified in future experiments to review
which cases are true outliers, since that they can be a wrongly
labeled duplicate or a bug report with a description lacking in
detail, transforming them into an outlier, as suggested by [24].
(2) Quantifiable Measures of How Well Clustered Are the

Duplicate Groups: We measured the separability of clusters
using the Silhouette score for all methods in all datasets.
The results are summarized in Table 13 and Figure 9, and
different from the visualization presented previously for ran-
domly duplicate clusters, here we measure how all clusters
present for each dataset are well separated by measuring their
Silhouette score. The results validate that the clusters pro-
posed by our proposed method variations produce more sep-
arable clusters and a well-defined latent space according to
the Silhouette score, with the SiameseQAT and SiameseTAT
obtaining the best results in all datasets. When compared to
the best baseline, the absolute gains observed in our methods

TABLE 13. Cluster results on test set using silhoutte score for all datasets.

were of around 0.01 in all datasets, according to the measure,
a small variation reflected in the more than 95 thousand
clusters evaluated in all datasets.
Performance of Our Approach: Overall, these results con-

firm that using semantic context-based learning in tandem
with Quintet Loss and topic distributions can produce more
well-formed duplicate clusters, impacting both the duplicate
retrieval and classification tasks for the three datasets evalu-
ated.

4) PERFORMANCE OF SEMANTIC TEXTUAL ATTENTION
As an alternative to understanding how BERT is trying to rec-
ognize textual features and use attention mechanism to detect
duplicate reports, we selected two examples of duplicated
report sentences:

(a) Frequent workspace crashes;
(b) Out of memory error with Mylar?;

The two sentences describe an uncertain problem of
‘‘error’’ frequently causing application crashes. Then,
we expect that the BERT model focuses on ‘‘error’’ and
‘‘crashes’’ words to determine the two sentences in a similar
context. To allow us to visualize this learning, we used the
BertViz visualization tool created by [54], which relates each
word to each other for each layer and head present in the
BERT model. Then, the final plot shows a word relation
learned by the model. In Figure 10, sharper lines between two
words mean more attention. It has the two sentences dispose
of side by side, relating each word from layer #10 in head
#10 of BERT.

In Figure 10, we can see that the model gives attention
exactly to ‘‘memory,’’ ‘‘workspace,’’ ‘‘error,’’ and ‘‘crashes,’’
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FIGURE 8. Open Office duplicate latent space for 16 duplicate sets.

FIGURE 9. Cluster quality evaluation using Silhoutte score for all
datasets.

also correlating the ‘‘error’’ with ‘‘frequent’’ and ‘‘crashes,’’
getting a global sense for the problem, ignoring all other aux-
iliary words. This knowledge is useful to help discriminate
between the two sentences, to match them as duplicates.

FIGURE 10. Visualizing the layer #10, head #10 from pre-trained BERT for
two-sentence duplicates titles, using BertViz visualization tool created by
[54].

VI. CONCLUSION AND FUTURE WORK
We have introduced a novel duplicate detection framework
using semantic context-based learning and a customized loss
function, Quintet Loss. It has shown to improve significantly
retrieval and classification accuracy, and the quality of the
duplicate clusters on three public datasets, Eclipse, NetBeans
and Open Office for more than 500 thousand bug reports.
SiameseQAT is the first attempt at presenting a customized
loss function specifically for deep learning-based detection
of duplicate bug reports while also being the first attempt
to merge semantic context-based within BERT and topic
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features to detect duplicate bug reports. We also provide the
source code of our methods as well as the experimental data
for the scientific community to employ and extend the use of
the components proposed in this work.

Our reported retrieval results were well above the ones
presented in previous works, with increases between 8% and
18% in recall rate, while accuracy and AUROC overcame
the best baseline with an average accuracy of 84%. The
results presented show that SiameseQAT producesmorewell-
defined clusters of duplicate sets, impacting both classifica-
tion and retrieval tasks. Nevertheless, there are many future
works that we believe could be done to improve this work
further. We highlight the following contributions:
(i) Incorporate lightweight models: While using BERT

layers lead to gains in retrieval and classification, train-
ing BERT-based neural networks is more computation-
ally expensive than most methods, due to its many
parameters and numerous layers, which could compro-
mise training in more massive datasets. Thus, as an
alternative, we intend to deploy ALBERT, a lite version
of BERT presented by [55], which could also lead to
more freedom in the organization of layers in the model
in comparison with BERT-based networks.

(ii) Cross-domain and more data: There are other pub-
lic datasets9 like Firefox, Thunderbird, Cassandra, and
JDT available in the literature, which opens an oppor-
tunity to run experiments combining all datasets in a
large, unified dataset [56]. This experiment would eval-
uate the model capacity to generalize an independent
project representation of duplicate reports, which could
be deployed in new projects with minimal effort.

(iii) Process non-natural text separately: We believe that,
as done in [26], processing non-natural text, such as
stack traces, logs, and code snippets separately from a
natural text can lead to further improvements in detec-
tion accuracy and retrieval.

(iv) Quintet Loss centroids: Although we have strong evi-
dence that this loss function leads to more well-defined
clusters of duplicates in the latent space, we identified
some centroids identical to negative examples in the
training batch since no other duplicates of that same
negative example appear in this batch. Therefore, the
cluster centroid of this example is always itself, since
no replica of the same report exists in the training
batch. In this case, another strategy for selecting nega-
tive examples is needed, to evaluate the impact of opti-
mal centroid that guarantees the construction of more
representative embedding for duplicate instances, and
consequently, impacts learning on SiameseQAT.
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