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ABSTRACT Breathing Rate (BR) is a key physiological parameter measured in a wide range of clinical
settings. However, it is still widely measured manually. In this paper, a novel framework is proposed to
estimate the BR from an electrocardiogram (ECG), a photoplethysmogram (PPG), or a blood pressure (BP)
signal. The framework uses EmpiricalModeDecomposition (EMD) andDiscreteWavelet Transform (DWT)
methods to extract respiratory signals, taking advantage of both time and frequency domain information.
An Extended Kalman Filter (EKF), incorporating a Signal Quality Index (SQI), enabled our method to
achieve acceptable performance even for significantly distorted periods of the signals. Using state vector
fusion, the output signals are combined and finally the BR is estimated. The framework was tested on two
publicly available clinical databases: the MIT-BIH Polysomnographic and BIDMC databases. Performance
was evaluated using the mean absolute percentage error (MAPE). The results indicated high accuracy:
MAPEs on the two databases of 3.9% and 3.6% for ECG signals, 6.0% for PPG, and 5.0% for BP signals.
The results also indicated high robustness to noise down to 0dB. Therefore, this framework may have utility
for BR monitoring in high noise settings.

INDEX TERMS Breathing rate (BR), electrocardiogram (ECG), photoplethysmogram (PPG), blood pres-
sure (BP), respiratory rate, respiratory signals, empirical mode decomposition (EMD), discrete wavelet
transform (DWT).

I. INTRODUCTION
Breathing Rate (BR) is a valuable physiological marker mea-
sured from patients in a wide range of settings including
emergency departments, intensive care units and hospital
wards. BR has been shown to be a sensitive indicator of
patient deterioration. For instance, elevated BRs may precede
cardiac arrest or respiratory dysfunction [1]. BR can also be
used as a predictive index of in-hospital mortality [2]. In addi-
tion, BR is used in the diagnosis of several diseases such as
pneumonia and sepsis [3]. Sensors are available for direct res-
piratory monitoring based on techniques such as spirometry,
pneumography or plethysmography. However, these sensors
can influence breathing patterns and can be obtrusive, and
so their use is limited to specific clinical scenarios such as
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stress testing and sleep apnea diagnosis [4]. Less obtrusive
respiratory monitoring techniques may be more acceptable
to patients, and consequently could be used in a wider range
of clinical settings.

Breathing can influence several commonly monitored
physiological signals such as the electrocardiogram (ECG),
the photoplethymogram (PPG), and the blood pressure (BP)
signal. Physiological mechanisms of respiration can mod-
ulate ECG, PPG, and BP signals in three different ways:
baseline wander (BW), amplitude modulation (AM) and fre-
quency modulation (FM) [5], [6]. Consequently, a wide range
of algorithms have been proposed to extract respiratory sig-
nals from ECG, PPG, and BP signals, and to subsequently
estimate BR, as reviewed in [7].

In this paper, we present a new framework to estimate BR
from ECG, PPG, and BP signals. The engineering techniques
used in this framework are now introduced. The Discrete
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Wavelet Transform (DWT) and Empirical Mode Decompo-
sition (EMD) can be used to decompose a signal into a set
of signals, allowing one to extract a respiratory signal (herein
referred to as ECG-Derived Respiration (EDR), PPG-Derived
Respiration (PDR), or BP-Derived Respiration (BDR) signals
[8]). They have been widely applied to ECG signals [9], [10].
Since EMD and DWT methods are not absolutely superior
to each other, we have used both of them simultaneously to
improve the performance of the estimator. Having obtained a
respiratory signal, Power Spectral Density (PSD), a measure
of a signal’s power across the range of frequency content,
has been widely used to estimate BR [3], [4]. The Welch
periodogram is a technique for estimating the PSD [11] which
averages power spectra calculated from shorter segments of
the input signal to provide increased robustness to noise. PSD
is widely used in algorithms to estimate BR, such as from
ECG and PPG signals measured during exercise in [12] and
[13], respectively.

A signal quality index (SQI) is an index or algorithm
used to assess the quality of a signal segment. The quality
assessment can increase the accuracy of BR estimation using
Kalman Filter (KF) or other algorithms, to reduce or elim-
inate the impact of low-quality segments on estimated BRs
[14], [15]. This reduces the impact of noise, artifact or other
disturbances. For example, the Signal Purity Index (SPI) uses
Hjorth descriptors to assess signal quality by assuming that a
perfect signal is a pure sinusoid [16]. The KF can be used to
calculate a BR estimate from current and previous estimates
weighted by their signal quality [4], [17]. The conventional
KF assumes a linear model for the system dynamics, while
most systems are nonlinear in nature. The linearization of the
nonlinear model will be accompanied by errors, for which
the Extended Kalman Filter (EKF) is used [18]. If BRs are
obtained from multiple respiratory signals, then state vector
fusion can be used to fuse the BRs to provide a single out-
put. State vector fusion works based on the error covariance
matrix [4].

In this paper, we propose an efficient algorithm to esti-
mate BR, which employs promising methods in both time
and frequency domains, while addressing their limitations.
Multiple respiratory signals (EDRs, PDRs, or BDRs) are
extracted from either an ECG, a PPG, or a BP signal using
multiple methods (DWT and EMDmethods). The respiratory
signals are filtered using a KF, and then fused to produce
a single respiratory signal. The BR is then estimated from
this fused signal. The novelty of the proposed framework
is that it creates a versatile structure that can use several
methods for signal decomposition synchronously, evaluate
the signal quality parameter to reduce the role of low quality
parts of signal in estimation with help of EKF, and fuse
the EDRs, PDRs, or BDRs to obtain a unique EDR, PDR,
or BDR to estimate the BR. The paper is organized as fol-
lows. Section II describes the proposed algorithm, and the
experimental methodology used to assess its performance.
Section III presents the results, and the implications of these
results are discussed in Section IV.

FIGURE 1. Block diagram of the proposed method, which estimates
breathing rate (BR) from an electrocardiogram (ECG),
a photoplethysmogram (PPG), or a blood pressure (BP) signal.

II. MATERIAL AND METHODS
A. PROPOSED ALGORITHM
The proposed algorithm is shown in Fig.1, and can be sum-
marized as follows. Firstly, either an ECG, a PPG, or a
BP signal is pre-processed to eliminate DC components and
high-frequency noise. Secondly, DWT and EMDmethods are
used to decompose the signals into components. The PSDs
of the components are used to identify components corre-
sponding to respiratory signals (EDR, PDR, or BDR signals).
Thirdly, the SPI is calculated over time for each respiratory
signal, and is used with an EKF to remove the noise from
each respiratory signal. The importance of the signal quality
parameter in the EKF is more evident in the noisy parts
which have low quality. Fourthly, state vector fusion is used to
derive a single respiratory signal. Finally, the BR is estimated
from the obtained respiratory signal using a peak detection
algorithm.

1) PRE-PROCESSING
A third-order Butterworth high-pass filter is applied to
remove the DC component of the ECG, PPG, or BP signal.
A cut-off frequency of 0.08Hzwas chosen for this filter based
on the assumption that the lowest possible BR is 5 breaths per
minute (bpm) (0.083Hz). High-frequency noise is eliminated
using a moving average filter with a window length of 11.

2) EXTRACTING RESPIRATORY SIGNALS
Two well-known methods with good decomposition perfor-
mances were used to extract respiratory signals: EMD and its
extended algorithm; and a DWT method. Each method was
used to extract a set of respiratory signals from the input sig-
nal (either ECG, PPG, or BP). As demonstrated in Fig.1, three
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respiratory signals were extracted using the EMD method,
and four were extracted using the DWT method. The EMD
and DWT methods are now described.

i. Methods based on EMD

EMD is an adaptive fully data-driven method for analyz-
ing non-linear and non-stationary signals [19]. By exploiting
both local temporal and structural characteristics, time series
are decomposed into individual components by expressing
the original signal as a linear combination of zero-mean
amplitude and frequencymodulated functions called Intrinsic
Mode Functions (IMFs), and a residual. Each IMF satisfies
the following conditions: (1) the number of zero-crossings
and positive/negative peaks should either be equal or at most
differ by one; and (2) the mean of upper and lower envelopes
must be zero [19].

The mode mixing problem arises when the signal contains
intermittent processes. Mode mixing is defined as a single
IMF containing signals of widely disparate scales or a signal
of a similar scale residing in different components. This
phenomenon makes the physiological meaning of individual
IMFs unclear. To alleviate this problem aNoise-AssistedData
Analysis (NADA) method is proposed.

The Ensemble Empirical Mode Decomposition (EEMD)
is based on the fact that the white noise could provide a
uniformly distributed scale in time-frequency space. The
EEMD method adds white noise to the signal to cause the
components of a signal of different scales to automatically
project onto proper scales of reference established by the
white noise in the background [20].

The Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN), has been proven to be
an important improvement on EEMD. The advantages of
CEEMDAN over EEMD are that it achieves a negligible
reconstruction error and solves the problem of different num-
ber of modes for different realizations of signal plus noise.
EEMD and CEEMDAN methods are described further in
[20]. The steps of the EEMD and CEEMDAN methods, are
shown in the two flowcharts in Figs.2 and 3, respectively.

To determine which IMFs contain respiratory content,
the PSD of each IMF is calculated, and the dominant fre-
quency band of each IMF is identified as the 6dB band-
width around the highest amplitude of the PSD. Afterwards,
the IMF with the closest frequency band to the respiratory
frequency band (6 to 33 bpm [0.10Hz, 0.55Hz]) is chosen as
the EDR, PDR, or BDR signal.

Figs.4 and 5 show EDR and PDR signals extracted from
a 60-second window of ECG and PPG signals respec-
tively (from BIDMC01). These were extracted using EMD,
EEMD and CEEMDAN methods. The dashed red and green
lines indicate the dominant frequency ranges of the ref-
erence respiratory signal and EDR/PDR signals, respec-
tively. The dominant frequency bands of both extracted EDR
and PDR signals by CEEMDAN method are the closest to
the dominant frequency band of the reference respiratory
signal.

FIGURE 2. Flowchart of EEMD algorithm based on EMD algorithm.

FIGURE 3. Flowchart of CEEMDAN algorithm based on EEMD algorithm.

ii. Discrete Wavelet Transform:

The Wavelet Transform (WT) is a time-frequency sig-
nal analysis methods that offers simultaneous interpretation
of the signal in both time and frequency domains, allow-
ing local transient or intermittent components to be eluci-
dated [21]. The WT and inverse transform can be computed
discretely, quickly and without loss of signal information
by considering the multiresolution algorithm. In this study,
respiratory components of ECG, PPG, or BP signals were
extracted using the DWT with four different mother wavelet
functions: Daubechies of 4th and 8th order and Symlet of
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FIGURE 4. The ECG and the reference respiratory signals of subject
BIDMC01 with extracted EDR signals by EMD, EEMD and CEEMDAN
methods. The PSDs of the reference respiratory and EDR signals are
shown under their corresponding signals. Red and green dotted lines
specify the frequency bands of reference and derived respiratory signals,
respectively.

4th and 8th order [22], [23]. After applying the DWT with
these wavelet functions, the PSDs of each detail signal were
calculated. To identify the detail signal containing respira-
tory content, the dominant frequency bands of the obtained
PSDs were compared to the frequency band of respiration
([0.10Hz, 0.55Hz]).

Figs.6 and 7 show EDR and PDR signals extracted
from 60 second windows of ECG and PPG signals (from
BIDMC01) by applying the DWTwith four different wavelet
functions. As can be seen in Fig.6, the EDRs obtained by
Symlet and Daubechies 8th have the closest dominant fre-
quency band to the dominant frequency range of the reference
respiratory signal. This indicates their better performance
than Symlet and Daubechies 4th. The performance details
of both mentioned wavelet functions with 4th and 8th orders
are shown in the Results section as well. According to Fig.7,

FIGURE 5. The PPG and the reference respiratory signals of subject
BIDMC01 with extracted PDR signals by EMD, EEMD and CEEMDAN
methods. The PSDs of the reference respiratory and PDR signals are
shown under their corresponding signals. Red and green dotted lines
specify the frequency bands of reference and derived respiratory signals,
respectively.

the dominant frequency bands of obtained PDRs for all four
mentioned mother wavelets are not very different and their
performance is lower than EDRs.

3) SIGNAL QUALITY ASSESSMENT
Hjorth parameters were originally proposed to extract

features from the spectrum of the Electroencephalo-
graphic (EEG) signal by calculating moments of the EEG
signal power spectrum [24]. The nth order spectral moment
of a signal, wn, is defined as [16]:

wn =
∫ π

−π

wnP(ejω)dω (1)

where P(ejω) is the power spectrum of the signal as a function
of angular frequency ω = 2π f , with f in cycles/second .
By averaging in the time domain, the spectral moments of a
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FIGURE 6. The ECG and the reference respiratory signals of subject
BIDMC01 with extracted EDR signals using DWT method. The PSDs of the
reference respiratory and EDR signals are shown under their
corresponding signals. Red and green dotted lines specify the frequency
bands of reference and derived respiratory signals, respectively.

signal can be estimated using a shifting overlapping window
as follows [16]:

w̃i≈
2π
L

n∑
k=n−(L−1)

(x(
i
2 )(k))

2
, (2)

where x(
i
2 )(k) is the i/2 derivative of x(k) and L is the window

duration (L = 4s here). The SPI uses the Hjorth descriptors
to calculate an index for assessing the quality of signals [16].
Here we have used SPI as an SQI to assess the quality of

FIGURE 7. The PPG and the reference respiratory signals of subject
BIDMC01 with extracted EDR signals using DWT method. The PSDs of the
reference respiratory and PDR signals are shown under their
corresponding signals. Red and green dotted lines respectively, specify
the frequency bands of reference and derived respiratory signals.

signals as follows:

0SPI (n) =
w2(n)2

w0(n)w4(n)
. (3)

0SPI varies between 0 (corresponding to complete noise)
and 1 (corresponding to a pure sinusoid), indicating low and
high signal quality respectively. For instance, Fig.8 shows the
variation of 0SPI for the PPG signal of BIDMC01, which

45836 VOLUME 9, 2021



A. Adami et al.: New Framework to Estimate BR From ECG, PPG, and BP Signals

FIGURE 8. A 60-second window of PPG signal from subject BIDMC01
(top), along with the computed 0SPI (bottom). The power spectral
densities (PSDs) of high and low quality parts of signal (marked with blue
and red dotted rectangles, respectively) show the direct impact of signal
PSD on 0SPI (middle).

approaches 0 during low quality periods and 1 during high
quality periods.

4) EXTENDED KALMAN FILTER
At this stage of the proposed algorithm, there are 7 respi-

ratory signals, each with an accompanying SQI parameter.
In this stage, the quality of the respiratory signals is improved
by applying either a KF or EKF to them. Both a KF and
an EKF can de-noise a signal and reconstruct the signal
using a dynamic model. However, an EKF is able to accept
a nonlinear dynamic model, whereas a KF is only able to
accept a linear model. The process of linearizing a model for
use with a KF can reduce its accuracy and consequently an
EKF can provide better performance than a KF. In this work,
the SQI parameter is used to optimize the EKF. Details are
now provided on the use of the KF and EKF.

The KF is a well-known optimal state estimation method
that has been proven to be the optimal filter in the Minimum
Mean Square Error (MMSE) sense [25]. In practice, most
systems exhibit non-linearity, and to apply the KF to nonlin-
ear systems, the dynamical model must be first approximated
to linear form, reducing the estimation accuracy. The EKF
is an extension of the normal KF which considers nonlinear
dynamic estimation of the states of a stochastic signal. The
dynamic equations used as the state model in this paper
are proposed by McSharry et al. [26]. The dynamic model
consists of three coupled ordinary differential equations. The
details of the EKF can be found in [18].

At the time propagation stage, the EKF estimates the state
vector by using the original nonlinear dynamical model of
the signal. To estimate the state vector in each iteration,
the EKF makes an interaction between dynamical model
and measurements, which is created by Kalman Gain (KG).
KG has an inverse relation with the value of the measurement
noise covariance (R). Therefore, low quality measurements,
which have higher R values, consequently have lower KG
values. Decreasing the value of KG for each iteration reduces
the effect of measurements in estimation and vice versa.
A modification of R by a multiplicative factor is represented
as [17]:

Rn→Rne(SQIn
−2
−1) (4)

where SQIn is the SQI of the nth sample of data which is
replaced by SPI in this paper, as follows:

SQIn = 0SPI [n] (5)

For low-quality parts of the signal, the value of 0SPI [n]
tends to zero. As a result, the value of Rn tends to infinity, and
KG approaches zero. This indicates that the estimation for
the low-quality parts of the signal is performed based on the
dynamical model. This feature of the EKF enables us to have
an acceptable estimation even for parts of the signal which
are significantly distorted.

5) STATE VECTOR FUSION
At this stage of the proposed algorithm, there are 7 respira-

tory signals. State vector fusion is then used to fuse the 7 sig-
nals to provide a single respiratory signal. By considering the
state error covariance matrices that are achieved from EKF,
local estimate signals are combined in a MMSE sense [27],
as follows:

x̂n = (
J∑
j=1

(Pjn)
−1)
−1

J∑
j=1

[(Pjn)
−1
x̂ jn] (6)

where x̂n is the global estimate of state at each time n. J
represents the number of signals that must be fused, which in

our case is equal to 7 (J = 7). The (Pjn)
−1

and x̂ jn, respectively
are the inverses of the state error covariance matrices and the
local state vector estimate for each of the 7 respiratory signals.
According to this, respiratory signals with better performance
contribute more to obtaining the state vector. In accordance
to (6), for each sample of the 7 respiratory signals a global
estimate of state is obtained as a single fused signal.

6) ESTIMATING BREATHING RATES
The method presented in [28] was used to detect the peaks

in the fused respiratory signal. The BR was then estimated
by counting the number of peaks within a time period, and
expressed as beats per minute (bpm).

B. DATABASES
Two publicly available databases were used to assess the

proposed algorithm when applied separately to ECG, PPG,
and BP signals. Each database contains real-world physio-
logical signals acquired during routine clinical practice. The
databases contain real-world noise, including motion artifact,
and periods ofmissing data. They also contain a range of BRs,
ensuring that the signals used in this study are representative
of those acquired in routine practice (the BR for each subject
is provided in Tables 6 and 7 in the Appendix).

The first database was the MIT-BIH Polysomnographic
Database [30], [31]. It contains 16 recordings from male
subjects undergoing polysomnography (sleep assessment).
Each recording is between 2 and 7 hours in duration and
contains several physiological signals including the ECG, BP,
and reference respiratory signals (mostly obtained using a
nasal thermistor), which are sampled at 250Hz.
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TABLE 1. The performance of CEEMDAN and DWT (db8th) BR estimation
algorithms, expressed in MAPE.

The second database was the BIDMC Database [31], [32].
It contains 53 recordings from critically-ill patients at the
Beth Israel Deaconess Medical Centre (Boston, MA, USA).
Each recording has a duration of 8 minutes, and contains
several physiological signals including the ECG, PPG, and
thoracic impedance (reference) respiratory signal, which are
sampled at 125Hz. The short recordings in this database were
extracted from longer recordings in the MIMIC II Database,
which were acquired during routine clinical practice.

Reference BRs for both databases were calculated by using
a peak detection method to identify individual breaths in the
reference respiratory signals.

C. COMPARISON OF ALGORITHMS
The proposed framework was applied to 60-second windows
of ECG, PPG, and BP signals from each dataset. Its perfor-
mance was compared to the following additional algorithms
(which were each used firstly with an ECG as the input,
secondly with a PPG as the input, and finally with a BP signal
as the input):
• KF: the method summarised in Fig.1 but without includ-
ing the SQI parameter and its effect on KF,

• EKF: the method summarised in Fig.1 but without
including the SQI parameter and its effect on EKF,

• Smart Fusion Algorithm (SFA) [3],
• Autoregressive (AR) analysis [33],
• Principle Component Analysis (PCA) [34], and
• Kernel Principle Component Analysis (kPCA) [35].

D. ADDITION OF NOISE
The robustness of the proposed framework to noise was

assessed by adding different levels of white noise to the input
ECG, PPG, and BP signals and repeating the BR estimation.
Five levels of noise were added to generate signals with a
signal-to-noise ratio (SNR) of SNRdB = {0, 5, 10, 20, 40},
where

SNRdB = 10 log10

∑N
n=1 x[n]

2∑N
n=1(y[n]− x[n])2

(7)

FIGURE 9. The performance of CEEMDAN and DWT methods for
estimating BR from ECG, PPG, and BP signals (expressed as MAPE). These
results obtained from both of MIT-BIH Polysomnographic and BIDMC
databases.

TABLE 2. Overall performance summary of methods applied to ECG∗, PPG
and BP signals of the MIT-BIH Polysomnographic and BIDMC databases.

where x is the original signal, y is the denoised signal and N
is the total number of samples.

E. STATISTICAL ANALYSIS
The performance of BR algorithms was assessed by

calculating three metrics.

• The Coverage Probability CPδ: is the proportion of
errors which fall within pre-defined bounds, δ. In this
work an acceptable absolute error was defined as
<2bpm. The non-parametric form of CP, expressed as
a percentage, was calculated using the empirical cumu-
lative distribution of the absolute error [36] with δ set at
2 bpm [6].

• The Mean Absolute Error (MAE):

MAE =
1
N

N∑
i=1

|µ̂BR(i)− µref (i)|, (bpm) (8)

where µ̂BR(i) and µref (i) represent the estimated BR
and reference BR, respectively, and N is the number of
windows over the entire database [37].
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TABLE 3. Overall performance summary of methods applied to ECG∗ signals of the MIT-BIH Polysomnographic and BIDMC databases in the presence of
added noise, expressed as MAPE.

TABLE 4. Overall performance summary of methods applied to PPG signals of the BIDMC database in the presence of added noise, expressed as MAPE.

• The Mean Absolute Percentage Error (MAPE):

MAPE =
1
N

N∑
i=1

|
µ̂BR(i)− µref (i)

µref (i)
| × 100, (%) (9)

The quality of each subject’s ECG, PPG, or BP signals was
assessed using a parameter called Q, which is the percentage
ratio of the number of low quality windows Nl to the total
number of windows NT of each signal:

Q =
Nl
NT
× 100% . (10)

Windows were deemed to be of low quality if the average of
0SPI in that window was lower than 0.5.

Throughout the analysis windows of 60 seconds duration
with 50% overlap were used.

III. RESULTS
A. COMPARISON OF CEEMDAN AND DWT METHODS
In this section, we compare the performances of the DWT
and CEEMDAN methods for estimating BR, considering
overall performances, and performances across different

BR ranges. Table 1 shows the MAPE for CEEMDAN and
DWT (db8th) methods for ECG, PPG and BP signals in
each dataset. According to Table 1, the CEEMDAN method
performed better than DWT method at lower BRs< 16 bpm,
with the exception of PPG data from the BIDMC database.
At higher BRs> 16 bpm, the DWTmethod performed better.

Fig.9 shows a comparison of the performances of
CEEMDAN and DWT methods across different BR ranges.
For BRs lower than 16 bpm, the CEEMDAN method per-
formed best, and for BRs higher than 16 bpm, the DWT
method performed best. This suggests that neither method is
superior to the other. A comparison of performance between
ECG, PPG, and BP signals shows the best results are obtained
from ECG signals, although the differences are not substan-
tial. The PPG signal is often easier to obtain than ECG and
BP signals, so may still be advantageous in several settings.

B. THE PERFORMANCE OF THE PROPOSED FRAMEWORK
The average MAPEs of BR estimation on the MIT-BIH
Polysomnographic and BIDMC databases were 3.9% and
3.6% for ECG signals, 6.0% for PPG, and 5.0% for BP
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TABLE 5. Overall performance summary of methods applied to BP signals of the MIT-BIH Polysomnographic database in the presence of added noise,
expressed as MAPE.

signals (patient-level data are provided in Tables 6 and 7 in the
Appendix). The proposed framework for estimating BR per-
formedwell even in the presence of a high volume of the noise
and artifacts. For instance, subject BIDMC40 had a QPPG
value of 74.3%, indicating that their signals were generally
of low quality, yet a MAPE of only 11.8%, demonstrating the
ability of the method to perform well even with low quality
signals (see Table 7 for details).
As noted in Table 7, BRs could not be estimated from

subject BIDMC32’s ECG due to the lack of respiratory con-
tent in this signal.

Table 2 shows the overall performances of methods for
the ECG, PPG and BP signals on the BIDMC and MIT-BIH
databases, assessed using CP2, MAE, and MAPE.

C. THE IMPACT OF NOISE
The proposed framework’s robustness to noise was assessed
in two steps. Firstly, performance was assessed with and
without the framework’s SQI parameter. Secondly, perfor-
mance was assessed in the presence of different levels of
added noise. In order to evaluate the proposed method, dif-
ferent portions of white Gaussian noises have been added
to ECG, PPG, and BP signals from BIDMC and MIT-BIH
databases. The results for ECG, PPG, and BP signals are
shown in Tables 3, 4, and 5, respectively.

BRs were estimated using the proposed framework with
and without the SQI parameter (described in Section II-A3)
in order to assess the importance of the signal quality assess-
ment step. According to the results in Tables 3 and 4, PCA
and kPCA algorithms performed better than AR and SFA
methods at a low level of noise. However, the PCA and kPCA
algorithms were very sensitive to noise and their performance
declined at higher noise levels. AR analysis (a frequency
domain method) was more robust against additive noise.

A comparison of results obtained using EKF (without the
SQI) and our proposed framework can further explain the role
of the SQI in improving performance. For example, for the
BR range of 16 − 20 bpm with SNR = 40 dB (Table.4),
our framework showed 0.8% improvement compared to EKF.

FIGURE 10. The performance of methods applied to ECG signals of the
MIT-BIH Polysomnographic and BIDMC databases in the presence of
added noise, expressed as MAPE. (a) SNR = 40 dB, (b) SNR = 10 dB,
(c) SNR = 0 dB.

Changing the SNR value from 40 to 0 dB, the average MAPE
increased less for our framework (6.4% − 4.2% = 2.2%
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FIGURE 11. The performance of methods applied to BP signals of the
MIT-BIH Polysomnographic database in the presence of added noise,
expressed as MAPE. (a) SNR = 40 dB, (b) SNR = 10 dB, (c) SNR = 0 dB.

increase) than for EKF (7.7% − 5.0% = 2.7%). This shows
that the SQI parameter increased the algorithm’s robustness
to noise.

In the following, the advantage of the CEEMDAN method
over EMD and EEMD methods in accuracy and robustness
can be observed. In Table 3 the changes in MAPE for EMD
and CEEMDN methods in the range of 12 − 16 bpm are
(from SNR = 40dB to SNR = 0dB), 12.2% (18.9%− 6.7%)
and 8.6% (13.5% − 4.9%) respectively (which are similar
to those of other BR ranges). The performance of the DWT
method is close to that of the CEEMDAN method but the
results show that CEEMDAN is more robust to additive noise
than DWT.

The improvement in performance when using a fusion
method (either EKF or our framework) compared to using
a single respiratory signal (EMD, EEMD, CEEMDAN or
DWT) demonstrates the importance of the fusion part of the
algorithm. The EKF and state vector fusion in our algorithm
resulted in significant reduction in MAPE.

Comparison of the performance of the mentioned meth-
ods is illustrated in Figs.10 and 11. Fig.10 represents the

TABLE 6. Overall performance summary of methods applied to ECG or BP
signals of the MIT-BIH Polysomnographic database.

results which have been obtained from ECG signals and
Fig.11 shows the results for BP signals. The KF method
showed a poorer performance than EKF method which can
be explained by the impact of approximation for linearization
of the nonlinear signal model. On the other hand, the perfor-
mance difference between KF and EKF is due to the linear
and nonlinear consideration of the model. In estimating the
BR from a respiratory signal, the effect of detecting a false
peak is lower for higher reference BRs. This may explain the
general trend of lowerMAPEs at higher BRs in Fig.10 and 11.
According to these two figures, our framework has shown the
best performance and highest resistance to noise than other
methods.

IV. DISCUSSION AND CONCLUSION
In this study we proposed a framework to estimate BR
from ECG, PPG, or BP signals. The performance of the
framework was assessed on two publicly available datasets,
and compared to that of previously proposed methods.
The results indicate that our proposed framework shows
high accuracy, and good robustness even in presence
of noise.

Our framework uses both EMD and DWT methods
to extract respiratory signals, obtain the advantages of
each. This study did not investigate which had better perfor-
mance for extracting EDR, PDR, and BDR signals, although
the superior EMD and DWT methods (CEEMDAN and
db8th) gave broadly similar performance.

The EKFmethod, taking into account the dynamical model
for the EDR, PDR, and BDR signals, gave the framework the
ability to work well even in low quality parts of ECG, PPG,
or BP signals. The inclusion of the SQI parameter in the EKF
increased performance.

Finally, considering themethod of state vector fusion in our
framework, give this capability to our framework to increase
the effect of better estimation on output, which results in a
single output with high precision.
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TABLE 7. Overall performance summary of methods applied to ECG or
PPG signals of the BIDMC database.

Some previously proposed methods showed lower robust-
ness to additive noise, especially the methods of PCA and
kPCA. This may be because these methods involve identify-
ing fiducial points, such as QRS-complexes in ECG signals,
or systolic peaks in PPG signals, which can be confounded by
noise. Although SFA also involves identifying fiducial points,
it showed better performance in presence of noise. The AR
method was also less sensitive to noise, although it is based
on the assumption of a relatively constant BR in each window
of ECG, PPG, or BP signals.

In our new framework (summarised in Fig.1), we utilized
time and frequency domain methods to increase the accu-
racy of BR estimation and also make the algorithm robust
in presence of noise. The most important advantage of our

framework is that it has a regular and stable structure which
is able to estimate BR from ECG, PPG, or BP signals with
different morphologies completely automatically. The struc-
ture is designed to select the best extracted EDR, PDR,
or BDR signal, and estimate the BR based on that signal,
which improves the performance of our proposed method.
Furthermore, using the modified EKF with SQI, it can auto-
matically recover parts of respiratory signals that have been
distorted. Despite these advantages, the simultaneous use of
several methods increases the complexity of the algorithm.
Nevertheless, it could be advantageous in scenarios with
greater levels of noise and artifact, such as during exercise.
Further work is required to investigate whether it does indeed
confer benefit in these scenarios.

In the future, we plan to test our proposed framework
on stress data which will pose greater challenges. The
performance of the framework should also be assessed
in the presence of arrhythmias such as atrial fibrilla-
tion, and with very noisy signals, to determine whether it
provides reliable BR estimates in such scenarios. In addition,
the framework may have other applications to estimate
parameters from physiological signals, such as measur-
ing the depth of anesthesia from EEG signals. Future
work should also consider assessing the performance of
BR algorithms when run in real-time, considering the lim-
ited computational and memory specifications of wearable
sensors.

APPENDIX. PATIENT-LEVEL RESULTS
Patient-level results for the proposed method on the
MIT-BIH Polysomnographic and BIDMC databases are
shown in Tables.6 and 7 respectively. BR represents the mean
of reference BR of each record. As described in section II-E,
QECG, QPPG, and QBP indicate the percentage of low quality
windows. EECG, EBP, and EPPG indicate the MAPE for ECG,
BP, and PPG signals respectively.

REFERENCES
[1] R. M. H. Schein, N. Hazday, M. Pena, B. H. Ruben, and C. L.

Sprung, ‘‘Clinical antecedents to in-hospital cardiopulmonary arrest,’’
Chest, vol. 98, no. 6, pp. 1388–1392, Dec. 1990, doi: 10.1378/
chest.98.6.1388.

[2] K. Mochizuki, R. Shintani, K. Mori, T. Sato, O. Sakaguchi, K. Takeshige,
K. Nitta, and H. Imamura, ‘‘Importance of respiratory rate for the pre-
diction of clinical deterioration after emergency department discharge:
A single-center, case–control study,’’ Acute Med. Surgery, vol. 4, no. 2,
pp. 172–178, Apr. 2017, doi: 10.1002/ams2.252.

[3] W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, ‘‘Multipa-
rameter respiratory rate estimation from the photoplethysmogram,’’ IEEE
Trans. Biomed. Eng., vol. 60, no. 7, pp. 1946–1953, Feb. 2013, doi:
10.1109/TBME.2013.2246160.

[4] L. Mason, Signal Processing Methods for non-Invasive Respiration
Monitoring. Oxford, U.K.: Univ. Oxford, 2002. [Online]. Available:
http://www.ibme.ox.ac.uk/research

[5] M. A. Pimentel, P. H. Charlton, and D. A. Clifton, ‘‘Probabilistic esti-
mation of respiratory rate from wearable sensors,’’ Wearable Electronics
Sensors. vol. 15. Cham, Switzerland: Springer, 2015, pp. 241–262, doi:
10.1007/978-3-319-18191-2_10.

[6] P. H. Charlton, T. Bonnici, L. Tarassenko, D. A. Clifton, R. Beale, and
P. J. Watkinson, ‘‘An assessment of algorithms to estimate respiratory rate
from the electrocardiogram and photoplethysmogram,’’ Physiol. Meas.,
vol. 37, no. 4, p. 610, 2016, doi: 10.1088/0967-3334/37/4/610.

45842 VOLUME 9, 2021

http://dx.doi.org/10.1378/chest.98.6.1388
http://dx.doi.org/10.1378/chest.98.6.1388
http://dx.doi.org/10.1002/ams2.252
http://dx.doi.org/10.1109/TBME.2013.2246160
http://dx.doi.org/10.1007/978-3-319-18191-2_10
http://dx.doi.org/10.1088/0967-3334/37/4/610


A. Adami et al.: New Framework to Estimate BR From ECG, PPG, and BP Signals

[7] P. H. Charlton, D. A. Birrenkott, T. Bonnici, M. A. F. Pimentel,
A. E. W. Johnson, J. Alastruey, L. Tarassenko, P. J. Watkinson, R. Beale,
and D. A. Clifton, ‘‘Breathing rate estimation from the electrocardiogram
and photoplethysmogram: A review,’’ IEEE Rev. Biomed. Eng., vol. 11,
pp. 2–20, 2018, doi: 10.1109/RBME.2017.2763681.

[8] K. V. Madhav, M. R. Ram, E. H. Krishna, N. R. Komalla, and
K. A. Reddy, ‘‘Estimation of respiration rate from ECG, BP and PPG
signals using empirical mode decomposition,’’ in Proc. IEEE Int.
Instrum. Meas. Technol. Conf., May 2011, pp. 1–4, doi: 10.1109/IMTC.
2011.5944249.

[9] D. Labate, F. La Foresta, G. Occhiuto, F. C. Morabito, A. Lay-Ekuakille,
and P. Vergallo, ‘‘Empirical mode decomposition vs. Wavelet decompo-
sition for the extraction of respiratory signal from single-channel ECG:
A comparison,’’ IEEE Sensors J., vol. 13, no. 7, pp. 2666–2674, Apr. 2013,
doi: 10.1109/JSEN.2013.2257742.

[10] Y.-D. Lin and Y.-F. Jhou, ‘‘Estimation of heart rate and respira-
tory rate from the seismocardiogram under resting state,’’ Biomed.
Signal Process. Control, vol. 57, Mar. 2020, Art. no. 101779, doi:
10.1016/j.bspc.2019.101779.

[11] O. M. Solomon Jr., ‘‘PSD computations using Welch’s method. [power
spectral density (PSD)],’’ Sandia Nat. Labs., Albuquerque, NM, USA,
Tech. Rep. 1, 1991.

[12] R. Bailón, L. Sornmo, and P. Laguna, ‘‘A robust method for ECG-
based estimation of the respiratory frequency during stress testing,’’ IEEE
Trans. Biomed. Eng., vol. 53, no. 7, pp. 1273–1285, Jun. 2006, doi:
10.1109/TBME.2006.871888.

[13] J. Lázaro, E. Gil, R. Bailón, A. Mincholé, and P. Laguna, ‘‘Deriving
respiration from photoplethysmographic pulse width,’’ Med. Biol. Eng.
Comput., vol. 51, nos. 1–2, pp. 233–242, 2013, doi: 10.1007/s11517-012-
0954-0.

[14] G. D. Clifford, W. Long, G. Moody, and P. Szolovits, ‘‘Robust parameter
extraction for decision support using multimodal intensive care data,’’
Philos. Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 367, no. 1887,
pp. 411–429, 2009, doi: 10.1098/rsta.2008.0157.

[15] S. Nemati, A. Malhotra, and G. D. Clifford, ‘‘Data fusion for improved
respiration rate estimation,’’ EURASIP J. Adv. Signal Process., vol. 2010,
no. 1, Dec. 2010, Art. no. 926305, doi: 10.1155/2010/926305.

[16] L. Sörnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac and
Neurological Applications, vol. 8. New York, NY, USA: Academic, 2005.

[17] Q. Li, R. G. Mark, and G. D. Clifford, ‘‘Robust heart rate estimation
from multiple asynchronous noisy sources using signal quality indices and
a Kalman filter,’’ Physiol. Meas., vol. 29, no. 1, p. 15, Dec. 2007, doi:
10.1088/0967-3334/29/1/002.

[18] R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clifford, ‘‘A non-
linear Bayesian filtering framework for ECG denoising,’’ IEEE Trans.
Biomed. Eng., vol. 54, no. 12, pp. 2172–2185, Nov. 2007, doi:
10.1109/TBME.2007.897817.

[19] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N. C. Yen, C. C. Tung, and H. H. Liu, ‘‘The empirical mode decomposition
and the hilbert spectrum for nonlinear and non-stationary time series
analysis,’’ Proc. Roy. Soc. London. A, Math. Phys. Eng. Sci., vol. 454,
no. 1971, pp. 903–995, 1998, doi: 10.1098/rspa.1998.0193.

[20] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, ‘‘A com-
plete ensemble empirical mode decomposition with adaptive noise,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2011, pp. 4144–4147, doi: 10.1109/ICASSP.2011.5947265.

[21] S. Mallat and W. L. Hwang, ‘‘Singularity detection and processing with
wavelets,’’ IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 617–643,Mar. 1992,
doi: 10.1109/18.119727.

[22] A. C. H. Rowe and P. C. Abbott, ‘‘Daubechies wavelets and mathe-
matica,’’ Comput. Phys., vol. 9, no. 6, pp. 635–648, 1995, doi: 10.1063/
1.168556.

[23] G. Strang and T. Nguyen, Wavelets Filter Banks. Philadelphia, PA, USA:
SIAM, 1996.

[24] B. Hjorth, ‘‘The physical significance of time domain descriptors in
EEG analysis,’’ Electroencephalogr. Clin. Neurophysiol., vol. 34, no. 3,
pp. 321–325, 1973, doi: 10.1016/0013-4694(73)90260-5.

[25] S. M. Kay, Fundamentals of Statistical Signal Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[26] P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, ‘‘A dynam-
ical model for generating synthetic electrocardiogram signals,’’ IEEE
Trans. Biomed. Eng., vol. 50, no. 3, pp. 289–294, Mar. 2003, doi:
10.1109/TBME.2003.808805.

[27] Q. Gan and C. J. Harris, ‘‘Comparison of two measurement fusion
methods for Kalman-filter-based multisensor data fusion,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 37, no. 1, pp. 273–279, Jan. 2001, doi:
10.1109/7.913685.

[28] M. Elgendi, I. Norton, M. Brearley, D. Abbott, and D. Schuurmans, ‘‘Sys-
tolic peak detection in acceleration photoplethysmograms measured from
emergency responders in tropical conditions,’’ PLoS ONE, vol. 8, no. 10,
Oct. 2013, Art. no. e76585, doi: 10.1371/journal.pone.0076585.

[29] G. B. Moody and R. G. Mark, ‘‘The impact of the MIT-BIH arrhyth-
mia database,’’ IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50,
May 2001, doi: 10.1109/51.932724.

[30] Y. Ichimaru and G. B. Moody, ‘‘Development of the polysomnographic
database on CD-ROM,’’ Psychiatry Clin. Neurosci., vol. 53, no. 2,
pp. 175–177, Apr. 1999, doi: 10.1046/j.1440-1819.1999.00527.x.

[31] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
‘‘PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals,’’ Circulation, vol. 101,
no. 23, pp. e215–e220, Jun. 2000, doi: 10.1161/01.CIR.101.23.e215.

[32] M. A. F. Pimentel, A. E. W. Johnson, P. H. Charlton, D. Birrenkott,
P. J. Watkinson, L. Tarassenko, and D. A. Clifton, ‘‘Toward a
robust estimation of respiratory rate from pulse oximeters,’’ IEEE
Trans. Biomed. Eng., vol. 64, no. 8, pp. 1914–1923, Nov. 2016, doi:
10.1109/TBME.2016.2613124.

[33] C. Orphanidou, S. Fleming, S. A. Shah, and L. Tarassenko, ‘‘Data
fusion for estimating respiratory rate from a single-lead ECG,’’ Biomed.
Signal Process. Control, vol. 8, no. 1, pp. 98–105, Jan. 2013, doi:
10.1016/j.bspc.2012.06.001.

[34] P. Langley, E. J. Bowers, and A. Murray, ‘‘Principal component analysis
as a tool for analyzing beat-to-beat changes in ECG features: Application
to ECG-derived respiration,’’ IEEE Trans. Biomed. Eng., vol. 57, no. 4,
pp. 821–829, Apr. 2009, doi: 10.1109/TBME.2009.2018297.

[35] D.Widjaja, C. Varon, A. Dorado, J. A. Suykens, and S. VanHuffel, ‘‘Appli-
cation of kernel principal component analysis for single-lead-ECG-derived
respiration,’’ IEEE Trans. Biomed. Eng., vol. 59, no. 4, pp. 1169–1176,
Feb. 2012, doi: 10.1109/TBME.2012.2186448.

[36] H. X. Barnhart, M. J. Haber, and L. I. Lin, ‘‘An overview on assessing
agreement with continuous measurements,’’ J. Biopharm. Stat., vol. 17,
no. 4, pp. 529–569, 2007, doi: 10.1080/10543400701376480.

[37] C. J. Willmott and K. Matsuura, ‘‘Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance,’’ Climate Res., vol. 30, no. 1, pp. 79–82, 2005, doi:
10.3354/cr030079.

ALI ADAMI was born in Yazd, Iran, in 1993.
He received the B.Sc. degree in electrical engineer-
ing from the Hamedan University of Technology,
Hamedan, Iran, in 2016, and the M.Sc. degree
in biomedical engineering from Shiraz University,
Shiraz, Iran, in 2019.

He is currently working on the modeling and
analysis of physiological signals and the cardio-
vascular systems. His research interests include
statistical signal processing and time-frequency
analysis of biomedical recordings.

VOLUME 9, 2021 45843

http://dx.doi.org/10.1109/RBME.2017.2763681
http://dx.doi.org/10.1109/IMTC.2011.5944249
http://dx.doi.org/10.1109/IMTC.2011.5944249
http://dx.doi.org/10.1109/JSEN.2013.2257742
http://dx.doi.org/10.1016/j.bspc.2019.101779
http://dx.doi.org/10.1109/TBME.2006.871888
http://dx.doi.org/10.1007/s11517-012-0954-0
http://dx.doi.org/10.1007/s11517-012-0954-0
http://dx.doi.org/10.1098/rsta.2008.0157
http://dx.doi.org/10.1155/2010/926305
http://dx.doi.org/10.1088/0967-3334/29/1/002
http://dx.doi.org/10.1109/TBME.2007.897817
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1109/ICASSP.2011.5947265
http://dx.doi.org/10.1109/18.119727
http://dx.doi.org/10.1063/1.168556
http://dx.doi.org/10.1063/1.168556
http://dx.doi.org/10.1016/0013-4694(73)90260-5
http://dx.doi.org/10.1109/TBME.2003.808805
http://dx.doi.org/10.1109/7.913685
http://dx.doi.org/10.1371/journal.pone.0076585
http://dx.doi.org/10.1109/51.932724
http://dx.doi.org/10.1046/j.1440-1819.1999.00527.x
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1109/TBME.2016.2613124
http://dx.doi.org/10.1016/j.bspc.2012.06.001
http://dx.doi.org/10.1109/TBME.2009.2018297
http://dx.doi.org/10.1109/TBME.2012.2186448
http://dx.doi.org/10.1080/10543400701376480
http://dx.doi.org/10.3354/cr030079


A. Adami et al.: New Framework to Estimate BR From ECG, PPG, and BP Signals

REZA BOOSTANI was born in 1973. He received
the B.Sc. degree in electrical engineering from
Shiraz University, Shiraz, Iran, in 1996, and the
M.Sc. and Ph.D. degrees in biomedical engineer-
ing from the Amirkabir University of Technology,
Tehran, Iran, in 1999 and 2004, respectively.

He has spent his research period in the BCI
field with the Graz University of Technology, from
2003 to 2004. Since 2005, he has been a Faculty
Member with the Computer Science and Engineer-

ing Department, Shiraz University. His current research interests include
biomedical signal processing, statistical pattern recognition, and machine
learning.

FAEZEH MARZBANRAD (Member, IEEE)
received the B.Sc. and M.Sc. degrees in electrical
engineering from Shiraz University, Shiraz, Iran,
in 2007 and 2010, respectively, and the Ph.D.
degree from the University of Melbourne, Mel-
bourne, Australia, in 2016. She is currently a
Lecturer with the Department of Electrical and
Computer Systems Engineering, Monash Univer-
sity, Melbourne. Her research interests include
biomedical signal processing, machine learning,

low-cost medical devices, and Mobile-Health.

PETER H. CHARLTON received the M.Eng.
degree in engineering science from the Univer-
sity of Oxford, Oxford, U.K., in 2010, and the
Ph.D. degree from King’s College London, Lon-
don, U.K., in 2017, with a focus on using sig-
nal processing and machine learning techniques to
identify acute deteriorations in hospital patients.

From 2010 to 2020, he conducted his research
at King’s College London, developing techniques
to continuously monitor respiratory and cardiovas-

cular health using wearable sensors. In 2020, he was awarded the British
Heart Foundation Fellowship to develop techniques to use clinical and
consumer devices to enhance screening for atrial fibrillation at the University
of Cambridge, Cambridge, U.K.

45844 VOLUME 9, 2021


