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ABSTRACT Recent advancements in network technology and associated services have led to a rapid
increase in the amount of data traffic. However, the detrimental effects caused by cyber-attacks have also
significantly increased. Network attacks are evolving in various forms. Two primary approaches exist for
addressing such threats: signature-based detection and anomaly detection. Although the aforementioned
approaches can be effective, they also have certain drawbacks. Signature-based detection is vulnerable to
variant attacks, while anomaly detection cannot be used for real-time data traffic. For resolving such issues,
this paper proposes a two-level classifier that can simultaneously achieve high performance and real-time
classification. It employs level 1 and 2 classifiers internally. The level 1 classifier initially performs real-
time detection with moderate accuracy for incoming data traffic. If the data cannot be classified with high
probability by the classifier, the classification is delayed until the traffic flow terminates. The level 2 classifier
then collects the statistical features of the traffic flow for performing precise classification. Compared to
existing techniques, the proposed two-level classification method can achieve superior performance in terms
of accuracy and detection time.

INDEX TERMS Intrusion prevention system, intrusion detection system, machine learning, real-time,

two-level classifier.

I. INTRODUCTION

Recently, network technology and related equipment have
been evolving at a fast rate, and accordingly, the performance
and total traffic volume of networks are rapidly increas-
ing. The damage caused by cyber-attacks, however, is also
increasing, not merely because the number of cyber-attacks
is increasing, but because they have become sophisticated
and their variants have been created. Nowadays, it is almost
impossible to defend a network completely from malicious
hackers [1]. A zero-day attack, which exploits the newly
discovered vulnerability of network systems before its solu-
tion developed, is one of the most serious cyber-crimes. The
network inevitably becomes defenseless until a solution is
developed and applied to the system [2]. According to pre-
vious work, a zero-day attack lasts for 312 days on average
and can last up to 30 months. Moreover, the total number
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of zero-day attacks can increase up to five times after a new
vulnerability has been disclosed [3].

Today, network security systems supporting real-time
attack prevention mainly use signature-based methods to
detect certain patterns among incoming packets in a way
similar to virus scanners [4]—-[6]. Real-time detection requires
in-line processing algorithms which can detect attacks at the
line rate. Although we can increase the detection speed using
distributed systems, they can suffer from expensive synchro-
nization overhead, so it is not fundamental solution. Thus,
fast detection algorithm is inevitable to implement real-time
detection systems.

The signature-based approach has a high accuracy and
speed for detecting prior known attacks. However, it is
almost impossible to detect unknown attacks such as zero-day
attacks, and it is vulnerable to variant attacks that bypass
signature-based detection using code obfuscation or encryp-
tion. It also has a high burden of keeping the signature
database up to date.
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In contrast to the signature-based approach, the anomaly
detection approach observes the statistical characteristics of
each flow of network traffic and detects it as an attack if
it differs from normal behavior by exceeding the normal
range of statistics. Because it needs not a signature database,
it does not have any overhead for maintaining a database,
and it can be very robust against zero-day or variant attacks.
Various machine learning techniques to classify attacks from
normal flows are widely adopted to modern network intrusion
detection systems (NIDSs) based on anomaly detection.

However, it is very difficult to find fast and accurate
machine learning algorithms to process incoming network
traffics in real time. In addition, anomaly detection algorithms
are designed to classify traffic based on the characteristics of
each complete flow, for example, the number of packets trans-
mitted and received during the flow, the number of packets
lost, etc., rather than classifying based on every packet. Thus,
it only starts determining whether each flow is malicious
when the flow has been terminated. As a result, per-flow
classification cannot detect attacks until the flow finishes and
cannot defend the current network and users under attack.

In this paper, we propose a novel approach to resolve the
problems of existing network intrusion detection and defense
technologies. It is based on machine learning techniques, but
it can be differentiated from other machine learning-based
approaches in the following aspects.

A. REAL-TIME ATTACK DETECTION

There are a few previous works that use non-machine-
learning-based methods to detect network attacks in
real-time. However, they just provide several Gbps through-
put, much lower than 100 Gbps. The proposed approach
can support real-time attack detection at up to 100 Gbps
traffic rates even though it uses a machine learning tech-
nique. As mentioned earlier, machine learning became
popular in NIDS due to its ability to detect unknown
attacks. However, machine learning-based algorithms are
too slow to handle many Gbps of traffic, therefore they
cannot be deployed in high throughput networks. To solve
this problem, we suggest two-levels of classifiers: one for
per-packet, the other for per-flow detection.

B. HIGH ATTACK DETECTION ACCURACY
Because network attacks have widely varying types and
behaviors, it cannot be effective to adopt a single approach to
detect all kinds of network attacks. Therefore, the proposed
approach uses a two-level attack detection. We can detect
some attacks by inspecting just a few packets, but for others
such as distributed denial of service (DDoS), we need to
observe the network-wide behavior of flows to detect the
attack. Hence, our approach not only analyzes individual
packets but also uses in-flow and inter-flow statistics flows to
increase the accuracy of detecting attacks. We use two differ-
ent classifiers simultaneously, achieving very high detection
accuracy compared to existing work.

This paper is composed of five parts. In Section II,
we briefly introduce related work and results. In Section III,
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FIGURE 1. Classification of ML based NIDS according to classifier number
and feature type.

we propose a new intrusion prevention system (IPS) with
real-time attack detection and high accuracy. In Section IV,
we analyze the performance of the proposed approach and
show the results of comparing some selected recent works.
Finally, we conclude our paper in Section V.

II. EXISTING WORK

Machine learning-based network intrusion detection systems
(NIDSs) have been continuously developed. The early NIDS
employed a simple structure with a single machine learning
algorithm. However, there was a limit to detecting various
network attacks accurately with a single machine learning
algorithm, and therefore, NIDS research using a combination
of various machine learning algorithms has been actively
underway.

The machine-learning-based IDS is divided into a packet-
based method that uses packet data and a session-based
method that uses session data to train the model, based on
the type of data used. The packet-based method converts raw
packet data into machine learning features and then performs
learning and classification using conventional machine learn-
ing algorithms such as convolutional neural networks (CNN).
It does not need to extract features before training, so it
simplifies training procedures without manual intervention.

The session-based method creates data to generate features
of the session inside the IDS when processing packets of a
new session, and it updates these session data whenever it
processes the packets of the session. After processing the last
packet of the session, it generates features for the session by
processing the final updated data, and then, these features
are used in machine learning. The biggest advantage of this
method is that instead of using a large number of packets of
a session, it uses a small number of statistical values for the
session; thus, the number of features used for training and
classifying is very small. As this is very effective for fast
training and fast classification, it can handle large network
traffics.

Because machine learning-based NIDS can be classified
into single and multiple classifier-based NIDS according
to the number of algorithms used, machine learning-based
NIDS can be classified into four types, as seen in Fig. 1.
We examine the main research on each method.

A. PACKET-BASED SINGLE-MACHINE LEARNING
ALGORITHM METHOD

This method learns and classifies packet data through
a single machine learning algorithm. It has the advan-
tage of detecting malicious code in packet payload data.
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However, because individual packets are analyzed indepen-
dently to determine whether an attack has occurred, the con-
ventional signature-based NIDS belongs to this method [4].
Therefore, this method has the advantage of being able to
detect an attack when it occurs in real-time. However, it is vul-
nerable to zero-day attacks, variant attacks, and bypass using
packet fragmentation to avoid detection. Recently, an attack
detection method that collects multiple packets of a session
rather than a single packet has been proposed to overcome
these weaknesses.

B. PACKET-BASED MULTIPLE-MACHINE LEARNING
ALGORITHM METHOD

This method detects attacks using multiple machine learning
algorithms rather than a single algorithm for packet-based
data. Hence, it can perform training and classification more
effectively than a single algorithm. However, as with the
packet-based single machine learning algorithm method,
a large number of features (over thousands) should be gen-
erated from packets for the training machine learning algo-
rithm. Therefore, it has the disadvantage of being difficult to
use in large networks because of the very slow training and
classification speed [5].

C. SESSION-BASED SINGLE-MACHINE LEARNING
ALGORITHM METHOD

Instead of using packets, this method extracts features for a
session and applies them to a single algorithm for training and
classification [24]—[29]. It is one of the most common studies
in the early machine learning-based literature. As it does not
use packet data and generates a fixed number of features
regardless of the number of packets or packet size belonging
to a session, the memory usage is very low. In particular,
as it processes a small number of features (e.g., less than a
hundred) using a single algorithm, the training and classifi-
cation speed can be very fast. Thus, it is applicable to large
networks with heavy traffic. However, it is difficult to provide
high detection rate for various attack types using a single
algorithm. Further, as features are generated after the session
ends, an attack has most likely been already completed when
it is detected. This is a critical limitation of this category.

D. SESSION-BASED MULTIPLE-MACHINE LEARNING
ALGORITHM METHOD

This method performs training and classification by using
features for a session while simultaneously using various
classification algorithms. Among this category, well-known
types are ensemble and multi-layered methods [30], [31]. The
ensemble method simultaneously applies several algorithms
and integrates the results. It can improve the detection perfor-
mance by using several algorithms for various classes. The
multi-layered method executes the next algorithm based on
the result after executing a specific algorithm. In most cases,
it makes use of unsupervised learning and supervised learn-
ing together. For example, it can perform partitioning using
k-nearest neighbor (kNN) and applying a decision tree (DT)
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to each partition. The session-based multiple machine learn-
ing algorithm method has a very high classification perfor-
mance. However, in reality, it is difficult to support real-time
attack detection because it is impossible to process network
traffic in real-time because of the very high computational
cost caused by multiple machine learning algorithms. Further,
because the overall implementation cost is high, it is difficult
to apply to a real network security system.

Various approaches have been adopted to increase the
detection accuracy and speed. However, as of now, there
is very limited research on real-time intrusion prevention
systems that can detect and defend attacks in real-time; thus,
there is an urgent need for research on this topic.

Ill. MACHINE-LEARNING-BASED REAL-TIME IDS

As discussed in Section II, existing NIDSs are struggling
to increase both detection speed and accuracy simultane-
ously, but no practical solutions are available. As a solu-
tion to this problem, we need a different strategy than the
signature-based or anomaly-based approaches. For achiev-
ing accurate attack detection, using anomaly-based machine
learning is inevitable, due to the limitations of using
pre-configured signature databases, e.g., the low detection
accuracy of zero-day attacks. Hence, we should aggressively
adopt machine learning techniques in our NIDS. However,
machine learning-based approaches are considerably slower
than signature-based ones. As a result, real-time detection
becomes almost impossible with machine-learning-based
NIDS, making it difficult to defend against various attacks.

A. MOTIVATION
Basically, classification accuracy and classification time tend
to be proportional [32]. For example, DT can be classified
quickly by using a single tree, but classification performance
may be degraded by instability and dependency on a partic-
ular set of features. On the other hand, random forest (RF)
classifies more accurately than DT for most cases, but the
classifying speed is much slower that DT. Thus, if we take
advantage of the fast but less accurate classifier and the slow
but more accurate classifier, we can develop a fast and accu-
rate classifier. Let us consider the case of trying to classify
the incoming traffic using the fast classifier at first. In this
case, we need to check and evaluate the reliability of the result
for each classification. If it has very high reliability, i.e., high
score, it would be good to believe the result and process the
traffic according to it. If the reliability is low, it is necessary
to ignore the result and to run the slow but more accurate
classifier. In this case, the most important design factor is that
the fast classifier should handle as much traffic as possible,
enabling the slow classifier to handle the remaining traffic
without queueing. If this condition cannot be met, the speed
of the slow classifier becomes a serious bottleneck of fast
classification.

In order to satisfy such a condition, it implies that the
distribution of traffic according to the difficulty of classifica-
tion must be proportional. Fortunately, even a simple DT can
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classify normal and attack traffic with a fairly high accuracy.
Therefore, it is reasonable to assume that the amount of traffic
with high classification difficulty is relatively small.

For high speed classification, the speed of the classification
algorithm itself is the most critical factor. However, feature
extraction also consumes much time. Hence, we need to
design the first classifier so that required features can be
extracted easily without any special processing overhead.
In addition, the number of features important because the
number of features increases affects the classification speed,
therefore, feature selection is necessary.

On the other hand, the second classifier needs to obtain
important features even though it takes a much time for accu-
rate classification. it will be essential to use session features
completely describing the entire session, which is acquired
by waiting until the session finishes.

Now, based on this conclusion, we will explain how the
proposed approach was designed to provide real-time detec-
tion and accurate detection simultaneously.

B. TWO-LEVEL CLASSIFIER

The proposed approach is a two-level scheme using two
different classifiers simultaneously. To provide both high
speed and accuracy in attack detection, the proposed scheme
operates as follows: the level 1 classifier handles receiving
packets at line speed, only if it can precisely classify them as
normal or attack. The level 2 classifier handles any remaining
packets which were not classified as attack in level 1, and
classifies them with a slow but exact classifying algorithm
because level 2 classifier has no constraint or burden of real-
time processing.

The level 1 classifier adopts a classification algorithm
optimized for classification speed, even though it sacrifices
accuracy. This classifier plays a vital role in supporting line
speed packet processing and in reducing the burden of the
level 2 classifier. Thus, the level 1 classifier should process as
many incoming packets as it can, but it also should not process
them when it cannot do so with high accuracy. It sensibly
determines if the packet is classified in level 1 or postponed
to the level 2 classifier.

The level 2 classifier will handle packets unprocessed in
the level 1 classifier because they could not be accurately
classified. By handling only a small portion of the entire
traffic, the burden of real-time processing is considerably
less, which allows sophisticated and time-consuming classi-
fication for accurate detection. To achieve this goal, the level
2 classifier uses the statistical features of each flow for the
whole lifespan instead of packet data. Although detection is
delayed until the flow finishes, it is possible to effectively
detect attacks that cannot be detected by analyzing only some
of the packet data.

In addition to the unique two-level structure, the proposed
approach trains classifiers, as shown in Fig. 2, to improve
the performance of the level 2 classifier. It trains the level
1 classifier using the entire training dataset, as in other
existing machine-learning-based classifiers. To train the level
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FIGURE 2. Procedure of the proposed two-level classifier.

2 classifier, we have two options: First, it can use the entire
training dataset in the same way as the level 1 classifier.
Second, it is possible to train the level 2 classifier using only
data that the level 1 classifier cannot classify with high accu-
racy, because the level 2 classifier does not need to process
the traffic that could be determined accurately by the level
1 classifier. This training can improve the detection accuracy
of level 2 classifiers by reducing unnecessary training data.

Based on the second option, the proposed approach creates
a new dataset to train the level 2 classifier in the following
way. First, it trains the level 1 classifier using the entire
dataset, and then the classifier classifies each data entry of
the training dataset. If the score of the classification result
exceeds the predefined threshold value called minimum level
1 classification score (&), the data entry is excluded from the
training dataset of the level 2 classifier. Therefore, the level
2 classifier is trained using the dataset consisting only of the
remaining data entries whose score is less than ©.

After training both the level 1 and 2 classifiers is complete,
it is ready to classify the actual traffic. Fig. 1 shows how the
proposed approach classifies traffic using two-level classi-
fiers. As described above, the level 1 classifier must process
traffic at high speed. To enable this, the level 1 classifier
should be designed to use features that can be generated
simply and quickly. The proposed approach builds features
from only the first data packet of each flow to determine
whether the flow is attack or normal. If the packet is classified
as an attack, with a score higher than &, by the primary
classifier, the packet is discarded, and the flow is blocked.
Otherwise, the packet is forwarded, and the flow is allowed
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FIGURE 3. Two-level classification procedure of the proposed classifier.

but monitored. For monitoring the flow, statistics of the flow
are generated on receiving the first packet and updated when-
ever it receives a packet belonging to the flow until the flow
is terminated. When the flow ends, the level 2 classifier uses
the monitoring data as features for machine learning, and the
flow is evaluated to detect an attack. Features for the second
classifier will be described later. The overall procedure of the
proposed algorithm is shown in Fig. 3.

C. LEVEL 1 PACKET-BASED CLASSIFIER

As described above, the proposed approach uses only the first
data packet of each flow to determine whether the flow is an
attack or a normal flow. The flow is basically composed of
multiple packets; therefore, we can significantly increase the
number of flows processed in one second when using only the
first data packet of each flow compared to the existing work
that processes all packets of the flow. However, the detec-
tion accuracy of our approach is lower due to the lack of
information.

Several works analyzing packet data instead of flow statis-
tics already exist. For example, HAST-IDS' uses all packet
data and converts each byte of data through one-hot encoding
[6]. It is known to achieve a very high classification accu-
racy, but it can suffer from very large features generated by
one-hot encoding. For example, it will have 25,600 features
for a 100-byte packet because one-hot encoding generates
256 features for each byte. Such a considerable feature size
is a serious burden to achieving high classification speed.

For fast classification, our proposed algorithm uses each
byte value as a feature without one-hot encoding. This
approach inevitably causes reduced classification accuracy,
but such feature generation significantly reduces the total
number of features used for training. The proposed approach
compensates for the decreased performance with the level
2 classifier. However, it can be insufficient for handling
100-Gbps line speeds. Therefore, we perform feature selec-
tion to choose only some features to reduce the size of the
feature set further. Feature selection helps both classification
speed and accuracy because it eliminates unnecessary or less
important features. In addition, source and destination IP
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FIGURE 4. Comparison of feature selection for existing and proposed
approaches. Selected data are noted in grey.

addresses in the IP header are excluded from the feature
set. If an IP address is included in the set, the classifier
can determine an attack using specific server and host IP
addresses, so the classifier has high dependency on some
specific flow. Excluding IP addresses from features helps the
classifier to get better trained without severe skewness. Fig. 4
shows the difference in feature generation between one-hot
encoding based on existing work and the proposed approach.

D. LEVEL 2 FLOW-BASED CLASSIFIER

The level 1 classifier tries to detect attacks based on the
first data packet of each flow. However, for some network
attacks such as denial-of-service, it will be better to examine
intra-/inter-flow statistical information rather than a packet to
detect attacks exactly [10]. To achieve this end, the proposed
level 2 classifier generates and uses flow-specific features
in addition to packet-based features for detecting malicious
flows. The list of all flow features is shown in Table 14 in the
Appendix. Some features can be generated from packets, but
others, which are noted in grey, can be generated only when
the flow ends. In the list, we have 46 features in total, and one-
hot encoding is performed for some features, i.e., protocol,
session state, and service, contrary to our level 1 classifier,
resulting in 231 features used for machine learning. Com-
pared to the level 1 classifier, the number of features used in
the level 2 classifier is greater, and feature generation takes
a long time waiting until the flow being monitored finishes.
This makes the classification speed of the level 2 classifier
quite low for supporting 100 Gbps. Therefore, we need to
design our IDS such that the level 1 classifier should handle
most of the traffic and leave an indeterminable and very small
portion of the traffic to the level 2 classifier.

For training the level 2 classifier, we can use the same
training dataset used for the level 1 classifier. In this case,
the dataset includes data that was classified with a score
larger than © by the level 1 classifier. Because such data
never reach the level 2 classifier, they are not useful for the
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FIGURE 5. Example of DT with two features, X and Y, where each feature
is 8 bit-field.

TABLE 1. Policy set obtained from DT example in Fig. 5.

Rule ID Condition Action
1 0<x<30, 0<y<20 Class 1, p=0.9
2 0<x<30, 20<y<255 Class 2, p=0.8
3 30<x<50 Class 1, p=1
4 50<x<255 Class 3, p=1

classifier. Therefore, we train the level 2 classifier using a
sub-dataset that only includes the data whose scores from the
level 1 classifier are less than ©.

E. PACKET ORIENTED FAST CLASSIFIER

As classifiers based on machine learning are
general-purposed, they can be used in various environments,
achieving a high classification accuracy with moderate classi-
fication speed. However, their speed is not enough to process
incoming network traffic in real-time. On the other hand,
packet classifiers have been developed for a long time to
handle firewall policies and access control lists at high speed.
Such classifiers can deliver more than 3 M packet classifi-
cations per second, which can support network traffic in the
tens of Gbps. However, this kind of classifier cannot be used
for our purpose because packet classifiers cannot support
any learning process and it passively constructs search tables
using a pre-defined policy set. Thus, we cannot directly use a
packet classifier to boost classification speed.

To solve this problem, we propose a novel approach that
builds DT at first and extracts a static policy set from training
results. For example, Fig. 5 shows a DT after training whose
leaf node has a condition for reaching the node, matching
class ID, and matching probability.

The policy of the packet classifier consists of policy pri-
ority, matching condition, and action. We can get such infor-
mation from all leaf nodes in the DT. Matching class ID and
probability are saved as actions. We can ignore policy priority
because the matching conditions of all leaf nodes of the DT
are disjoint. Thus, the policy priority has no effect on the
packet classifier. For this reason, we simply set the leaf node
ID as the policy priority. By doing so, we can create a policy
set for packet classifiers from the DT, as shown in Table 1.
Although we use the packet classifier based on DT instead of
DT, the searching results are the same as for DT. As a result,
we can increase classification speed significantly without any
loss of detection accuracy.
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IV. PERFORMANCE EVALUATION

For analyzing the performance of the two-level real-time
classification algorithm proposed in this research, we eval-
uated and compared the performance using various existing
competitive algorithms.

A. EVALUATION ENVIRONMENT

We compared our algorithm with existing ones, such as DT,
RF, and HAST-IDS [11], [12], [5]. The environment of the
performance evaluation was as follows. A Jupyter server run-
ning on Intel Xeon E5-2640 v4 with two GeForce TITAN Xp
graphics cards was used for evaluation. Scikit-learn and Weka
libraries were used to measure classification performance and
time except for HAST-IDS, which was implemented with
CNN using the TensorFlow library. Only HAST-IDS uses
GPU and CPU simultaneously, and other algorithms run on
only CPU.

For comparison, we used sub-dataset created on Jan-
uary 22, 2015 from the UNSW-NB15 dataset [19]. We added
the same class data from the dataset on a different date to
the evaluation dataset to avoid the minority class problem by
increasing the size of the class. We also removed some classes
such as worms, backdoors, and analysis from the dataset
because the total size of samples was too small even after bal-
ancing the dataset. Therefore, we evaluate the performance
using seven classes, one for normal and the others for attack
classes.

We also used CICIDS2017 dataset which include various
DoS and DDoS attacks [30]. We removed Heatbleed and
Infiltration among twelve classes because they have a too
small data size.

For the level 1 classifier, we generated the features using
only the first 100 bytes of the first data packet of each flow
except for the source and the destination IPs. If a packet
size was smaller than 108 bytes, we added some null values
as padding. To build the features of the level 2 classifier,
we used 46 features, which expanded to 231 features after
one-hot encoding. We normalized all features to the range
0 to 1. We used the Pearson Correlation as a feature selection
algorithm.

Each dataset includes 24,225 and 1,009,809 samples.
It was divided into training and test datasets in the ratio of 6:4,
so the size of total flows in test datasets were 9,692 and
302,966. Tables 2 and 3 show the size of data samples used
for training and testing for each class of each dataset.

B. PARAMETER CONFIGURATION

Before the comparative experiment, we needed to find
the best parameters for the proposed algorithm to achieve
the highest accuracy and the fastest classification through
pre-experiments. To find the optimal parameters, we mea-
sured the classification performance according to the com-
bination of the feature size and classification algorithm
for the level 1 classifier and the classification algorithm
for the level 2 classifier. We also perform the measure-
ment as ©, i.e., minimum level 1 classifier score increases.
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TABLE 2. Dataset sizes of training and testing for UNSW-NB15.

TABLE 4. Optimal parameters and corresponding classification
performance according to the classification algorithm with multi and

Class Train Test Total Ratio binary class classification for UNSW-NB15.
Normal 12,896 8,597 21,493 88.7
Exploits 300 201 501 o1 Classification type Multi class Binary class
- . Proposed | Proposed | Proposed | Proposed
Reconnaissance 126 85 211 0.9 Algorithm (ST) (lgF) (lgT) (lgF)
DoS 192 127 319 '3 #of Level 1 features | 50 60 50 80
Generic 313 344 857 33 #of Level 2 features | 40 230 90 200
Shell code 7 52 12 05 Threshold 0.9 0.6 0.9 0.6
Fuzzers 429 286 s 3 Accuracy 95.8 96.2 97.9 98.1
Total 14,533 5692 24,225 100 Precision 96.3 96.6 98.1 98.2
Recall 95.8 96.2 97.9 98.1
TABLE 3. Dataset sizes of training and testing for CICIDS2017. F1-score 95.9 96.3 98 98.2
Class Train Test Total Ratio
TABLE 5. Optimal parameters and corresponding classification
Normal 318,340 136,250 434,590 4 performance according to the classification algorithm with multi and
Bot 1,391 575 1,966 0 binary class classification for CICIDS2017.
DDoS 89,506 38,514 12,8020 13
DoS GoldenEye 7,190 3,103 10,293 1 Classification type Multi class Binary class
DoS Hulk 161,681 69,280 230,961 23 Algorithm Proposed | Propose | Proposed | Proposed
DoS Slowhttptest 3,816 1,613 5,429 1 (D7) d (RF) (DT) (RF)
DoS slowloris 4,049 1,744 5,793 1 #of Level 1 features 20 70 20 10
FTP-Patator 5,528 2,410 7,938 1 # of Level 2 features 70 10 40 40
PortScan 111,227 47,695 158,922 16 Threshold 1.0 60 1.0 1.0
SSH-Patator 4,115 1,782 5,897 1 Accuracy 99.80 99.82 99.98 99.98
Total 706,843 302,966 1,009,809 100 Precision 99.81 99.76 99.98 99.98
Recall 99.79 99.88 99.98 99.98
F1-score 99.80 99.82 99.98 99.98

For level 1 and 2 classifiers, the size of total features was
increased by 10 from 10 to 100 and from 10 to 230,
respectively.

There are many kinds of classification algorithms, but we
considered only DT and RF for the classification algorithm of
the proposed approach in our performance evaluation. DT is
simple, but it has the advantage of fast classification speed.
However, it can have low accuracy and over-fitting in classifi-
cation. On the other hand, RF can achieve very high accuracy
without a serious over-fitting issue. Because it internally uses
multiple DTs, its classification speed is lower than DT’s, but
itis still fast compared to other classification algorithms, such
as DNN and kNN. For these reasons, we selected the two
algorithms as candidate algorithms for level 1 and 2 classi-
fiers in our proposed algorithm. To maximize the strength of
each algorithm, we apply the same algorithm to the level 1 and
2 classifiers.

It is very important to select a value of & that will ensure
high classification performance. To determine the optimal
©, we measured the classification results as the score was
increased from O to 1 by 0.1, and then we chose the © that
achieved the best result. In addition to multi-class classifi-
cation, we also conducted binary-class classification where
all six attacks are regarded as one attack during training and
classification to evaluate the classification performance under
various situations.

Tables 4 and 5 show the chosen optimal parameter values
for each combination of algorithms for each dataset. We can
see that it achieves a higher classification accuracy when
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RF is used than when DT regardless of multi/binary class
classification for UNSW-NB15. We also see that RF still
shows the higher performance for CICIDS2017 even though
the differences are marginal.

C. EVALUATION RESULTS AND ANALYSIS

For fair performance comparison, we found the optimal con-
figuration for each algorithm. We used the optimal number
of features obtained from each flow for the best F1-score of
DT and RF. For HAST-I, we used 100- and 300-byte packet
data, which showed the best classification speed and the high-
est Fl-score, respectively. We use the notation HAST-T (N),
which means N-byte packet data is used for HAST-I for the
proposed algorithm.

1) COMPARISON OF THE PERFORMANCE FOR MULTI-CLASS
CLASSIFICATION

Table 6 shows the result of comparing average classification
performance in multi-class classification for UNSW-NBI15.
Our proposed algorithm using RF shows the highest perfor-
mance in accuracy, precision, recall, and F1-score. Even the
proposed algorithm using DT shows the second-highest per-
formance of all metrics. HAST-I shows the worst, although
the performance gap is less than one percent point. It reflects
that the packet-based approach relying on some fixed-length
packet data is not an efficient approach for detecting network
intrusions.
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TABLE 6. Average multi-class classification results of proposed and
competitive algorithms for UNSW-NB15.

Algorithm Accuracy | Precision Recall F1-score
Proposed(DT) 95.8 96.3 95.8 95.9
Proposed(RF) 96.2 96.6 96.2 96.3
HAST-I(100) 922 93.6 922 92.3
HAST-I(300) 92.6 93.9 92.6 92.6

DT 94.2 93.0 94.2 93.4
RF 94.2 95.2 94.2 94.1

TABLE 7. Average multi-class classification results of proposed and
competitive algorithms for CICIDS2017.

700 Proposed (DT)|_|
[ Proposed (RF)
HAST-I (100) |
600 [C_—1HAST-I (300)
([[moT
500 CIRF
2 400
[o]
@
@ 300
£
= 200
100
0 5:15
0.0 b=

Algorithm Accuracy Precision Recall Fl-score FIGURE 7. Total multi-class classification time taken to classify the entire
Proposed(DT) 9998 99.81 99.79 99.80 testing dataset of CICIDS2017.
Proposed(RF) 989 9976 9988 982 TABLE 8. Number and the rate of total flow processed by level 1 and
HAST-I(100) 99.85 99.57 99.82 99.69 level 2 classifiers for each class data when the proposed algorithm using
HAST-1(300) 99 85 9953 99 82 99 63 RF is applied on multi-class classification for UNSW-NB15.
DT 99.94 99.67 99.64 99.65 Class Level 1 (%) | Level2 (%) Total
RE 99.93 9958 99.64 99.61 Normal 8,563 (99.6%) 34.(0.4%) 8,597
Exploits 117 (58.2%) 84 (41.8%) 201
30 - Proposed ( DT) Reconnaissance 67 (78.8%) 18 (21.2%) 85
' [E Proposed ( RF) DoS 70 (55.1%) 57 (44.9%) 127
25 - 3 HAST-I (100)
L C_1HAST- (300) Generic 331 (96.2%) 13 (3.8%) 344
20k % or Shellcode 21 (40.4%) 31 (59.6%) 52
| Fuzzers 260 (90.9%) 26 (9.1%) 286
§ 152 T Total sum of attacks 866 (79.1%) 229 (20.9%) 1,095
;, ; _ ] Total 9,429 (97.3%) 263 (2.7%) 9,692
Q L
E r Through these experiments, we can see that only our
] a approach can process tremendous incoming traffic in modern
- networks. The proposed algorithm using RF is about 8 times
e ] slower than using DT, but it is also the fastest except for
: existing DT.
0

FIGURE 6. Total multi-class classification time taken to classify the entire
testing dataset of UNSW-NB15.

Table 7 shows the result of comparing average classifica-
tion performance for CICIDS2017. CICIDS2017 dataset is
well-known for high classification result, so we can see that
classification performances are very high regardless of algo-
rithms. However, our proposed algorithm using RF shows
the highest performance for precision, recall, and F1-score.
HAST-I shows lower performance than ours but better than
RF and DT, so it confirms that the proposed approach is
efficient for detecting network intrusions.

Fig. 6 shows the total classification time for processing
all 9,692 flows of UNSW-NB15. The proposed algorithm
using DT shows unbeatable classification speed compared
to other approaches. It reaches 60- and 90-times faster
classification compared to CNN-based HAST-I (100) and
HAST-I (300). It also shows 4.7 times faster classification
compared to DT, which is the fastest competing approach.
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Fig. 7 shows that the total classification time for processing
all flows of CICIDS2017. As you can see, it shows the
almost the same result compared to Fig. 6. Our approach
with DT shows the highest speed and HAST-I still shows the
lowest one even though HAST-I leverages GPU to boost the
classification speed.

Table 8 depicts the numbers of data classified in the level
1 and 2 classifiers of the proposed algorithm with the opti-
mal detection-rate parameters in multi-class classification for
UNSW-NB15. 97.3% of incoming packets are classified in
the level 1 classifier, and only 2.7% are classified in the level
2 classifier. Therefore, we can see that the total classification
performance of the proposed algorithm is mostly determined
by the level 1 classifier.

Table 9 shows the result for CICIDS2017. In the
UNSW-NB15, the level 2 classifier classifies sessions more
than the level 1 classifier for some classes such as shellcode.
However, for CICIDS2017, the level 1 classifier absolutely
classifies much more sessions than level 2 regardless of class

types.
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TABLE 9. Number and the rate of total flow processed by level 1 and
level 2 classifiers for each class data when the proposed algorithm using
RF is applied on multi-class classification for CICIDS2017.

Class Level 1 (%) Level 2 (%) Total
Normal 181,525 (99.98%) 32 (0.02%) 181,557
Bot 752 (99.6%) 3 (0.4%) 755

DDoS 51,467 (99.96%%) 21 (0.04%) 51,488

DoS GoldenEye 4,111 (99.9%) 5(0.1%) 4,116
DoS Hulk 92,197 (99.999%) 1 (0.001%) 92,198
DoS SlowHttpTest 2,136 (99.9%) 3(0.1%) 2,139
DoS Slowloris 2,329 (99.96%) 1 (0.04%) 2,330
FTP-Patator 3,177 (99.97%) 1(0.03%) 3,178
PortScan 63,772 (99.997%) 2 (0.003%) 63,774
SSH-Patator 2,366(99.87%) 3(0.13%) 2,369
Total sum of attacks 222,307 (99.98%) 40 (0.02%) 222,347
Total 403,832 (99.98%) 72 (0.02%) 403,904

[ 1Proposed (PRFC-DT)
7227 Proposed (DT) r
=5 Proposed (RF)

E—]Hast-I (300)
[IImoT
CIRF ;

o

Throughput (Gbps)

01

FIGURE 8. Total traffic classification performance on multi-class
classification for UNSW-NB15.

By considering the total traffic size of flows for the entire
test set, we can calculate the traffic processing rate in Gbps
for each dataset and the results are shown in Figs. 8 and 9.
In Fig. 8, the proposed algorithm using PRFC-DT represents
classification results that are obtained by replacing the level
1 classifier DT with one of the existing fastest packet classi-
fication algorithms, PRFC [23] for UNSW-NB15. While the
existing approaches show 157 Mbps to 5.8 Gbps throughput,
the proposed algorithm shows 1.3 Gbps for using RF and
9.6 Gbps for using DT. Moreover, when the level 1 classifier
is replaced with PRFC, the traffic processing performance
was significantly improved to 149 Gbps without decreasing
the attack detection accuracy.

Fig. 9 also shows the very similar results for UNSW-NB15.
From this result, we can confirm that our approach is very
effective to support real-time intrusion detection and high
classification accuracy simultaneously.

2) COMPARISON OF THE PERFORMANCE FOR
BINARY-CLASS CLASSIFICATION

Tables 10 and 11 list the result of comparing the binary class
classification performance for each algorithm with UNSW-
NB15 and CICIDS2017. As with multi-class classifications
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FIGURE 9. Total traffic classification performance on multi-class
classification for CICIDS2017.

TABLE 10. Average binary class classification results of proposed and
competitive algorithms for UNSW-NB15.

Algorithm Accuracy | Precision | Recall Fl-score
Proposed (DT) 97.9 98.1 97.9 98.0
Proposed (RF) 98.1 98.2 98.1 98.2
HAST- 1 (100) 88.5 94.3 88.5 90.0
HAST- I (300) 89.5 94.6 89.5 90.8

DT 96.8 96.8 96.8 96.8
RF 96.6 96.8 96.6 96.7

TABLE 11. Average binary class classification results of proposed and
competitive algorithms for CICIDS2017.

Algorithm Accuracy | Precision Recall Fl-score
Proposed (DT) 99.98 99.98 99.98 99.98
Proposed (RF) 99.98 99.98 99.98 99.98
HAST- I (100) 99.87 99.88 99.85 99.86
HAST- I (300) 99.86 99.87 99.85 99.86

DT 99.95 99.95 99.95 99.95
RF 99.95 99.95 99.95 99.95

for UNSW-NB15, binary class classification results also
show that the proposed approach yields the highest detection
accuracy for all performance metrics regardless of dataset
types. In particular, the proposed approach shows a sig-
nificant increase in binary class classification performance
compared to multi-class classification. However, competing
algorithms such as HAST-1 show a decreased detection accu-
racy regardless of packet size for UNSW-NB15. Interestingly,
HAST-I becomes inferior to DT and RF for binary class
classification of CICIDS2017 while HAST-I shows better
performance than DT and RF for multi-class classification of
CICIDS2017.

Figs. 10 and 11 shows comparisons of binary class classifi-
cation speeds for UNSW-NB15 and CICIDS2017. From mul-
tiple classification rate comparisons, the proposed algorithm
using DT is the fastest and HAST-I shows the slowest for all
cases. Noting that proposed one does not rely on GPU but on
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35 TABLE 13. Number and rate of total flows processed by level 1 and level
Proposed ( DT) 2 classifiers for each class data when the proposed algorithm using RF is
30 | [ Proposed ( RF) applied on binary class classification for CICIDS2017.
B HAST-I (100)
25 % g?ST-' (300) Class Level 1 (%) Level 2 (%) Total
20 L [_IRF Normal 100,117(45.0%) 122,230(55.0%) 222,347
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TABLE 12. Number and rate of total flows processed by level 1 and level
2 classifiers for each class data when the proposed algorithm using RF is
applied on binary class classification for UNSW-NB15. 0.01

Class Level 1 (%) Level 2 (%) Total
Normal 8,582(99.8%) 15(0.2%) 8,597
Attack 1,067(97.4%) 28(2.6%) 1,095

Total 9,649(99.6%) 43(0.4%) 9,692

CPU but HAST-1 requires GPU and CPU, the result show that
our approach is very promising for real-time detection.

Tables 12 and 13 show that most flows are classified
at the level 1 classifier in binary class classification sim-
ilarly to multi-class classification for UNSW-NB15 and
CICIDS2017. Interestingly, the ratio of attacks classified at
the level 2 classifier is higher than that of multi-class cases.
From this difference, it seems that minor class problem still
exists in binary class classification. Such flows tend to have
low scores in the level 1 classifier, therefore they are relatively
more often classified at the level 2 classifier compared to
normal traffic.
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FIGURE 13. Total traffic classification performance on binary class
classification for CICIDS2017.

Fig. 12 also shows the packet processing performances of
each algorithm for UNSW-NB15. As with multiple classifi-
cation, the proposed algorithm using DT shows 9.59 Gbps
throughput. It shows very high performance compared to
competing algorithms, which show at most 2.2 Gbps. More-
over, it can be further improved by replacing DT for the first
level with PRFC, with the result that it achieves 149 Gbps
throughput. Fig. 13 shows the packet processing through-
put for CICIDS2017, which is quite similar to that for
UNSW-NBI15. From these results, we can conclude that our
approach is very helpful to provide fast classification and high
accuracy.

The proposed approach reaches the highest detection accu-
racy in multi class classification and binary class classifica-
tion, showing enough processing speed to handle intrusion
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TABLE 14. Total flow features before feature selection. Features which
are generated only when the flow ends are noted in grey.

No. Description No. Description
. Source port " The content size of the data transferred
number from the server’s http service.
2 Destination port 25 Source jitter
number
3 Transaction 26 Destination jitter
protocol
4 State 27 Record start time
5 Total duration 28 Record last time
Src to dst
6 transaction 29 Source interpacket arrival time
bytes
Dst to src
7 transaction 30 Destination interpacket arrival time
bytes
g | S tt‘(’) ﬁsvt;‘me 31 | The sum of SYN_ACK and ACK_DATA

Dst to src time

9 . 32 Time between SYN and SYN_ ACK
to live -
Src packets
10 | retransmitted or | 33 Time between SYN_ACK and the ACK
dropped
Dst packets
11 retransmitted or 34 SIP, SPORT equal to DIP, DPORT
dropped
No. for each state according to specific
12 Service 35 | range of values for source/destination time
to live
13 Source bps 36 No. of flows has Get and Post method in

http service

If the ftp session is accessed by user and

14 | Destination bps | 37
password

15 Src to dst packet 38 No of flows that has a command in ftp
count session.
No. of connections that contain the same
Dst to src : .
16 39 service and source address in 100
packet count . . .
connections according to the last time
Src TCP . .
\xficn dow No. of connections that contain the same
17 . 40 service and destination address in 100
advertisement X X .
connections according to the last time
value
Dst TCP . .
wsin d(?w No. of connections of the same destination
18 . 41 address in 100 connections according to
advertisement .
the last time
value
Sre TCP base No. of gomections of 'the same source
19 42 address in 100 connections according to
SEQ number .
the last time
No. of connections of the same source
Dst TCP b: . .
20 st TCP base 43 address and the destination port in 100
SEQ number . . .
connections according to the last time
ﬂc:\\/[veagc(])(i:hs?ze No. of connections of the same destination
21 pac 44 address and the source port in 100
transmitted by . . .
connections according to the last time
the src
M f th .
ﬂowea:c?(c: s?zc No. of connections of the same source and
22 pac 45 the destination address in in 100
transmitted by X . .
connections according to the last time
the dst
Depth into the
connection of
23 http 46 Label
request/response
transaction

detection in real time supporting enterprise-level and even
backbone networks. The proposed algorithm using DT has

46396

a lower detection performance of 0.37% and 0.18% on
Fl-score compared to the proposed algorithm using REF,
but it shows better processing performance than existing
approaches for UNSW-NB15. Although the proposed algo-
rithm using RF achieves the highest detection accuracy,
the algorithm using DT surpasses any other competing algo-
rithms in terms of detection speed. Therefore, from the exper-
imental results, the proposed algorithm using DT or using
PRFC and DT is a good choice if the target is a real-time IPS,
and the proposed algorithm using RF is also a good choice if
detection accuracy is more important.

V. CONCLUSION

As the total traffic volume of networks is rapidly increas-
ing, cyber-attacks are also becoming more sophisticated and
transforming into variants. Therefore, real-time IDSs are
essential for protecting networks from such attacks. However,
real-time detection cannot adopt elaborate and modern tech-
niques due to the processing overhead, exposing weakness to
zero-day attacks. We proposed a two-level intrusion detection
approach supporting real-time processing with a high detec-
tion accuracy. It exploits packet- and flow-based classifiers
to compensate for the performance and accuracy. The level
1 classifier extracts some selected features from the packet
first to promote the fast classification, achieving real-time
attack detection. The level 2 classifier only handles flows
that were not classified by the level 1 classifier, therefore the
traffic is small enough to be processed by a time-intensive
machine-learning-based classifier. Such a unique structure
of the two-level classifier can provide classification speed
and accuracy simultaneously. We confirmed the effective-
ness of this approach by extensive performance evaluation.
We expect that it can be an effective solution to build real-time
IPSs for overcoming the weaknesses of modern network
security.

APPENDIX
See Table 14.
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