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ABSTRACT This study aims to determine the upper limit of the wireless sensing capability of acquiring
physical space information. This is a challenging objective because, at present, wireless sensing studies
continue to succeed in acquiring novel phenomena. Thus, although we have still not obtained a complete
answer, a step is taken toward it herein. To achieve this, CSI2Image, a novel channel state information (CSI)-
to-image conversion method based on generative adversarial networks (GANS), is proposed. The type of
physical information acquired using wireless sensing can be estimated by checking whether the reconstructed
image captures the desired physical space information. We demonstrate three types of learning methods:
generator-only learning, GAN-only learning, and hybrid learning. Evaluating the performance of CSI2Image
is difficult because both the clarity of the image and the presence of the desired physical space information
must be evaluated. To solve this problem, we propose a quantitative evaluation methodology using an
image-based object detection system. CSI2Image was implemented using IEEE 802.11ac compressed CSI,
and the evaluation results show that CSI2Image successfully reconstructs images. The results demonstrate
that generator-only learning is sufficient for simple wireless sensing problems; however, in complex wireless
sensing problems, GANs are essential for reconstructing generalized images with more accurate physical
space information.

INDEX TERMS Wireless sensing, channel state information, deep learning, generative adversarial networks,

image reconstruction.

I. INTRODUCTION

This study considers the upper limit of the wireless sensing
capability of acquiring physical space information. Wire-
less sensing enables us to obtain various physical space
data by deploying access points (APs). Several studies have
already shown the possibility of extracting physical space
information from radio waves. In particular, channel state
information (CSI)-based methods are improving the practical
feasibility of wireless sensing because CSI, which is used
for multiple-input multiple-output (MIMO) communication,
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is easily acquired from commercial Wi-Fi devices. Using
Wi-Fi CSI, state-of-the-art studies have already achieved
remarkable results. In the future, Wi-Fi may become a sensing
platform; the IEEE 802.11 wireless LAN working group has
established a study group for WLAN sensing. The details of
wireless sensing are discussed in Section II-A.

This study attempts to reconstruct images from CSI
obtained from off-the-shelf Wi-Fi devices to understand the
upper limit of the wireless sensing capability of acquiring
physical space information. If the conversion from CSI to
images corresponding to the physical space can be realized,
the possibility of extracting physical space information using
CSI can be approximately estimated. In addition, because the
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FIGURE 1. Application example of CSI2Image with object detection.

eye is the most high-resolution sensor in the human body,
the images serve as human-understandable information. Fur-
thermore, object detection technology, which has developed
in conjunction with the emergence of deep learning and the
next generation of applications such as automated driving,
can be used to automatically build learning data without
manual labeling.

Figures 1 shows an application example of CSI-to-image
conversion: automatic wireless sensing model generation.
The generation consists of two phases: the learning phase
and the recognition phase. In the learning phase shown
in Figure 1(a), the system simultaneously captures the CSI
and images of the target space, following which the sys-
tem trains a deep neural network (DNN) with the captured
CSI and images. Finally, the system extracts the physical
space information from the image reconstructed from the
captured CSI using the trained DNN, as shown in Figure 1(b).
Figure 1(c) shows a practical example of automatic wireless
sensing model generation; this is demonstrated as an evalua-
tion in Section I'V.

This paper proposes CSI2Image, a novel wireless sensing
method to convert radio information into images correspond-
ing to the target space using a DNN. To the best of our
knowledge, this is the first time CSI-to-image conversion has
been achieved using GANs. From the perspective of CSI-
to-image conversion without GANs, a few related studies
have been conducted [1], [2]. Wi2Vi [1] uses the video recov-
ered by CSI when a security camera is disabled owing to
power failure, malfunction, or attack. Under normal condi-
tions, Wi2Vi extracts the background image from the camera
image, detects a person using the difference between the
background image and the image, and learns by associating
it with the CSI. Under critical conditions, Wi2Vi generates
an image by superimposing the detected user onto the back-
ground image. [2] has successfully generated pose images
generated from skeletons from CSI by learning the relation-
ship between the skeleton model of human posture and CSI.
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References [1], [2] are application-specific approaches, using
application-specific information such as background images
and skeleton models. By contrast, the present study focuses
on a general-purpose CSI-to-image conversion method using
GANsS.

The main contributions of this paper are as follows:

o The use of GANs for CSI-to-image conversion was
proposed, implemented, and evaluated. In particular,
because simply introducing GANS is insufficient, this
paper shows three methods of learning the conversion
model: generator-only learning, GAN-only learning,
and hybrid learning.

« Two applications, material sensing and device-free user
localization, are developed and evaluated to show the
versatility of CSI2Image. CSI2Image enables us to eas-
ily develop wireless sensing applications.

« Novel position-detection-based quantitative evaluation
methodology with you only look once (YOLO), which
is an image-based object detection system, to evaluate
the performance of CSI-to-image conversion is demon-
strated. Specifically, Section IV quantitatively shows
that the use of GANs enables the successful reconstruc-
tion of more generalized images from CSI compared to
generator-only learning.

« Empirical evaluation using off-the-shelf devices is per-
formed using compressed CSI, which can be acquired
from IEEE 802.11ac devices. The obtained results can
be easily reproduced using an off-the-shelf USB camera,
a Raspberry Pi, and a packet capture tool.

The remainder of this paper is organized as follows.
Section II describes related works on wireless sensing and
GAN:Ss. Section III proposes CSI2Image with three genera-
tor learning structures: generator-only learning, GAN-only
learning, and hybrid learning. Section IV presents the quali-
tative and quantitative evaluation of the three learning struc-
tures proposed in Section III. The quantitative evaluation
methodology is also a proposal for the evaluation of CSI-
to-image conversion. Finally, the conclusions are presented
in Section V.

Il. RELATED WORKS
The present work explores the areas of wireless sensing and
GAN:G.

A. WIRELESS SENSING

Several studies have already shown the possibility of
extracting physical space information from radio waves
using wireless sensing. This has been applied for various
purposes, including device localization [3]-[7], [22]-[29],
device-free user localization [8], [9], [23], [30]-[32], ges-
ture recognition [10], [11], [33], [34], device-free motion
tracking [12], [35], [36], RF imaging [37]-[39], crowded-
ness estimation [40], activity recognition [13], [14], res-
piratory monitoring [15], [41], heart rate monitoring [41],
material sensing [16], [42], soil sensing [17], keystroke
recognition [18], emotion recognition [19], in-body device
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TABLE 1. Summary of wireless sensing using CSI.

| Method Context

Performance

SpotFi [3] Device Localization

Median localization error of 40 cm

Chronos [4] Device Localization

Median localization error of 65cm and
98 cm for LOS and NLOS scenarios, re-
spectively,

UAT [5] Device Localization

Localization error under 1 m at 90 % of
predefined locations

SparseLoc [6] Device Localization

Approximately 80 % localization errors are
smaller than 2m

DS-3DCNN [7] Device Localization

Mean localization error of 0.984 m

LiFS [8] Device-free user localization

Median accuracy of 0.5m and 1.1m in
LOS and NLOS scenarios, respectively,

Fukushima et al. [9] | Device-free User Localization

96 % Accuracy

CrossSense [10] gesture recognition

average accuracy of 94.5 % and 98.5 % for
CSI-based gait identification and gesture
recognition, respectively,

WiGrus [11] Gesture recognition

Average accuracy of 96 % and 92 % in the
LOS and NLOS scenarios, respectively,

WiDraw [12]

Handwriting recognition, Hand tracking

Track the user’s hand with a median error
lower than 5cm, recognize handwriting
words with an accuracy of 91 %

CARM [13] Human activity recognition

Average accuracy of over 96 %

EI [14] Human activity recognition

Classification accuracy of up to 75 %

Hillyard et al. [15] Respiratory Monitoring

Median error rate of 0.60 bpm

IntuWition [16] Material sensing

Average accuracy of 95 % and 92 % for
LOS and NLOS situations, respectively, in
classifying five types of materials

Strobe [17] Soil sensing

Estimates moisture at saturation with er-
rors less than 0.03 m?/m3

WiKey [18] Keystroke detection

Average accuracy of 97.5 % and 96.4
% for detecting the keystroke and classi-
fying single keys, respectively, recognize
keystrokes in a continuously typed sen-
tence with an accuracy of 93.5 % in real-
world experiments

EQ-Radio [19] Emotion Recognition

Average accuracy of 87 %

Ohara et al. [20] Object state change detection

Average accuracy of approximately 80 %
for detecting state change in furniture

WiCapture [21] Position tracking

Median accuracy of 0.88 cm compared to
infrared-based tracking systems

localization [43], object state change detection [20], touch
sensing [44], device proximity detection [45], device orien-
tation tracking [46], and human detection through walls [38],
[47], [48]. While these studies have explored new possibili-
ties using an application-specific approach, the present work
is unique in that it attempts to construct a general-purpose
wireless sensing technique.

In terms of the physical layer, the proof of concept has
been demonstrated in wireless communication devices such
as specially customized hardware [19], [30], [33], [38], [41],
[43], [44], [47], [49], mmWave [29], [36], UWB [37], [39],
RFID [23], [24], [26], [46], [48], [50]-[52], LoRa [53],
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IEEE 802.15.4 [40], Bluetooth [27], [54], IEEE 802.11n [3],
[71, [8], [10], [13], [14], [16]-[18], [21], [31], and IEEE
802.11ac [9], [55]. The use of special customized hardware
such as USRP [11], [56] and WARP [57] enables the extrac-
tion of more detailed physical space information. However,
the use of commercially available equipment such as IEEE
802.11n, RFID, Bluetooth, and IEEE 802.15.4 is advanta-
geous for deployment and the reproducibility of research
results. In particular, the emergence of CSI tools [58]-[61]
has been particularly significant for the wireless sensing
research community. Commercially available IEEE 802.11n
devices have been used not only to produce different research
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results, but have also opened up possibilities for the deploy-
ment of wireless sensing. However, at present, research using
IEEE 802.11n faces the problem that only one section of
IEEE 802.11n devices, Intel 5300 NIC, Atheros AR9390,
AR9580, AR9590, AR9344, or QCA9558, can obtain CSIL.
The present study uses the IEEE 802.11ac [62], [63] com-
pressed CSI. The IEEE 802.11ac compressed CSI is standard-
ized to reduce the overhead of CSI feedback. Compressed
CSI can be acquired from any device that supports IEEE
802.11ac or IEEE 802.11ax.

B. GENERATIVE ADVERSARIAL NETWORKS

GANs enable the generation of new data with the same
statistics as the training data using a generative model [64],
and they have been used in several applications [65], [66].
The generative model is constructed by alternately learning a
generator and a discriminator to trick the discriminator. This
section introduces deep convolutional GAN (DCGAN) [67]
and super-resolution GAN (SRGAN) [68], both of which are
highly relevant to this study.

DCGAN constructs a generative model to generate realistic
fake images from random noise [67]. Figure 2 shows the
model structure of DCGAN. The DCGAN trains the discrim-
inator to identify an image as real when the image is from
the training dataset and as fake when generated from random
noise by the generator. Simultaneously, the DCGAN trains
the generator to generate images (from random noise) that the
discriminator identifies as real. The generator is implemented
using deep convolutional neural networks [69]. As the gener-
ator and the discriminator learn to compete with each other,
the generator generates high-quality fake images.

SRGAN generates high-resolution images from corre-
sponding low-resolution images [68]. Figure 3 shows the
model structure of SRGAN. SRGAN trains the discriminator
to identify an image as real when it is from the training dataset
and as fake when generated from a low-resolution image by
the generator. Simultaneously, SRGAN trains the generator
to generate images (from low-resolution images) that will be
identified as real by the discriminator. From DCGAN and
SRGAN, it can be said that GANSs can be used to create fake
data that appear real or recover real data from small amounts
of data.

lll. CSI2lmage: IMAGE RECONSTRUCTION FROM CSI
Figure 4 shows the entire system of the proposed CSI2Image.
CSI2Image is composed of training data, a generator, and
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a discriminator. Section III-A shows the details of the training
data, Section III-B shows the model structure of the generator,
and Section III-C shows the model structure of the discrim-
inator. This paper proposes three types of generator learning
methods: generator-only learning, GAN-only learning, and
hybrid learning. Generator-only learning does not use a dis-
criminator, as described in Section III-D.

A. TRAINING DATA
The training data of CSI2Image consist of simultaneously
captured images and CSIs. Full-color 64 x 64 pixel images
and compressed CSI are used. Compressed CSI is used in
off-the-shelf APs, smartphones, and PCs for their wireless
communications, and the standard format of CSI feedback is
as specified in the IEEE 802.11ac standard [62], [63].
CSI2Image recovers the right singular matrix V from com-
pressed CSI and uses the first column of V' as input data. Note
that the singular value decomposition of the CSI is expressed
as follows.

CSI = usv?

where U is a left singular matrix, S is a diagonal matrix with
singular values of CSI, and V is a right singular matrix.

The compressed CSI in IEEE 802.11ac includes the angle
information ¢ and . V is calculated with ¢ and v by
Equation (1).

min(N,M—1) M
v=1 [I |2 [1 6L |t Tsn. (D
k=1 I=k+1

where M is the number of RX antennas, N is the number of
TX antennas, and Iy x is the identity matrix in which zeros
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are inserted in the missing elementif N # M. Dy is adiagonal
matrix that is expressed as follows:

I 1 .0 0 0

0 &%k 0 0

Di=]| 0 0 0 0
: : 0 &%m-1k

0 0 0 0 1

where I 1 is (k — 1) x (k — 1) identity matrix. G; x () is the
Givens rotation matrix

I 0 0 0 0
0 cos(yr) 0 sin(yr) 0
Gy = 0 0 I 0 0
0 —sin(yr) 0 cos(yr) 0
0 0 0 0 Ing—1

where [ is (k — 1) x (k — 1) identity matrix.

B. GENERATOR NETWORK

Figure 5 shows the network structure of the generator. The
compressed CSI is input to the dense layer of 65,536 neurons
with the rectified linear unit (ReLU) layer, and the neurons
are reshaped into an 8 x 8 x 1024 tensor. The dimension of
compressed CSI depends on the channel width. The tensor
enters the upsample layer, convolution layer with 3 x 3 ker-
nel, batch normalization layer, and ReLU layer three times.
Finally, it is also input to the convolution layer with the 3 x 3
kernel and activation function of tanh to obtain an output of
64 x 64 x 3 tensor. Adam is utilized as the optimizer of the
generator network, whose learning rate is 0.0002, and the
momentum term is 0.5. The loss function for the generator
network is the mean squared error (MSE) [70].
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TABLE 2. Layer parameter details.

size =2 x 2

Kernel size = 3 x 3, stride = 2
momentum= 0.8

alpha = 0.2

rate = 0.25

Upsampling Layer
Convolution Layer
BatchNormalization Layer
LeakyReLU Layer
Dropout Layer

C. DISCRIMINATOR NETWORK

Figure 6 shows the network structure of the discriminator.
The input is a full-color image of 64 x 64 pixels. The color
image is then fed into four sets of the convolution layer
of a 3 x 3-size kernel with stride 2, batch normalization,
LeakyReLU function (¢ = 0.2), and a dropout of 0.25. The
output is then flattened and activated by a sigmoid function.
The output value is the range of 0 to 1. The discriminator
network uses the Adam optimizer, whose initial setting is the
same as that of the generator network, and the loss function
of binary cross-entropy.

D. LEARNING PHASE

In this work, three methods are proposed for the learn-
ing phase: generator-only learning, GAN-only learning, and
hybrid learning. Generator-only learning learns the correla-
tion between compressed CSIs and images. GAN-only learn-
ing uses both a generator and a discriminator. Hybrid learning
combines generator-only and GAN-only learning.

E. GENERATOR-ONLY LEARNING

Figure 7 and Algorithm 1 depict the model structure and
pseudo-code, respectively, of the generator-only learning.
The convolutional-neural-network-based generator is trained
with the measured CSIs and simultaneously captured images.
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As generator-only learning learns the relations between the
CSIs and images given as the training data, the generator may
not accurately generate images from unknown CSIs.

Algorithm 1 Generator-Only Learning
: N < number of training iterations
: fori=1toN do
csi_list <« batch of CSI
real_images < batch of real images
G.csi2image.train(csi_list, real_images)
end for

AN S

F. GAN-ONLY LEARNING

Figure 8 and Algorithm 2 show the model structure and
pseudo-code, respectively, of GAN-only learning. Because
the discriminator learns the converted image while judging
whether it is a real image, this method is more likely to recon-
struct a clear image than generator-only learning. However,
the discriminator only judges the legitimacy of the converted
image, and it may not convert an image corresponding to the
measured and compressed CSI. In particular, the discrimina-
tor may not learn the detailed parts of the image.

G. HYBRID LEARNING

Hybrid learning is the integration of generator-only learn-
ing and GAN-only learning. The following four steps are
regarded as one training epoch:
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Algorithm 2 GAN-Only Learning

1: N <= number of training iterations

2: fori=1toN do

3 csi_list <= batch of CSI

4:  real_images < batch of real images
5 D.rain(real_images, REAL)
6

7
8:

D .train(G.generate(csi_list), FAKE)
G.generality.train(csi_list, REAL)
end for

1) CSI2Image learning (Figure 9)
2) Image reconstruction via the generator
3) Discriminator learning (Figure 10)

4) Generality learning (Figure 11)
Algorithm 3 describes the pseudo-code of hybrid learn-

ing. Let N denote the number of training iterations and
K denote the interval for performing generality learning.
Lines 4 to 6 of Algorithm 3 represent CSI2Image learning.
CSI2Image learning obtains the training data and then trains
the generator using the measured and compressed CSIs and
the images corresponding to the CSIs at line 6, as shown
in Figure 9. Lines 7 to 8 of Algorithm 3 represent discrimina-
tor learning. At line 7, the discriminator is trained to assess the
training image to be real, and at line 8, it is trained to assess
the generated image (obtained from the random noise) to be
fake, as shown in Figure 10. Lines 9 to 11 of Algorithm 3 rep-
resent generality learning. The generator is trained every K
epochs by feeding the compressed CSI to judge the generated
image to be real by the discriminator, as shown in Figure 11.
When the value of K is large, the generalization performance
increases, while the CSI information is lost. When the value
of K is small, the image quality reduces because of generality
loss.
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Algorithm 3 Hybrid Learning

1: N < number of training iterations
2: K < interval of generality training
3: fori=1toN do

4:  csi_list <= batch of CSI

5:  real_images <= batch of real images

6:  G.csi2image.train(csi_list, real_images)

7:  D.train(real_images, REAL)

8:  D.train(G.generate(random_noise), FAKE)
9: ifi mod K == 0 then

10 G.generality.train(csi_list, REAL)

11:  endif

12: end for

H. IMAGE GENERATION PHASE

In the image generation phase, the compressed CSI measured
by wireless devices is fed into the pre-trained generator, and
the generator converts the CSIs into full 64 x 64 pixel images,
as shown in Figure 12.

CSI g Genera@—} Generated
Image

FIGURE 12. Image generation phase.

IV. EVALUATION

We evaluated the CSI2Image using material sensing and
device-free user localization tasks as examples of wireless
sensing applications.

A. EXPERIMENT 1: MATERIAL SENSING

1) EVALUATION SETTINGS

To clarify whether CSI2Image is suitable for a mate-
rial sensing system, we evaluated the CSI2Image using
three different daily containers: a milk package (Milk),
a plastic bottle (Bottle), and a drink can (Can), as shown
in Figure 15(a), (b), and (c). A milk package is made of
paper, 1000 ml volume, rectangular, and has milk inside. A
plastic bottle is made from PET, 500 ml volume, cylindrical,
and has water inside. A drink can is made of aluminum,
355 ml volume, cylindrical, and has carbonated drink inside.
Figure 13 shows the configuration of each piece of equipment
in the material sensing experiments. Figure 14 demonstrates
a snapshot of the environment. These three containers are
located between an access point and a device. No other mov-
ing objects existed in the same room, and the orientation and
container positions did not change during the experiments.
This experiment utilized an AP, a camera, a computer, and
a capture device as a compressed CSI sniffer. In material
sensing experiments, the AP was a TP-Link Archer C6 with
2 TX antennas, the camera was a Panasonic CF-SX1GEPDR
with a resolution of 1280 x 720 pixels, the computer was a
MacBook Pro (13-inch, 2020) with 2 RX antennas, and the
capture device was a Raspberry Pi 3B+ with Raspbian 5.4.79.
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The channel width was 80 MHz including 234 subcarriers.
The evaluation used 3506 images as training data and
500 images as test data. The model for the CSI-to-image con-
version was made using the proposed hybrid learning method.
The model was trained using an Amazon EC2 instance
equipped with an Intel Xeon CPU E5-2686 central processing
unit running at a clock speed of 2.3 GHz on eighteen cores,
64 GB of DDR-SDRAM, a Tesla K80 graphics processing
unit running at a clock speed of 560 MHz on 4992 cores,
and a solid-state drive for storage. The number of epochs was
15,000, and the batch size was 16. For this hybrid learning,
the parameter K was set to 8.

2) EVALUATION RESULTS

Figure 15 shows the examples of the generated image.
CSI2Image succeeded in generating images of three contain-
ers. Figure 16 shows the confusion matrix for three contain-
ers’ generated images. CSI2Image generates correct images
with 97 %, 96 %, and 90 % accuracy for a milk pack-
age, plastic bottle, and drink can, respectively. CSI2Image
achieves high detection accuracy for both the milk package
and the plastic bottle. There are cases where a drink can is
recognized as a plastic bottle, although the rate was low at
approximately 5 %. We think this is because a plastic bottle
and a drink can be both cylindrical.
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B. EXPERIMENT 2: DEVICE-FREE USER LOCALIZATION

As shown in Section IV-A, we found that CSI2Image can
be used for material sensing. To demonstrate the versatil-
ity of CSI2Image and evaluate its properties more quan-
titatively, we evaluated it in device-free user localization
by gradually increasing the complexity of the problem.
Because the conversion of CSI to images is a new research
area, no quantitative evaluation methodology has been estab-
lished. Therefore, we propose a novel quantitative evaluation
methodology using device-free user localization to combine
YOLO, an image-based object detection system.

1) EVALUATION SETTINGS

Figure 17 shows the configuration of each piece of equip-
ment in the device-free localization experiments. Figure 14
demonstrates a snapshot of the environment. In device-free
localization experiments, the AP was a Panasonic EA-
THWO4APIES with 3 TX antennas. The camera was a
Panasonic CF-SX1GEPDR with a resolution of 1280 x 720
pixels, the computer was a MacBook Pro (13-inch, 2017) with
2 RX antennas, and the capture device was a Panasonic CF-
B11QWHBR with CentOS 7.7-1908. The channel width was
20 MHz including 52 subcarriers. The proposed CSI2Image
model was developed using a Dell Alienware 13 R3 computer
equipped with an Intel Core i7-7700HQ central processing
unit running at a clock speed of 3.8 GHz on four cores, 16 GB
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FIGURE 17. Experimental environment for device-free localization.
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of DDR-SDRAM, a Geforce GTX 1060 Mobile graphics
processing unit running at a clock speed of 1404 MHz on
1280 cores, and a solid-state drive for storage. The object
detection library used was YOLO v3 [71], [72], and the model
data were trained with [73] from the COCO dataset [74].
The threshold to determine the object detection in
YOLO is 0.3.

2) SINGLE USER
In this evaluation, three methods were compared:

« generator-only learning (gonly),

+ GAN-only learning (gan), and

« hybrid learning (hybrid),
which are described in Section III-D. The following
four aspects were extracted to evaluate these methods
quantitatively:

1) Object detection success rate. The high score obtained
indicates that the quality of the generated images is
sufficient for object detection.

2) Average confidence score when object detection is suc-
cessful. The confidence score is the confidence level
of the object recognition algorithm in outputting the
recognition result.

3) Structural similarity (SSIM) [75]. SSIM is a standard
measure of image quality used to evaluate the perfor-
mance of image processing algorithms, such as image
compression.

4) Position detection accuracy rate. The position detection
accuracy rate is the percentage of correct locations
detected via object recognition.
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(a) Ground truth (b) Generator-only learning

FIGURE 18. Experiment 2: Examples of successful position detection with one user.

(a) Ground truth (b) Generator-only learning

FIGURE 19. Experiment 2: Examples of failed position detection with one user.

The SSIM index is expressed by Equation 2,
(zﬂxﬂy + Cl)(zaxy + )

SSIM =
(12 + 12 4 Ci)(02 + 02 + C2)

@

where x and y are vectors, whose elements are the pixels of the
original image and the reconstructed images, respectively. Let
ty and 1y denote the average pixel values of images x and y,
ox, and oy be the standard deviations of images x and y, and
oxy be the covariance of images x and y, respectively. Both
C; and C; are constant values defined as C; = (255 K)? and
Cyr = (255 K2)2, respectively. In this case, the parameters of
K1 = 0.01 and K, = 0.03 are the same as those in [75]. The
SSIM index takes a value from O to 1, where 1 represents an
exact image match.

The experiment was performed with only one person at
positions 1 to 3 in Figure 17. Three types of image patterns
were possible, in which the person would be at positions 1, 2,
or 3, respectively. The evaluation used 180 images as training
data and 184 images as test data. The number of epochs
was 32,000, and the batch size was 32. In hybrid learning,
K was 8.

Figure 18 shows an example of successful position
detection with one user. The red square on each fig-
ure represents the object detection results obtained using
YOLO. If a person is detected on the right of the image,
as shown in Figure 18(a), the position detection is accu-
rate. The positions of generator-only and hybrid learning
in Figures 18(b) and 18(c) are accurate, as is the shape of
the person. On the other hand, GAN-only learning, shown
in Figure 18(d), accurately detects the position of the person,
while the shadow of the person is also output in the center of
the incorrect position.
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(c) GAN-only learning

(c) GAN-only learning

(d) Hybrid learning

Figure 19 shows an example of failed position detection
with one user. If a person is detected on the right of the image,
as shown in Figure 19(a), the position detection is accurate.
As can be seen from Figures 19(b) to 19(c), pale ghost-like
shadows appear at the middle and the right of the images. In
contrast, GAN-only learning in Figure 19(d) shows that the
GAN produces a clean image as compared to generator-only
and hybrid learning, although the position is inaccurate. We
assume that the GAN-only learning achieves clean image
generation because the GAN successfully learns and gener-
ates human images owing to its generalization performance.
On the other hand, because of the high generalization per-
formance, the correlation between the CSI and the person’s
position weakens, and as a result, there are cases where the
person is displayed in the wrong position.

Figure 20(a) shows the success rate of human detection.
The black and white bars represent the results using the
training and test data, respectively. The confidence threshold
of YOLO is 0.3. GAN-only learning achieved the highest
score in terms of the detection success rate. In the test
data, the detection success rate of generator-only learning,
GAN-only learning, and hybrid learning were approximately
92.7 %, 93.5 %, and 92.3 %, respectively.

Figure 20(b) shows the average confidence score when the
object detection is successful. In addition to the detection
success rate described above, GAN-only learning achieved
the highest score. In the test data, the average confidence
scores of generator-only learning, GAN-only learning, and
hybrid learning were approximately 91.1 %, 94.5 %, and
90.8 %, respectively. Among the three methods, GAN-only
learning achieved the highest score for both the successful
detection rate and confidence score of YOLO, especially
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FIGURE 20. Experiment 2: Quantitative evaluation of single-user position classification.

(a) Ground truth (b) Generator-only learning

(c) GAN-only learning

(d) Hybrid learning

FIGURE 21. Experiment 2: Examples of successful position detection with one or two users.

for the confidence score, the GAN succeeded in generating
images that achieved a higher confidence score than the train-
ing data. We assume this is because the GAN is specialized to
generate realistic images, although the positioning accuracy
of GAN-only learning is relatively low because of its high
generalization performance, as described above.

Figure 20(c) shows the SSIM index of each comparison
method. In contrast to the detection success rates and the
average confidence score, GAN-only learning showed the
worst performance in terms of the SSIM index. With the test
data, the SSIM index results were approximately 0.890 for
generator-only learning, 0.800 for GAN-only learning, and
0.889 for hybrid learning.

To understand the low SSIM performance of GAN-only
learning, we evaluated the position detection accuracy. The
results show that GAN-only learning had the worst perfor-
mance compared to generator-only and hybrid learning. With
the test data, the accuracies were found to be approximately
89.9 % for generator-only learning, 21.2 % for GAN-only
learning, and 90.5 % for hybrid learning.

Thus, although the detection success rate and the aver-
age confidence score are the highest in GAN-only learn-
ing, the SSIM index is low owing to misplaced-user
images. In particular, GAN-only learning has position
detection accuracy even with the training data. This is
because GAN-only learning only learns the legitimacy of
the generated image using the discriminator, as shown
in Figure 20(d).

3) ONE OR TWO USERS
For more complex situations, the position detection was
evaluated for the case of one or two users. Specifically, six
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types of classification problems were evaluated when one
person or two people were at positions 1 to 3, as shown
in Figure 17: “one person at 1,” ‘““one person at 2,” “‘one
person at 3, “‘two people at 1 and 2, “two people at 1 and
3,7 and “‘two people at 2 and 3.” We used 720 images as
training data and 330 images as test data for the evalua-
tion. The other conditions were identical to those presented
in Section IV-B2.

Figure 21 shows an example of successful position detec-
tion with one or two users. If a person can be detected
at the center of the image, as shown in Figure 21(a),
the position detection is accurate. The positions obtained via
generator-only and hybrid learning in Figures 21(b) and 21(d)
are accurate, and the human shape is clearly displayed. How-
ever, as shown in Figure 21(c), GAN-only learning accurately
detects the position, but a shadow is also output on the left side
of the incorrect position. As described in the evaluation of
single-user localization, GAN-only learning trains the model
to be generalized as to the position of a user; thus, we assume
that even if a user is displayed at the correct place, the gen-
eralized model tends to generate an extra image of a user at
another location.

Figure 22 shows an example of failed position detection
with one or two users. If a person is detected on the right side
of the image, as shown in Figure 22(a), the position detection
is accurate. As shown in Figures 22(b) and 22(d), YOLO
does not detect the person on the right side of the image
for generator-only and hybrid learning, although human-like
objects are displayed on the right side. In addition, GAN-only
learning shows people in the middle and left of the incorrect
position, as shown in Figure 22(c). In this case, we assume
that generator-only learning and hybrid learning generate
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(a) Ground truth (b) Generator-only learning

(c) GAN-only learning (d) Hybrid learning

FIGURE 22. Experiment 2: Examples of failed position detection with one or two users.
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(a) Detection success rate (b) Average confidence score

FIGURE 23. Experiment 2: Quantitative evaluation of the position classification of one or two users.

fuzzy images because the input CSI contains little informa-
tion about the position of a user.

Figure 23(a) shows the successful detection rates of each
comparison method. It can be observed that hybrid learn-
ing achieves the highest detection rate: with the test data,
the detection success rates are approximately 79.6 % for
generator-only learning, 54.0 % for GAN-only learning, and
85.4 % for hybrid learning. The detection success rate of
GAN-only learning is low even when using training data.

Figure 23(b) shows the average confidence score of each
comparison method. Similar to the above successful detection
rate, it can be observed that the confidence score of hybrid
learning is the highest, with the test data, the average con-
fidence scores are approximately 88.1 % for generator-only
learning, 81.1 % for GAN-only learning, and 88.4 % for
hybrid learning.

Figure 23(c) shows the SSIM index of each comparison
method. The results are the same as in the single-user evalua-
tion: GAN-only learning shows the worst performance. With
the test data, the SSIM indexes were 0.803 for generator-only
learning, 0.656 for GAN-only learning, and 0.803 for hybrid
learning.

Figure 23(d) shows the position detection accuracy of each
comparison method. The results show that using the test
data, hybrid learning achieved the highest accuracy, while
GAN-only learning had the lowest accuracy: 79.3 % for
generator-only learning, 13.1 % for GAN-only learning, and
83.8 % for hybrid learning.

4) CONTINUOUS DEVICE-FREE LOCALIZATION FOR A
SINGLE USER

To evaluate a more complicated situation than that in
Section IV-B3, we conducted experiments in which one
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FIGURE 24. Experiment 2: Single-user continuous position estimation.

person walked around an oval connecting positions 1 to 3,
as shown in Figure 17. The evaluation used 515 images as
training data and 498 images as test data. The other settings
were identical to those in Experiment 1 and 2. As the qualita-
tive evaluation results did not differ from those of the position
detection problem in Section IV-B2, only the quantitative
evaluations are presented in this section.

Figure 24(a) shows the detection success rates of each
comparison method. The detection success rates are rela-
tively low compared to those obtained in the evaluations in
Sections IV-B2 and IV-B3. This was true even though the
training results showed high detection success rates. In the
training data, the values were 95.7 % for generator-only
learning, 39.0 % for GAN-only learning, and 96.3 % for
hybrid learning. In contrast, the test data success rates were
29.6 % for generator-only learning, 35.2 % for GAN-only
learning, and 27.8 % for hybrid learning. We believe that the
amount of training data is small relative to the complexity of
the problem.

Figure 24(a) shows the distance (in pixels) between the
left coordinates of the detected box of the training data and
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FIGURE 25. Training time in device-free localization evaluation of one
user (epoch = 32000).

that of the generated data. The lower value of the distance
indicates that the CSI2Image precisely tracks the position of
a user. This evaluation only used the generated images that
successfully detect a user. The lower limit of the error bar
is the minimum value, and the upper limit is the maximum
value. The evaluation results show that GAN-only learning
cannot be used for single-user continuous position detec-
tion. While generator-only learning and hybrid learning are
superior to GAN-only learning, they require performance
improvements. This is because the maximum value is too
high, although the results are only calculated from success-
fully detected images. Using the test data, the maximum dif-
ferences of generator-only learning, GAN-only learning, and
hybrid learning were 46 px, 54 px, and 49 px, respectively.

C. COMPUTATIONAL COSTS

We now evaluate the computational costs of our CSI2Image
with respect to the training times and time for CSI-to-image
conversion.

1) COMPUTATIONAL COSTS OF MODEL TRAINING
We compared the training times for the methods of gonly,
dcgan, hybrid (K = 1), hybrid (K = 2), hybrid (K = 4),
and hybrid (K = 8). Training data and the number of training
epochs were the same as those of Experiment B-II.

Figure 25 shows the training times for each method:
5045.0s, 7512.8s, 12350.1s, 9815.8s, 8535.0s, 7926.6s
and 7614.1 s for gonly, dcgan, hybrid (K = 1), hybrid (K =
2), hybrid (K = 4), and hybrid (K = 8), respectively. Of the
three methods, gonly has the shortest time and hybrid has the
longest. For the sake of space, we do not go into details, but
this trend regarding the training times is almost the same for
the other data in our experiments.

2) COMPUTATIONAL COSTS OF CSI-TO-IMAGE
CONVERSION

We measure the time taken to convert CSI to images using a
pre-trained model. The training data, test data, and pre-trained
models are all the same as those used in the material sens-
ing experiments, and the machine on which we performed
the conversion was iMac, equipped with an Intel Core
15-8500 central processing unit running at a clock speed of
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4.1 GHz on six cores, 16 GB of DDR-SDRAM, Radeon Pro
570X graphics processing unit running at a clock speed of
1105 MHz on 1792 cores and a solid-state drive for storage.
We inputted 1169 test data into the trained model and gener-
ated images. The time taken to generate all the images was
246.65 s, or 0.21 s per image on average.

V. CONCLUSION

This paper proposed CSI2Image, a GAN-based CSI-to-image
conversion method, intending to provide hints for explor-
ing the upper limits of wireless sensing. Specifically,
three learning methods have been explored: generator-only
learning, GAN-only learning, and hybrid learning. First,
we demonstrated that our CSI2Image can be applied to vari-
ous applications by realizing material sensing and device-free
user localization with CSI2Image. For material sensing and
device-free user localization of a single user who stays
in a particular location, we demonstrated that CSI2Image
achieves high accuracy even with a relatively small amount of
training data. In addition, for device-free user localization of
multiple users who stay in a particular location, we show that
hybrid learning combining generator-only learning and GAN
is effective. Furthermore, for device-free user localization of
a single user who is moving continuously, we found that none
of our tested methods (generator-only learning, GAN-only
learning, and hybrid learning) achieved high accuracy.

The following are possible future works. The first is to
challenge the limit of DNN-based wireless sensing. Using
the proposed position-detection-based quantitative evaluation
methodology with YOLO, itis possible to evaluate the quality
of converting CSI to an image quantitatively and without
manual labeling. The evaluation framework enables us to
explore DNNs that are more suitable for wireless sensing.
Possible methods for improving DNNs include designing
new DNNs by visualizing the middle layer to analyze how
CSI features are learned, using transfer learning to generate a
more general model, and using other DNNs such as recurrent
neural networks and LSTMs that address temporal aspects.

The second is to develop learning-less wireless sensing
methods from DNNs built using CSI2Image. For example,
we can derive equations that directly extract real-space infor-
mation from CSI by visualizing and analyzing the middle
layers of DNNs trained with CSI2Image. The middle layers
contain information on the relationship between the subject
phenomenon and CSIL.

The third is the extension of the input/output to/from
CSI2Image. The dimension of the input can be increased by
acquiring CSI from multiple devices in the same frequency
band or multiple frequency bands such as millimeter-wave
or sub-1GHz, time-series CSI, and so on. The increase of
input dimension will improve the performance of CSI2Image.
The dimension of the outputs can be increased using a video,
which contains time dimensional information, and a point
cloud containing three-dimensional space information. The
increase of output dimension will increase the information
which we can recognize.
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