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ABSTRACT This paper addresses finite-time projective synchronization of stochastic complex-valued
neural networks (SCVNNs) with probabilistic time-varying delays (PTVs). First, in the complex domain,
PTVs are introduced into the studied model and a novel feedback control scheme is constructed. Next,
based on inequalities techniques and the Lyapunov stability approach, some novel projective synchronization
criteria are established by decomposing SCVNNs into two equivalent real-valued systems. Moreover,
a setting time function is created by employing lemma 4. Compared with previous researches, our theory
content is an extension and complement to known results. Finally, numerical simulation is presented to
validate the effectiveness of theoretical analysis results.

INDEX TERMS Projective synchronization, finite-time, probabilistic time-varying delays, stochastic
complex-valued neural networks.

I. INTRODUCTION
In recent decades, the dynamic behaviors study of nonlinear
systems have attracted the attention of many resear-
chers [1]–[3]. In particular, the study on neural net-
works (NNs) has been brought into focus due to the vast
potential applications in optimization [4], pattern recogni-
tion [5], image processing [6], etc. There are many arti-
cles giving the study results, such as dissipativity [7],
stability [8]–[10], multistability [11], state estimation [12],
and so on.

Synchronization, defined as a problem that two differ-
ent dynamical signals of NNs coordinating at the same
time, is always a significant research topic. Moreover,
its extensive potential applications in the field of image
encryption [13] and secure communication [14], have
attracted more attention. During the latest 10 years,
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many synchronization types have been studied, namely,
complete synchronization [15], anti-synchronization [16],
projective synchronization [17]–[21], etc. Among them, pro-
jective synchronization is a special kind of phenomenon that
shows the synchronization of NNs up to a random scaling
factor, which is more general and means that complete syn-
chronization and anti-synchronization can be considered as a
special case of projective synchronization. In [19], the authors
firstly studied the problem of fixed-time projective synchro-
nization of memristive NNs via a simple controller, and
the application of some lemmas greatly simplified the proof
process. In [20], for the purpose of realizing projective syn-
chronization of fractional-order system, some criteria were
established by means of Gronwall-Bellman integral inequal-
ities. In [21], based on 1-norm and p-norm, some criteria
about finite-time projective synchronizationwere obtained by
adopting a suitable Lyapunov function.

In addition, the settling time of synchronization is a hot
spot. In real world experiments, finite-time property is more
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powerful, which means better interference suppression per-
formance and fast convergence rate. Hence, for the practical
applications, the finite-time (FET) synchronization of NNs
is worth studying [21]–[30]. In [27], adding the memristor
and reaction diffusion terms to the Cohen-Grossberg neu-
ral network, some novel formulas were proposed to ensure
FET synchronization. In [28], under FET convergence theory,
some FET synchronization criteria of delayed fuzzy neu-
ral networks were established. In [29], [30], they discussed
the FET problem by employing the same synchronization
theorem =̇(θ (t)) ≤ −K1θ − K2θ

µ.
It should be noticed that most practical applications of

NNs are associated with complex signals, which cannot be
solved by real-valued neural networks (RVNNs). However,
complex-valued neural networks (CVNNs), as the promo-
tion and generalization of RVNNs, contain complex-valued
variables, which can be used to solve such problems, like
XOR problem and radar signal processing. Compared with
RVNNs, CVNNs is complicated and has richer dynamic char-
acteristics. During the past several years, the dynamical anal-
ysis of CVNNs has attracted so much attention of researchers
and some interesting results have been published [31]–[38].
For instance, stabilization of CVNNs was investigated via
event-triggered control in [36]. In [37], instead of the tradition
separation method, the FET synchronization was discussed
for CVNNs by defining a new sign function and using con-
jugate of complex numbers. In [38], considering multiple
delays, the complex projection synchronization criteria of
CVNNs were derived by separating CVNNs and applying
comparison principle of the fractional order systems.

As everyone knows, because of the limited transfer speed,
time delays are inevitable in nearly all dynamical systems.
Time delay can result in a number of issues, to be specific,
instability, oscillation and poor performance of the NNs.
In view of this, various time delays have been well studied
in theoretical analysis, such as leakage delay [33], discrete
delay [39], distributed delay [40], [41], neutral delay [42]
and on the like. Probabilistic time varying delay is a special
time delay that occurs in a random way owing to proba-
bilistic reasons, which often occurs in real system. In order
to better apply CVNNs, it is of practical significance to
study the CVNNs with PTVs. In [43], [44], these two stud-
ies were concerned with finite-time anti-synchronization and
asymptotic anti-synchronization of bidirectional associative
memory NNs with PTVs by adopting a suitable Lyapunov
function. In [45], by means of linear matrix inequalities,
the issue about global stability for SCVNNs with PTVs was
studied. Furthermore, besides time delays, stochastic pertur-
bation (SCP) is often existent in real nervous systems. The
stochastic perturbation is related to various environmental
uncertainties, which is an important impact factor of sys-
tem behaviour. Considering the stochastic perturbation, many
interesting theories are proposed [46]–[49]. In [48], new con-
trollers were designed to realize fixed-time synchronization
of the system with SCP. In [49], the stability problem for a
new type uncertain SCVNNs was discussed.

Enlightened by the above discussions, the main mission
of this study is to explore the problem of FET projective
synchronization of SCVNNs with PTVs. The main contents
and highlights of this article are listed as follows. (1) By intro-
ducing the probabilistic time-varying delays into SCVNNs,
one more general NNs is investigated. (2) Considering the
stochastic factors, new projective synchronization criteria of
the novel SCVNNs are derived by employing synchronization
theory and inequality techniques, which casts a new light
on the stochastic system. (3) In order to achieve projective
synchronization, a new feedback control strategy is designed
in this paper and its method applied in the process of proof is
more reasonable.

The remaining parts of this article are given as below.
In Section 2, the models of SCVNNswith PTVs are given and
several preliminaries are provided. In Section3, to assure FET
projective synchronization of the SCVNNs, novel criteria
are proposed via the new feedback controller. In section 4,
the feasibility of the synchronization criteria is verified by
numerical simulation. In the end, the summary of this article
is given in Section 5.

Notation: R and C are the real numbers and complex
numbers sets respectively. Rf×g and Cf×g are the denotation
of any f × g-dimensional real-value and complex-valued
matrices. N denotes {1,2,3,. . . ,N }. For ∀µ ∈ C, let µm =
µm

R
+ jµIm, where j stands for the imaginary unite, namely,

j =
√
−1.E(o(t)) is the expectation of o(t). ||xi|| = (

n∑
i=1

x2
i
)
1
2 .

gnmn(·) = gmn(t, em(t), em(t − τn(t)).

II. PRELIMINARIES AND MODEL DESCRIPTION
In this article, we pay attention to the SCVNNs with PTVs as
below

dum(t) = [− cmum(t)+
N∑
n=1

pmnsn(un(t))

+

N∑
n=1

qmn`n(un(t − τ (t)))]dt

+

N∑
m=1

gmn(t, um(t), um(t − τ (t)))dωm(t). (1)

where m = 1, 2, . . . ,N , um(t) is the state vector; cm > 0 rep-
resents the self-feedback connection weight; pmn, qmn are the
connection weight matrices without and with PTVs, respec-
tively; s(·), `(·) are the activation function; 0 <τ (t) <τ2 is the
PTVs, where τ2 is a constant; gmn(t, um(t), um(t−τ (t))) stand
for the noise intensity function and ωm(t) is the scalar stan-
dard Brownian motion defined on the complete probability
space.

Taking system (1) as drive system, and this is the corre-
sponding response system.

dvm(t) = [−cmvm(t)+
N∑
n=1

pmnsn(vn(t))
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+

N∑
n=1

qmn`n(vn(t − τ (t)))+ ρm(t)]dt

+

N∑
m=1

gmn(t, vm(t), vm(t − τ (t)))dωm(t). (2)

where ρm(t) is control input that will be designed later. The
initial conditions of systems (1) and (2) are assumed as below

um(t) = ϕR(t)+ jϕI (t), t ∈ (−τ, 0), m ∈ N.

and

vm(t) = ψR(t)+ jψ I (t), t ∈ (−τ, 0), m ∈ N.

respectively.
In system (1) and (2), the PTVs τ (t) takes values in [0, τ1]

and (τ1, τ2] with certain probability, which can be defined as

Prob{0 ≤ τ (t) ≤ τ1} = γ0,Prob{τ1 < τ (t) ≤ τ2} = 1− γ0.

where γ0, τ1, τ2 are non-negative constant, and 0 ≤ γ0 ≤ 1,
0 ≤ τ1 ≤ τ2. Here τ1 represents a small time delay.

τ (t) =

{
τ1(t), τ (t) ∈ [0, τ1],
τ2(t), τ (t) ∈ (τ1, τ2].

Then, we state a random variable

γ (t) =

{
1, τ (t) ∈ [0, τ1],
0, τ (t) ∈ (τ1, τ2].

Hence, we can easily get that γ (t) is the Bernoulli distributed
sequence, which satisfies the following conditions.

Prob{γ (t) = 1} = Prob{τ (t) ∈ [0, τ1]} = E(τ (t)) = γ0,
Prob{γ (t) = 0} = Prob{τ (t) ∈ (τ1, τ2]}

= E(1− τ (t)) = 1− γ0,

where E (·) represents the Mathematical expectation.
By adopting the new time delay functions τ1(t), τ2(t) and

the random variable γ (t), SCVNNs (1) and (2) can be written
as

dum(t) = [−cmum(t)+
N∑
n=1

pmnsn(un(t))

+γ (t)
N∑
n=1

qmn`n(un(t − τ1(t)))

+(1− γ (t))
N∑
n=1

qmn`n(un(t − τ2(t)))]dt

+

N∑
m=1

gmn(t, um(t), um(t − τ1(t)))dωm(t)

+

N∑
m=1

gmn(t, um(t), um(t − τ2(t)))dωm(t). (3)

dvm(t) = [−cmvm(t)+
N∑
n=1

pmnsn(vn(t))

+γ (t)
N∑
n=1

qmn`n(vn(t − τ1(t)))

+(1− γ (t))
N∑
n=1

qmn`n(vn(t − τ2(t)))+ ρm(t)]dt

+

N∑
m=1

gmn(t, vm(t), vm(t − τ1(t)))dωm(t)

+

N∑
m=1

gmn(t, vm(t), vm(t − τ2(t)))dωm(t). (4)

Assumption 1: We consider sn(·), `n(·) satisfying the fol-
lowing conditions
I.The activation function sn(·) and `n(·) can be rewritten as

sn(·)=sRn (·)+ js
I
n
(·), `n(·) = `Rn (·)+ j`

I
n
(·).

where j stands for the imaginary unite, namely, j =
√
−1.

II.The activation functions sn(·) and `n(·) are Lipschitz
continuous. In other words, for any n ∈ N, there exist posi-
tive real numbers h̄RRn , h̄

RI
n , h̄

IR
n , h̄

II
n and—λ

RR
n ,—λ

RI
n ,—λ

IR
n ,—λ

II
n

such that∣∣∣sRn (v)− sRn (u)∣∣∣ ≤ h̄RRn
∣∣∣vR − uR∣∣∣+ h̄RIn ∣∣∣vI − uI ∣∣∣ ,∣∣∣sIn(v)− sIn(u)∣∣∣ ≤ h̄IRn
∣∣∣vR − uR∣∣∣+ h̄IIn ∣∣∣vI − uI ∣∣∣ ,∣∣∣`Rn (v)− `Rn (u)∣∣∣ ≤ —λRRn
∣∣∣vR − uR∣∣∣+—λRIn

∣∣∣vI − uI ∣∣∣ ,∣∣∣`In(v)− `In(u)∣∣∣ ≤ —λIRn
∣∣∣vR − uR∣∣∣+—λIIn

∣∣∣vI − uI ∣∣∣ .
III.The activation functions sn(·) and `n(·) are bounded.

That is to say, for any n ∈ N, there exist positive constants
A1n, A

2
n, B

1
n, B

2
n such that∣∣∣sRn (·)∣∣∣ ≤ A1n, ∣∣∣sIn(·)∣∣∣ ≤ A2n, ∣∣∣`Rn (·)∣∣∣ ≤ B1n, ∣∣∣`In(·)∣∣∣ ≤ B2n.

Therefore, system (3) and (4) can be separated as follows

duRm(t) = [−cmuRm(t)+
N∑
n=1

pRmns
R
n (un(t))

−

N∑
n=1

pImns
I
n(un(t))+ γ (t)

N∑
n=1

qRmn`
R
n (un(t − τ1(t)))

−γ (t)
N∑
n=1

qImn`
I
n(un(t − τ1(t)))

+(1− γ (t))
n∑
j=1

qRmn`
R
n (un(t − τ2(t)))

−(1− γ (t))
n∑
j=1

qImn`
I
n(un(t − τ2(t)))]dt

+

N∑
m=1

gRmn(t, um(t), um(t − τ1(t)))dωm(t)

+

N∑
m=1

gRmn(t, um(t), um(t − τ2(t)))dωm(t). (5)
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duIm(t) = [−cmuIm(t)+
N∑
n=1

pImns
R
n (un(t))

+

N∑
n=1

pRmns
I
n(un(t))+ γ (t)

N∑
n=1

qImn`
R
n (un(t − τ1(t)))

+γ (t)
N∑
n=1

qRmn`
I
n(un(t − τ1(t)))

+(1− γ (t))
N∑
n=1

qImn`
R
n (un(t − τ2(t)))

+(1− γ (t))
N∑
n=1

qRmn`
I
n(un(t − τ2(t)))]dt

+

N∑
m=1

gImn(t, um(t), um(t − τ1(t)))dωm(t)

+

N∑
m=1

gImn(t, um(t), um(t − τ2(t)))dωm(t). (6)

dvRm(t) = [−cmvRm(t)+
N∑
n=1

pRmns
R
n (vn(t))

−

N∑
n=1

pImns
I
n(vn(t))+ γ (t)

N∑
n=1

qRmn`
R
n (vn(t − τ1(t)))

−γ (t)
N∑
n=1

qImn`
I
n(vn(t − τ1(t)))

+(1− γ (t))
N∑
n=1

qRmn`
R
n (vn(t − τ2(t)))

−(1− γ (t))
N∑
n=1

qImn`
I
n(vn(t − τ2(t)))+ ρ

R
m(t)]dt

+

N∑
m=1

gRmn(t, vm(t), vm(t − τ1(t)))dωm(t)

+

N∑
m=1

gRmn(t, vm(t), vm(t − τ2(t)))dωm(t). (7)

dvIm(t) = [−cmvIm(t)+
N∑
n=1

pImns
R
n (vn(t))

+

N∑
n=1

pRmns
I
n(vn(t))+ γ (t)

N∑
n=1

qImn`
R
n (vn(t − τ1(t)))

+γ (t)
N∑
n=1

qRmn`
I
n(vn(t − τ1(t)))

+(1− γ (t))
N∑
n=1

qImn`
R
n (vn(t − τ2(t)))

+(1− γ (t))
N∑
n=1

qRmn`
I
n(vn(t − τ2(t)))+ ρ

I
m(t)]dt

+

N∑
m=1

gImn(t, vm(t), vm(t − τ1(t)))dωm(t)

+

N∑
m=1

gImn(t, vm(t), vm(t − τ2(t)))dωm(t). (8)

The synchronization errors are defined as em(t) = vm(t)−
λum(t),m ∈ N, where constant λ is the real scaling factor.
Then we can obtain as below

dem(t) = [−cmem(t)+
N∑
n=1

pmnsn(vn(t))

−λ

N∑
n=1

pmnsn(un(t))+γ (t)
N∑
n=1

qmn`n(vn(t−τ1(t)))

−λγ (t)
N∑
n=1

qmn`n(un(t − τ1(t)))

+(1− γ (t))
N∑
n=1

qmn`n(vn(t − τ2(t)))

−λ(1− γ (t))
N∑
n=1

qmn`n(un(t − τ2(t)))+ ρm(t)]dt

+

N∑
m=1

gmn(t, em(t), em(t − τ1(t)))dωm(t)

+

N∑
m=1

gmn(t, em(t), em(t − τ2(t)))dωm(t). (9)

The error system (9) can be rewritten as the real and
imaginary parts, then one gets

deRm(t) = [−cmeRm(t)

+

N∑
n=1

pRmns
R
n (vn(t))−

N∑
n=1

pImns
I
n(vn(t))

−λ(
N∑
n=1

pRmns
R
n (un(t))−

N∑
n=1

pImns
I
n(un(t)))

+γ (t)(
N∑
n=1

qRmn`
R
n (vn(t − τ1(t)))

−

N∑
n=1

qImn`
I
n(vn(t − τ1(t))))

−λγ (t)(
N∑
n=1

qRmn`
R
n (un(t − τ1(t)))

−

N∑
n=1

qImn`
I
n(un(t − τ1(t))))

+(1− γ (t))(
N∑
n=1

qRmn`
R
n (vn(t − τ2(t)))

VOLUME 9, 2021 44787



M. Hui et al.: FET Projective Synchronization of SCVNNs With PTVs

−

N∑
n=1

qImn`
I
n(vn(t − τ2(t))))

−λ(1− γ (t))(
N∑
n=1

qRmn`
R
n (un(t − τ2(t)))

−

N∑
n=1

qImn`
I
n(un(t − τ2(t))))+ ρ

R
m(t)]dt

+

N∑
m=1

gRmn(t, em(t), em(t − τ1(t)))dωm(t)

+

N∑
m=1

gRmn(t, em(t), em(t − τ2(t)))dωm(t) (10)

deIm(t) = [−cmeIm(t)

+

N∑
n=1

pImns
R
n (vn(t))+

N∑
n=1

pRmns
I
n(vn(t))

−λ(
N∑
n=1

pImns
R
n (un(t))+

N∑
n=1

pRmns
I
n(un(t)))

+γ (t)(
N∑
n=1

qImn`
R
n (vn(t − τ1(t)))

+

N∑
n=1

qRmn`
I
n(vn(t − τ1(t))))

−λγ (t)(
N∑
n=1

qImn`
R
n (un(t − τ1(t)))

+

N∑
n=1

qRmn`
I
n(un(t − τ1(t))))

+(1− γ (t))(
N∑
n=1

qImn`
R
n (vn(t − τ2(t)))

+

N∑
n=1

qRmn`
I
n(vn(t − τ2(t))))

−λ(1− γ (t))(
N∑
n=1

qImn`
R
n (un(t − τ2(t)))

+

N∑
n=1

qRmn`
I
n(un(t − τ2(t))))+ ρ

I
m(t)]dt

+

N∑
m=1

gImn(t, em(t), em(t − τ1(t)))dωm(t)

+

N∑
m=1

gImn(t, em(t), em(t − τ2(t)))dωm(t). (11)

For the stochastic system:

du(t) = h(t, u(t))dt + g(t, u(t))dω(t).

where ω(t) is an m-dimensional Brownian motion defined on
the complete probability space and it is clearly Eω(t) = 0;
g(·) is the noise intensity function; The first hitting time is
denoted as T (u0, ω) = inf{T ≥ 0|u0 = 0, t ≥ T }, which is
the settling time function.

To further study, we have the following preparations.
Definition 1: SCVNNs (3) can achieve FET projective syn-

chronization with system (4), if there exists a time T ∗ > 0,
such that lim

t→T ∗
||e(t)|| = 0 and ||e(t)|| ≡ 0 for ∀t > T ∗,

where T ∗ is called the settling time.
Assumption 2 [43]: There exist nonnegative constants D1

and D2, such that

Trace[gT (t, x1, x2)g(t, x1, x2)] ≤ x1D1x1 + x2D2x2.
Lemma 1: Inequality of arithmetic and geometric means

a2 + b2 ≥ 2ab.
Lemma 2 [47]: If x1, x2, . . . , xn > 0 and 0 < a < 1,

we obtain that
n∑
i=1

Xa
i
≥ (

n∑
i=1

Xi)a.

Lemma 3 [43]: Let u1, u2, . . . , un ∈ Rn are arbitrary
vectors,then the following condition satisfying

||u1||b + ||u2||b + · · · + ||un||b ≥ (||u1||2

+||u2||2 + · · · + ||un||2)b/2,

where 0 < b < 2 is a real number.
Lemma 4 [29]: Suppose =(θ (t)) : Rn → R is C-regular,

and that θ (t) : [0,+∞] → Rn is absolutely continuous on
any compact subinterval of [0,+∞]. If =(v(t)) satisfies

=̇(θ (t)) ≤ −K1θ − K2θ
µ,

where µ ∈ (0, 1) and K1,K2 > 0, then

T ∗ =
1

K1(1− µ)
ln
K1V 1−µ(0)+ K2

K2
.

III. MAIN RESULTS
In this subsection, we obtain certain novel conditions
to assure FET projective synchronization of consider
SCVNNs (3) and (4) by employing lemmas in Section II.

For the purpose of achieving FET projective synchroniza-
tion of SCVNNs with PTVs, we propose the following feed-
back controller.

ρRm(t) = −sign(e
R
m(t))(k

R
1 + k

R
2

∣∣∣eRm(t − τ1(t))∣∣∣
+kR3

∣∣∣eRm(t − τ2(t))∣∣∣+ kR4 ∣∣∣eRm(t)∣∣∣α),
ρIm(t) = −sign(e

I
m(t))(k

I
1 + k

I
2

∣∣∣eIm(t − τ1(t))∣∣∣
+k I3

∣∣∣eIm(t − τ2(t))∣∣∣+ k I4∣∣∣eIm(t)∣∣∣α). (12)

where 0 < α < 1, kR
1
, kR

2
, kR

3
, kR4 , k

I
1
, k I

2
, k I

3
, k I4 are

non-negative constants to be defined in the theorem,
and m ∈ N.
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Theorem 1: Under Assumptions 1, the stochastic
CVNNs (3) and (4) with PTVs will achieve projective syn-
chronization in finite time if
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Proof: For obtaining the main results, we choose the
following Lyapunov function

V (t) = V1(t)+ V2(t).

where
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2
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Along with the error trajectory (10), from V1(t), we can
derive
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Using the same analysis method, we can get the following
inequality
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From Theorem 1, equations (13) and (14), it is clear that
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By utilizing Lemma 1, it can be obtained
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where Lemma 3 have been utilized, and φ = min{φ1, φ2},
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Based on Lemma 4, it can yield that SCVNNS (3) and
(4) can achieve FET projective synchronization. Additionally,

the setting time can be obtained as below

T ∗ =
2
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φ ∗ [V (0)]
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2

2K 4
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2K 4
). (15)

The proof is accomplished. �
Remark 1: If λ = 1 or λ = −1, then the SCVNNs (3)

and (4) will realize the complete synchronization or anti-
synchronization, respectively.
Remark 2: In this study, we focus on PTVs. In particular,

when γ0 = 1, the system will become the SCVNNs with time
varying delay τ1(t) as a special case for system (3).
Remark 3: Up to now, to our knowledge, the study on

FET projective synchronization of the SCVNNs is very few.
Therefore, regard some models of other literature as special
cases of our considered system [46]–[48], the theoretical
results that we obtained are an extension and complement to
the study of CVNNs. In addition, considering the similar sys-
tem (3) and (4), but without stochastic perturbations, we can
use the same method to analyze. The proof is omitted here.
Remark 4: In references [43], authors investigated the

finite-time anti-synchronization for memristive bidirectional
associative memory neural networks. Compared with [43],
we use the novel SCVNNs, which is rarely researched. And
we consider probabilistic time-varying delays in our model.
In addition, we are concerned with the finite-time projective
synchronization problem. This can be regarded as an exten-
sion and complement to the research content of SCVNNs.
Furthermore, different from other literature about stochastic
systems [45] and [49], we applied the Lyapunov stability
approach instead of traditional linear matrix inequalities,
which casts a new light on the stochastic system.

IV. NUMERICAL SIMULATION
In this subsection, for the purpose of displaying the correct-
ness of the control scheme and theoretical content, some
simulation results are given as follows.

Consider the following drive system and response system
of SCVNNs:

dum(t) = [−cmum(t)+
N∑
n=1

pmnsn(un(t))

+γ0

N∑
n=1

qmn`n(un(t − τ1(t)))

+(1− γ0)
N∑
n=1

qmn`n(un(t − τ2(t)))]dt

+

N∑
m=1

gmn(t, um(t), um(t − τ1(t)))dωm(t)

+

N∑
m=1

gmn(t, um(t), um(t − τ2(t)))dωm(t), (16)
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dvm(t) = [−cmvm(t)+
N∑
n=1

pmnsn(vn(t))

+γ0

N∑
n=1

qmn`n(vn(t − τ1(t)))

+(1− γ0)
N∑
n=1

qmn`n(vn(t − τ2(t)))+ ρm(t)]dt

+

N∑
m=1

gmn(t, vm(t), vm(t − τ1(t)))dωm(t)

+

N∑
m=1

gmn(t, vm(t), vm(t − τ2(t)))dωm(t). (17)

Select the activation function as s(u(t)) = `(u(t)) =
tanh(uR(t)) + j tanh(uI (t)), τ 11(t) = τ 21(t) = 0.75 − 0.25 ∗
cos(t), τ 12(t) = τ 22(t) = 0.75−0.25∗sin(t), c1 = 1, c2 = 2,
γ0 = 0.2,

P =
(
1.4− 0.4j 0.6+ j
1.2+ 1.1j −0.4+ 0.6j

)
,

Q =
(
0.1+ 1.2j −0.5+ 0.8j
−1.6+ j 0.2+ 0.6j

)
.

Pick an initial state arbitrarily, for example

u(t) = (2.2− 2j, 1.2− 3.6j),
v(t) = (−4.5+ 5.8j,−7.4− 1.5j).

Based on Theorem 1, we choose the follow control
scheme.

ρR1 = −sign(e
R
1 (t)){8.5+ 9.75 ∗ |eR1 (t − τ1(t))|

+2.5 ∗ |eR1 (t − τ2(t))| + 0.5 ∗ |eR1 (t)|
0.4
},

ρI1 = −sign(e
I
1(t)){6.5+ 10.25 ∗ |eI1(t − τ1(t))|

+2.5 ∗ |eI1(t − τ2(t))| + 0.5 ∗ |eI1(t)|
0.4
},

ρR2 = −sign(e
R
2 (t)){8.5+ 11.25 ∗ |eR2 (t − τ1(t))|

+2.5 ∗ |eR2 (t − τ2(t))| + 0.5 ∗ |eR2 (t)|
0.4
},

ρI2 = −sign(e
I
2(t)){6.5+ 10.35 ∗ |eI2(t − τ1(t))|

+2.5 ∗ |eI2(t − τ2(t))| + 0.5 ∗ |eI2(t)|
0.4
}. (18)

The Brownian motion satisfies

gRmn(t, um(t), um(t − τ1(t)))
= diag{−0.4uR1 (t)

+0.3uR1 (t − τ1(t)),−0.5u
R
2 (t)+ 0.2uR2 (t − τ1(t))},

gRmn(t, um(t), um(t − τ2(t)))
= diag{−0.4uR1 (t)

+0.4uR1 (t − τ1(t)),−0.5u
R
2 (t)+ 0.2uR2 (t − τ1(t))},

gImn(t, um(t), um(t − τ1(t)))

= diag{−0.4uI1(t)

+0.3uI1(t − τ1(t)),−0.5u
I
2(t)+ 0.2uI2(t − τ1(t))},

gImn(t, um(t), um(t − τ2(t)))

= diag{−0.4uI1(t)

+0.4uI1(t − τ1(t)),−0.5u
I
2(t)+ 0.2uI2(t − τ1(t))}.

In response system (17), gmn(t, vm(t), vm(t−τ (t))) is simi-
lar to gmn(t, um(t), um(t−τ (t))), the corresponding equations
are omitted.
Under control scheme (18), the state trajectories of

system (16) and (17) are presented in Fig.1 and Fig.2. Obvi-
ously, we can get that SCVNNs (16) and (17) can realize
projective synchronization, where the projective coefficient
λ = 2. Based on the evolution of the errors curve in Fig.3,
it is clear that the state errors are quickly converging to
stable.

FIGURE 1. Real parts of system (16) and (17) under control (18), where
the coefficient λ = 2.

FIGURE 2. Imaginary parts of system (16) and (17) under control (18),
where the coefficient λ = 2.

FIGURE 3. Time evolution of the error between the drive-response
systems, where the coefficient λ = 2.
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FIGURE 4. Real parts of system (16) and (17) under control (18), where
the coefficient λ = 1.

FIGURE 5. Imaginary parts of system (16) and (17) under control (18),
where the coefficient λ = 1.

FIGURE 6. Time evolution of the error between the drive-response
systems, where the coefficient λ = 1.

By calculation with the mentioned parameters, it is light
to check all the algebraic criteria. Hence, as Fig.3 illustrates,
we deduce from Theorem 1 that the considered system (3)
and (4) can realize FET projective synchronization.

Based on the discussion of the article and the summary of
Remark 1, we know that SCVNNs (3) and (4) can realize the
complete synchronization and anti-synchronization when the
coefficient changes.

If λ = 1, as Fig.6 shows, SCVNNs (3) and (4) can
realize complete synchronization, and the state trajectories
are shown in Fig.4 and Fig.5. If λ = −1, Fig.7-9 demonstrate

FIGURE 7. Real parts of system (16) and (17) under control (18), where
the coefficient λ = −1.

FIGURE 8. Imaginary parts of system (16) and (17) under control (18),
where the coefficient λ = −1.

FIGURE 9. Time evolution of the error between the drive-response
systems, where the coefficient λ = −1.

that the system (3) and (4) can achieve anti-synchronization.
Since the system error stabilization time is independent of the
coefficient, the errors all converge to zero in finite time.

V. CONCLUSION
In this paper, we are concerned with FET projective synchro-
nization of the SCVNNs with PTVs by separating SCVNNs.
Instead of linear matrix inequalities, we apply Lyapunov
stability approach to obtain several novel criteria for ensuring
FET projective synchronization via some inequalities tech-
niques, which can cast a new light on stochastic system and
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provide a reference for the application of large time delay
intervals. Finally, the obtained criteria are demonstrated by
numerical examples, and the setting time is estimated. In the
future, stability of SCVNNs is the issue for our researchwork.
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