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ABSTRACT The generation volatility of photovoltaics (PVs) has created several control and operation
challenges for grid operators. For a secure and reliable day or hour-ahead electricity dispatch, the grid
operators need the visibility of their synchronous and asynchronous generators’ capacity. It helps them to
manage the spinning reserve, inertia and frequency response during any contingency events. This study
attempts to provide a machine learning-based PV power generation forecasting for both the short and long-
term. The study has chosen Alice Springs, one of the geographically solar energy-rich areas in Australia,
and considered various environmental parameters. Different machine learning algorithms, including Linear
Regression, Polynomial Regression, Decision Tree Regression, Support Vector Regression, Random Forest
Regression, Long Short-Term Memory, and Multilayer Perceptron Regression, are considered in the study.
Various comparative performance analysis is conducted for both normal and uncertain cases and found that
Random Forest Regression performed better for our dataset. The impact of data normalization on forecasting
performance is also analyzed using multiple performance metrics. The study may help the grid operators to
choose an appropriate PV power forecasting algorithm and plan the time-ahead generation volatility.

INDEX TERMS Artificial intelligence, machine learning, power systems, PV power forecasting, renewable
energy, statistical regression.

I. INTRODUCTION
A. OVERVIEW
Traditionally, electrical power generation systems are domi-
nated by fossil fuel-based generators. However, due to their
negative consequences on the environment, the power indus-
try now focuses on alternative green energy-based generation
systems [1]. So, in recent years, there is a fundamental shift
towards deploying various renewable energy sources, includ-
ing solar, wind, tidal, and biomass energy. The mass adapta-
tion of these renewable energy sources, especially small and
large-scale photovoltaics (PVs) has some environmental and
economic benefits [2]. However, the PVs’ intermittent nature
makes it a highly volatile generator, which poses a significant
challenge for the grid operators. Due to their high variabil-
ity of active power, grid operators put some restrictions on
solar farms while participating in the energy market and
restrict the penetration of roof-top PVs in themedium-voltage
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distribution networks [3]. Most of the energy markets are
a day ahead, and for that reason, grid operators require to
make the day-ahead unit commitment and economic dispatch
decisions [4], [5]. As PV power is highly volatile and can vary
between zero to a hundred per cent, the grid operators act in
a conservative way to avoid any contingencies while taking
power from solar farms [4]. So, it is critical for all parties
in the power industry, especially the grid operators, to know
the forecasted output of the PV active power to plan their
spinning and regulating reserves optimally. However, solar
farms’ output is highly dependent on various weather param-
eters, including temperature, solar irradiance, precipitation,
humidity, and so on [6]. While predicting the day-ahead PV
power, these environmental parameters’ forecasted values
contain a substantial percentage of random errors. So, it is
essential to consider all influencing factors while predicting
solar power and offering it to the energy markets [6].

Recently, several countries, including Australia, have
accelerated the integration of PVs in their low and medium
voltage networks. Due to its convenient geographical
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location, Australia receives an average of 58 million peta-
joules (PJ) of solar radiation per year [7]. It also has the
highest uptake of solar energy globally, with more than 21%
of homes with rooftop PVs, according to the data revealed
on 30 June 2020 by the Department of Industry, Science,
Energy and Resources, Australia [8]. Solar energy usage is
expected to show a strong upward trend with an increment of
5.9 per cent per year to 24 PJ in 2029–30 [7].

As solar power adaptation is accelerating in Australia,
the level of generation volatility in the power systems is
also increases. So, various regulatory and research organi-
zations including the Australian National Electricity Market
(NEM), Australian Energy Market Operator (AEMO), and
Commonwealth Scientific and Industrial Research Organi-
sation (CSIRO) studied solar energy forecasting for a reli-
able power systems operation [9]. AEMO is responsible for
managing the national electricity market, including the south-
ern and eastern parts of Australia [10]. However, AEMO
does not deal with the electrical systems in Alice Springs,
where average solar radiation is significantly higher than
the southern and eastern parts of Australia [7]. Much of the
previous studies on solar forecasting were conducted on a
broad time scale ranging from minutes to months and years.
They can be generalized into three different time horizons,
e.g., short, medium, and long-term [11]–[13]. Various sta-
tistical and numerical approaches [9], and a combination of
two, also known as a hybrid model [14], [15] were applied
in the forecasting. Various input parameter, mostly weather
and physical arrangements of the PVs, including module
type, angle, power ratings, and efficiency, are considered in
the analysis. Most of these physical arrangement data are
guided by the manufacturers, where weather data are col-
lected from the adjacent weather stations. Sometimes mete-
orological data are used for long-term forecasting. Some
studies focus on various meteorological weather forecasts,
including cloud cover, irradiance, and temperature [5], [6].
Several prior works also reported PV energy forecasting using
module-specific information and weather behaviour [7], [8].
In some studies, the meteorological data-driven approach is
used for PV power generation forecasting. Few studies [16],
[17] considered power demand and roof-top PV forecast-
ing and their percentage errors to investigate their impact
on domestic energy management. A study [11] presented a
detailed comparative analysis between machine learning and
meta-heuristic methods to help researchers choose appropri-
ate forecasting techniques based on their objectives. In recent
years, various machine learning approaches including artifi-
cial neural networks (ANN), convolutional neural networks
(CNN), recurrent neural network (RNN), deep learning, and
long and short-term memory (LSTM) are getting attention to
forecast intermittent renewable energy generation [9], [11],
[12]. The forecasting model proposed by authors in [7] used a
combination of astronomical, historical, and meteorological
data to improve the accuracy of the prediction. Authors in
[18] proposed a forecasting model using CNN and LSTM.
Under Australian Solar Energy Forecasting System (ASEFS),

a thorough localized study used various machine learning
techniques for five minutes to six days ahead of PV power
generation prediction [9]. In March 2014, they reported that
one hour-ahead normalized mean absolute error (NMAE)
for Black Mountain area was 7.72%. The report [9] also
shows that performance varies at a different time, season and
location. Although a significant number of forecasting studies
are conducted, the effectiveness of the prediction is highly
dependent on the datasets which varies across place, time
and season. So, a high performing approach in a particular
location may not be performing as expected in another area.

B. MOTIVATION
Traditional power systems are mostly based on synchronous
power generators and can provide a certain level of iner-
tia and spinning reserve capability to the grid. The inertia
and spinning reserve maintain the grid security and strength
during any minor or major contingency events. However,
PV power generators are asynchronous and are designed
to provide synthetic inertia. Sometimes during disturbances,
the phase-locked loop (PLL) of the grid following inverters
loses synchronization and pushes the PV power generation
out of the grid, so it cannot provide any synthetic inertia
support. On the other hand, due to the intermittent nature and
asynchronous generation volatility, grid operators conserva-
tively operate solar farms through multiple constraints. For
a secure and reliable day or hour-ahead electricity dispatch,
the grid operators need to know the capacity forecast of solar
farms and plan the appropriate spinning reserve. When the
solar power generation forecasting is not accurate, the grid
operators must constrain their output or otherwise compro-
mise the system’s security and stability. During any cloud or
storm events, the PV power output drops quite significantly.
So, in the absence of an adequate spinning reserve, the grid
operators need to choose the under-frequency load shedding.
Therefore, it is crucial to get accurate PV power forecasting
for a reliable and secure power grid.

C. CONTRIBUTION
The objective of this study was to investigate the PV
power generation forecasting in Alice Springs. We attempted
to provide a survey on short and long-term PV power
prediction and comparative analysis among various exist-
ing algorithms. Considering previous studies, this research
makes the following contributions to the growing area of
literature.
• Alice Springs-specific short-term and long-term PV
power generation forecasting considering local weather
patterns and behaviour.

• Investigated the weather parameter impact on PV power
generation in Alice Springs.

• Provide a comparative study among various machine
learning algorithm and report their performance using
efficiency matrices.

• Investigate the impact of data pre-processing on
prediction performance.
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FIGURE 1. Implementation of polynomial regression over training
dataset.

II. LITERATURE REVIEW
A. NOTABLE ALGORITHMS USED IN POWER
FORECASTING
1) LINEAR REGRESSION
Linear regression is a widely used algorithm to conduct pre-
dictive analysis of continuous data by determining the set of
variables that influence significantly to estimate the outcome
variable. Linear regression is often used to forecast the impact
of changes in the dependent variable as a consequence of
the variation in the independent variable(s) by any order of
magnitude. The simplistic form of the regression equation
with a single dependent and independent variable is defined in
Equation 1, where c, b, X , and Y denote constant, regression
coefficient, independent variable, and estimated dependent or
target variable respectively.

y = c+ b · x (1)

Linear regression neither requires much time nor space
overhead. This algorithm can be applied to most of the
datasets [19]. There are several variants of it such as simple
linear regression, multiple linear regression, logistic regres-
sion, ordinal regression, multinomial regression, and discrim-
inant analysis.

2) POLYNOMIAL REGRESSION
Polynomial regression is utilized in scenarios where the rela-
tionship between the target and the independent variable is
not linear. If the data distribution is complex as depicted
in Figure 1, straight lines might not capture patterns of
the data. Therefore, unlike the linear equation, polynomial
equations depicted in Equation 2, is more suitable to cap-
ture the data distribution. In the equation, θ0 denotes bias,
θ1, θ2, . . . , θn denote the weights, and n denotes the degree of
polynomial regression. n determines the order in the equation.
Increasing n yields higher-order terms that turn themodel into
a more complex form. A complex model can usually avoid
underfitting issue.

Y = θ0 + θ1x + θ2x2 + θ3x3 + . . .+ θnxn (2)

A polynomial regression is trained for n = 1, 2, 3 on
the considered dataset. The performance of the regression is
shown in Figure 1. According to the figure, linear regression

(n = 1) fails to fit the data. On the other hand, the regression
line captures the data complexity with minimal prediction
error for n = 3. However, this affects the generalization
capability of themodels because of probable overfitting issue.
Hence, it is recommended to consider such a degree that nei-
ther causes underfitting nor overfitting issues. The regression
performs well on the dataset when n = 2.

3) DECISION TREE REGRESSION
Decision tree regression observes features of an object and
trains amodel as a tree-like structure to predict upcoming data
and generates meaningful continuous output. The regression
is useful when the target variable is continuous. In addition,
it works well compared to other regression algorithms when
there are missing features in the dataset, a mixture of categor-
ical and numerical features, and large differences in similar
features [20], [21].

A decision node contains two or more branches that rep-
resent values for the attribute tested. The value of leaf nodes
is the mean of the observations falling in that region. There-
fore, if an unseen data point falls in that region, we predict
using the mean value. Commonly, popular regression algo-
rithms such as linear or polynomial would not be able to
fit such discrete datasets, whereas decision tree regression
performs well. Decision tree regression is suitable for the
datasets that contain both non-linearity and non-continuity,
as well.

4) SUPPORT VECTOR REGRESSION
Support vector regression (SVR) is one of the widely adopted
regression techniques because of its advantages over complex
data distribution. The regression is based on the concept of
support vector machine (SVM) that tries to find an optimal
hyperplane that can classify datapoints in an N-dimensional
space. SVM can be used with the datapoints of binary classes
even the datapoints are non-linearly separable in two dimen-
sional space. Hence, SVM applies a kernel to transform
the datapoints into a N-dimensional space where the classes
can be separated linearly. To look for an optimal hyper-
plane, SVM determines support vectors that are basically two
marginal datapoints of different classes. Support vectors are
selected considering that the hyperplane should be positioned
at the least possible distance from both of them. In Figure 2,
we show a high-level overview of applying SVM to the
example data.

SVR differs from SVM since SVM is used to predict
discrete class labels, whereas SVR is a regressor that is used
to predict continuous ordered variables. In simple regression,
the error rate between prediction and the actual value is
minimized. SVR tries to fit the error within a certain thresh-
old. Based on the predefined threshold, it creates a bound-
ary space. SVR considers the datapoints that are within the
boundary to provide a better fitting model. Support Vectors
help determining the closest match between the data points
and the function used to represent them. The following steps
are required to apply SVR to the training dataset:

VOLUME 9, 2021 46119



K. Mahmud et al.: Machine Learning Based PV Power Generation Forecasting in Alice Springs

FIGURE 2. A high-level overview of applying support vector machine to
example datapoints.

1) Kernel function selection with its parameters and
any regularization if required. Inappropriate choice of
kernel affects the regression model.

2) Creation of correlation matrix.
3) Training the model to get the contraction coefficients

α = αi
4) Estimator creation using the coefficients.
Equation 3 is used to apply SVR on the training datapoints

when they are linearly separable.

y =
N∑
i=1

(αi − α∗i )· < xi, x > +b (3)

Equation 4 is used to apply SVR on the training datapoints
when they are non-linearly separable, where K (x, y) denotes
kernel function.

y =
N∑
i=1

(αi − α∗i ) · K (xi, x)+ b (4)

One of the notable advantages of SVR over other regres-
sion algorithms is that it can improve prediction accuracy by
calculating confidence in classification. Moreover, in com-
parison with other algorithms, SVR is computationally less
intensive.

5) RANDOM FOREST REGRESSION
Random forest regression is based on ensemble learning
method that combines predictions from multiple machine
learning algorithms to generate more accurate predictions
compared to a standalone model. The following steps are
required to perform random forest regression over the training
dataset:

1) At first, k number of datapoints are chosen from the
input (training) dataset, X

2) A decision tree is built that is associated to these k
datapoints.

3) Steps 1 and 2 are repeated until generating N number
of decision trees during the training period.

4) For a new datapoint, each of the trees generates the
prediction value of y and assigns that datapoint to the
average across all the predicted y values.

Random forest regression performs well on diversified
problems with the potentiality of handling non-linear rela-
tionships. However, the overfitting issue is observed for some
datasets by applying this regression while training. In addi-
tion, it is also biased, particularly to the categorical variables
that contain more levels [22].

6) ARTIFICIAL NEURAL NETWORK
An artificial neural network (ANN) is formed by hundreds or
thousands of artificial neurons that are designed to simulate
human brain cells. The network contains a vast number of
connections that provide the output of one neuron as an input
to another. Each connection is assigned a weight that repre-
sents its relative importance. An artificial neuron can contain
various input or output connections. The neurons are classi-
cally organized into multiple layers. The layers of neurons
that receive data and provide the ultimate result are the input
and output layer, respectively. In between the input and output
layers, there exist one or more hidden layers. Hence, such
vanilla implementation of ANN is also referred as multilayer
perceptron (MLP). Multiple layers and non-linear activation
can classify data that are not linearly separable.

Commonly, MLP initializes a training phase where it
learns to detect patterns in data, either visually or textu-
ally. The network compares its produced (predicted) outputs
with the desired (actual) ones throughout the training phase.
Later, the difference between the actual and predicted outputs
is adjusted using backpropagation. Backpropagation means
going from the output to the input units for adjusting the
connection weights until the difference between the actual
and predicted outputs shows the lowest possible error.

7) LONG SHORT-TERM MEMORY (LSTM)
Unlike traditional feed-forward ANN, RNN can use their
internal state to process a sequence of inputs. However,
vanilla RNN leaves out important information regarding long
sequences which affects the predicted output. LSTM network
is a variant of recurrent neural network (RNN) capable of
learning order dependency in sequence prediction related
problems.

The core component of LSTM is the memory cell which
can control its state over time, consisting of explicit memory
(aka cell state vector) and forget, input, and output gate.
Forget gate controls what information should be deleted from
memory. It also decides how much of the past the network
should remember. The input gate controls what portion of
new information is added to the cell state from the cur-
rent input. The output gate decides what to output from the
memory cell.

B. APPLICATIONS OF COMMONLY USED ALGORITHMS
Arce and Macabebe et al., proposed a model that was
used to predict the total solar energy consumption of
the residence at each month by using linear regression,
polynomial regression, random forest regression, and SVR
algorithms [23].
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TABLE 1. A summary of the literature studies.

Their experimental result demonstrates that linear and
polynomial regressions showed significant error rates
because of the non-linear trend of the training dataset. On the
other hand, random forest regression and SVR only had
minimal error rates. Even though random forest provided the
lowest error rate, the model was unable to provide a precise
continuous predictions and subsequently, it could not predict
beyond the range of the training dataset compared to SVR.
As a result, support vector was chosen as the appropriate
model for solar energy consumption, having high accuracy
and low error rate.

Javed et al., proposed [24] a model for solar irradi-
ance prediction by exploiting linear regression, decision tree
regression, and SVR algorithms. To forecast the irradiance,
the model leveraged essential climate information consider-
ing several significant parameters such as temperature, wind,
humidity, and speed. The authors depicted that support vector
with radial basis function (RBF) ensured the highest pre-
diction accuracy. They also emphasized data preprocessing
and selection of the appropriate attributes such as dew point,
precipitation, sky cover coverage as they were responsible for
improving the performance of the prediction model.

Shapsough et al., [25] implemented linear regression-based
and neural network-based models on sensor data to estimate
the power output of photovoltaic systems. The models were
trained and validated on actual monitoring data. In addition,
to observe prediction accuracy, they also researched the
original data’s attributes to determine the effective ones. They
suggested irradiance and temporal data are sufficient to train
a model. Based on their experiments, the maximum possible
prediction accuracy of power output is about 97%. However,
according to the experimental results, the performance of one
model did not precede the other ones.

He et al., proposed [26] a model named FIG-SVQR to pre-
dict wind and solar power utilizing a modified variant of SVR
namely, support vector quantile regression. They prepro-
cessed the raw data based on fuzzy information granulation

to eliminate the fluctuation, noise, and uncertainty from data.
To compare their proposed model’s performance, they also
created a baseline version without preprocessing. They uti-
lized the Epanechnikov kernel function in FIG-SVQR and
a baseline to obtain the probability density curves of the
prediction results. Overall, the proposed model clearly out-
performed their baseline model which indicated the effective-
ness of the preprocessing step. However, to rigorously check
the efficiency of preprocessing, other regression algorithms
should be used as well.

Nageem et al., proposed [27] a forecasting model to esti-
mate the power output from a solar panel using multi-input
SVR algorithm. They investigated that any unexpected cli-
matic change could increase the error rate in prediction accu-
racy. However, one of the major drawbacks of this study is
that they compared the proposed model with a traditional
analytic approach. Moreover, their model achieved negligible
performance improvement compared to the traditional one.
Due to the lack of comparison with other regression algo-
rithms, it is not evident that the SVR-based models are the
most suitable regression for their dataset.

Qing et al., applied LSTM to predict households or small
commercials solar irradiance [28]. Their study showed that
LSTM network presented better performance than traditional
networks or regressors. The study involved 10 years of his-
torical data to predict one year of irradiance data. The imple-
mented LSTM-based model offered 18.34% improvement
in prediction and 42.9% decrement in RMSE compared to
other approaches. Although the LSTM-basedmodel provided
higher accuracy than that of other algorithms, the incurred
training time of LSTM is substantially higher than that of
other algorithms.

In Table 1, a summary of the aforementioned literature
studies is provided. Based on the studies, we conclude
that LSTM is the overall winner since it can effi-
ciently train on complex data distribution. Specifically,
in studies where neural network-based models had been
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TABLE 2. PV technology of the Array from where actual data is taken.

FIGURE 3. Relationship between temperature and PV power generation.

used, LSTM proved itself as a good competitor of such
models.

III. CASE STUDIES
A. RELATIONSHIP BETWEEN POWER AND WEATHER
PARAMETER
Various weather parameters including temperature, relative
humidity, global horizontal radiation, diffuse horizontal radi-
ation and daily precipitation are used to train the model
and predict PV power output. These weather data are taken
from the actual weather station of the solar installation site
at Alice Springs, Australia. The historical weather data and
actual PV power output of the array is provided by the Desert
Knowledge Australia Centre [29]. The PV technology of the
array that used as data source is listed in Table 2.

The relationship between PV power output and the tem-
perature, relative humidity, global horizontal radiation, dif-
fuse horizontal radiation, and daily precipitation is shown
in Figures 3, 4, 5, 6, and 7. The temperature has a propor-
tional relationship with the PV power generation as shown
in Figure 3, while humidity shows inverse relationship as
represented in Figure 4.

As the PV cells function based on the sunlight, the radiation
from the sun is represented in a few different ways including
global horizontal radiation (also known as Global Horizontal
Irradiance (GHI)) and diffuse horizontal radiation. Global
horizontal radiation is calculated as the total amount of short-
wave radiation received by a surface horizontal to the ground,
where diffuse horizontal radiation does not arrive directly

FIGURE 4. Relationship between relative humidity and PV power
generation.

FIGURE 5. Relationship between global horizontal radiation and PV
power generation.

from the sun, but scattered by particles in the atmosphere
[30]. So, both global and horizontal diffuse radiation are
important for PV power generation. Based on the analysis
of the selected dataset as represented in 5 and 6, it is found
that the Global Horizontal Radiation and Diffuse Horizontal
Radiation has a strong proportional relationship between PV
power output. On the other hand, the precipitation in Figure 7
does not show any dominant relation with the PV power
output.

B. FORECASTING OUTPUT
The forecasting is carried out using Python programming
language with various library functions such as scikit-learn,
keras, pandas, and numpy. The PV power prediction in com-
parison to the actual output, using LR, PR, SVR, RFR, and
DTR are shown in Figure 8.
Figure 8 represents the long-term PV power forecasting

performance. Both actual and predicted data are calculated
for one year with five minutes intervals resulting in 105120
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FIGURE 6. Relationship between diffuse horizontal radiation and PV
power generation.

FIGURE 7. Relationship between daily precipitation and PV power
generation.

FIGURE 8. Long-term PV forecasting for weekly data interval and one
year duration.

data points in total. Since, the number of data points are
too many to show them in a single graph, we take one ran-
dom data point from each week as shown in Figure 8. The
line graphs of individual algorithms are shown separately in
Figures 9-13. The figures show a mixed performance spec-
trum in the considered time horizon and data landscape. RFR,
PR, and DTR show better performance than SVR and LR.

FIGURE 9. Long-term PV power forecasting using DTR.

FIGURE 10. Long-term PV power forecasting using SVR.

FIGURE 11. Long-term PV power forecasting using LR.

Although RFR, PR, and DTR perform better in predict-
ing the PV power profile, they could provide unexpectedly
higher peaks during maximum PV power generation time.
However, their prediction performance during lower power
generation time is noteworthy. On the other hand, LR and
SVR show lower forecasting efficiencies for both the lower
and upper power generation range. The performance matrix
for one-year data points is listed in Table 3 and Table 4.
A medium-term PV power forecasting considering a week

time horizon and all 5-minute time interval data points is
shown in Figure 14. For a better graphical representation,
all data points at nighttime (which are zero) are omitted.
The figure shows that the SVR has higher efficiency but
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FIGURE 12. Long-term PV power forecasting using RFR.

FIGURE 13. Long-term PV power forecasting using PR.

TABLE 3. Comparison of performance matrices between various
algorithms using normalized data.

TABLE 4. Comparison of performance matrices between various
algorithms using un-normalized data.

DTR and LR perform poorly. The forecasting performance
representation using line graphs is further narrowed down to
a short-term scale, i.e., a 24-hour time horizon, and shown
in Figure 15. The figure showed all 5-minutes interval data

FIGURE 14. Medium-term PV power generation forecasting.

FIGURE 15. Short-term PV power generation forecasting.

points for 24 hours. The performance is discussed using
various standard matrices in Section III(C).

C. FORECASTING PERFORMANCE DURING UNCERTAINTY
PV power forecasting is necessary for grid operators to under-
stand the capacity of the intermittent asynchronous gener-
ators and manage their daily operations through a reliable
and economic unit commitment (UC). However, it is crucial
to know the generation volatility of PVs during the rapid
changes of environmental parameters. This section inves-
tigates the forecasting performance during PV power gen-
eration fluctuation conditions. Two types of fluctuations,
medium and fast fluctuation, are selected to investigate the
forecasting performance during uncertainty. From the study,
it is found that during medium-level of uncertainty LR, PR,
and RFR perform better than DTR, whereas SVR performs
poorly and even becomes negative during zero output cases,
as shown in Figure 16. During the higher-level of uncertainty,
SVR and DTR struggle to follow the fluctuating tracks, while
LR and PR perform better to track the profile, as shown
in Figure 17.

D. COMPARISON OF PERFORMANCE MATRICES OF
FORECASTING ALGORITHMS
The performance of the considered forecasting algorithms
is analyzed using various performance matrices including
R2 score, mean absolute error (MAE), mean squared error
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FIGURE 16. Forecasting performance during medium fluctuation case.

FIGURE 17. Forecasting performance during fast fluctuation case.

(MSE), median absolute error (MedAE) and explain variance
score (EVS).

The R2 score is represented as the measure of the ratio
of variability that the model can capture vs the natural vari-
ability in the target variable. Ideally, a value closer to 1 is
better. The mean absolute error (MAE), mean squared error
(MSE), and median absolute error (MedAE) are calculated
with comparison to the forecasted and actual values. Smaller
values mean better prediction performance. Variance score
closer to 1 represents the discrepancies between a model and
actual data. From the performance analysis, it is found that the
training data normalization for prediction performs slightly
better than the training data without any normalization.

In terms of MAE and MSE, as shown in Table 3 and
Figure 18, LSTM and MLP show poor performance, while
PR and DTR had satisfactory outcomes. RFR, according to
these two measures of error, are the optimum performer, with

FIGURE 18. Mean absolute and mean squared error representation with
normalized data.

FIGURE 19. Median absolute error (MedAE) representation with
normalized data.

an improvement of close to 34% from the averages of PR and
DTR. Lower values indicate better performance.

Figure 19 shows quite the opposite trend when it comes
to MedAE, where DTR and RFR have not demonstrated any
strong outcomes at all whereas PR has been the top performer
showing the least MedAE. LT and SVR achieve reasonably
satisfactory outcomes as these are quite close to PR. Lower
values indicate better performance.

EVS and R2 (scores are in Table 3) show the same trends,
where RFR demonstrates the best results while MLP is
the least desirable, as shown in Figure 20. Values close to
1 indicate better performance.

In terms of MAE and MSE (Figure 21) for un-normalized
data, PR and SVR demonstrate unsatisfactory performance
while LT and DTR are acceptable outcome. RFR, according
to these twomeasures of error, is the optimumperformer, with
an improvement of over 42% from the averages of LT and
DTR. Lower values indicate better performance.

Figure 22 visualizes the opposite trend when it comes to
MedAE, where DTR and RFR have not demonstrated any
strong outcomes whereas SVR is the top performer showing
the least MedAE. LT and PR achieve an average outcome.
Lower values indicate better performance.

According to Figure 23, EVS and R2 show trends that are
similar to MSE. According to the figure, RFR demonstrates
the best results but SVR performs worst. Values close to
1 indicate better performance.

Figure 24 represents a comparison with the average results
for each metric obtained with or without normalization.
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FIGURE 20. Explain variance score and R2 representation for normalized
data.

FIGURE 21. Mean absolute error (MAE) and mean squared error (MSE)
representation for un-normalized data.

FIGURE 22. Median absolute error (MedAE) for un-normalized data.

Clearly in all respects, normalization achieves good
performance.

Various performance matrices listed in Table 3 is further
categorized based on their efficiencies, as shown in Figure 25.
For our dataset, it is found that RFR delivers the highest
efficiencies, while MLP has the least performance. Besides,
PR has also demonstrated commendable performance as it
was close to RFR in multiple observations. DTR has per-
formed reasonably, however, with compromised reliability.
On the other hand, SVR, LT and LSTM performed poorly
under most of the measurements. The figure portrays the
stronger performances of multiple general machine learning
algorithms over the Deep Learning counterparts in predicting
our target variable. The current research is conducted using 5-
minutes granular datasets. However, a higher granular dataset
may provide a better prediction performance.

FIGURE 23. EVS and R2 representation for un-normalized data.

FIGURE 24. Comparison of results between Normalized Data and Data
without Normalization.

FIGURE 25. Algorithms based on their performance.

E. IMPACTS OF THE PV POWER FORECAST IN POWER
SYSTEMS
For a reliable and secure operation of power systems, it is
essential to have full information about the networks and
generators. The grid operators access all substation busbars,
transformers, protection devices’ status, network voltage, fre-
quency, and spinning reserve conditions using Supervisory
control and data acquisition (SCADA), as shown in Figure 26.
Likewise, the grid operator also uses synchronous generators
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FIGURE 26. Significance of the small-scale PV power forecasting in power
systems.

capacity forecast for a secure and economic unit commit-
ment (UC). However, small-scale power generators such as
roof-top photovoltaics are usually intermittent and are usually
stationed behind the meter. So, they largely remain unmon-
itored and uncontrolled for grid operators. If there are few
roof-top PVs, their impacts are negligible for a bigger grid.
However, their higher penetration can impact grid stability
and security if grid operators cannot forecast their behaviour.
As Alice Springs is a geographically solar energy enriched
area with a smaller grid size, it is crucial to precisely forecast
the small-scale behind the meter and unmonitored PVs and
get their penetration status in aggregated form. This research
will help the grid operators understand the short, medium to
long-term aggregated PV power generation and plan the grid
security and reliability options.

IV. DISCUSSION AND CONCLUSION
The purpose of the current study was to provide a machine
learning-based short-term and long-term PV power gener-
ation forecasting for Alice Springs, Australia. A compar-
ative analysis using various machine learning approaches,
including Linear Regression, Polynomial Regression, Deci-
sion Tree Regression, Support Vector Regression and Ran-
dom Forest regression, Long Short Term Memory and Multi-
layer Perceptron Regression, is provided. Detailed analysis
of various performance matrices such as R2 score, mean
absolute error, mean squared error, median absolute error
have been calculated. An analysis of the potential impacts
of weather parameters on PV power prediction reveals that
the relative humidity, temperature, diffuse horizontal radi-
ation, and global horizontal radiation substantially impact
PV power output, where daily precipitation appears to be a

less significant dominating factor of PV power prediction.
For the short-term PV power generation forecast, the cloud
covering condition is a crucial parameter. However, we could
not verify the algorithm’s performance under cloud-cover or
fast cloud moving conditions due to the data unavailability.
In the actual implementation, incorporating this cloud status
data in the training set may change the forecasting perfor-
mance reported in this research. A comparative study with
and without pre-processing shows that machine learning with
data pre-processing performs better than the approach that
directly feeds raw data to the engine. While pre-processing
the historical PV outputs, non-zero values during night time
are filtered, and it has improved the forecasting performance
substantially. The short-term PV forecast requires forecasted
weather parameters. This study could not test its performance
using predicted weather values due to the data unavailability,
and it might degrade the forecasting performance during real
implementation. Besides, the time horizon based on which
performance matrics are considered consists of both day and
night time. However, PV has no active power output during
night time. So, the exclusion of night-time output from the
calculated time horizon may degrade performance matrics
slightly. The insights gained from this study may be of assis-
tance to plan long term renewable and non-renewable energy
generation mix. Further work needs to be done to understand
the large- scale PV power generation forecasting for panels
with maximum power point tracking.
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