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ABSTRACT Transmitting and storing large volumes of dynamic / time series data collected by modern
sensors can represent a significant technological challenge. A possibility to mitigate this challenge is to
effectively select a subset of significant data points in order to reduce data volumes without sacrificing the
quality of the results of the subsequent analysis. This paper proposes a method for adaptively identifying
optimal data point selection algorithms for sensor time series on a window-by-window basis. Thus, this
contribution focuses on quantifying the effect of the application of data selection algorithms to time series
windows. The proposed approach is first used on multiple synthetically generated time series obtained by
concatenating multiple sources one after the other, and then validated in the entire UCR time series public
data archive.

INDEX TERMS Data selection, machine learning, optimization, time series.

I. INTRODUCTION
Fine grained, high temporal resolution sensor dynamic data is
often useful for short-term forecasting and visualization [1].
However, communication latency, bandwidth constraints,
high energy consumption and storage requirements for such
data can be problematic [2]. Reducing the amount of data
to be transmitted can help control latency time and save in
energy consumption and storage [3].

A key challenge in the setup of point selection method-
ologies is reducing the size of the transmitted data without
sacrificing its quality. A natural solution is to compress the
data at the sensing devices, monitoring in real time the error
introduced by this process. When adaptive point selection
strategies are used [4], the objective is to select a subset
of data points with a well-defined number of items to be
transmitted periodically. Then, the effect of this compression
methodology on subsequent data analysis and exploitation
processes can be studied, for instance considering the differ-
ence between the recovered and the compressed versions of
the data for a given original time series.

Blalock et al. [5] describe desirable properties of the com-
pression algorithms:
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1) Minimal buffering: on devices with small memory
capacities, only small time windows can be used before
data is compressed. Furthermore, large buffering can
add unacceptable latency.

2) High decompression speed: decompression of data in
order to recover the time series for other parts of the
service such as visualization and machine learning
applications needs to be quick.

3) Losslessness: noise and oversampling of data vary with
time and depend on application. The compression is
seen as a preprocessing step that is application specific.
Using lossless compression algorithms ensure that the
data could not depend on previously defined prepro-
cessing strategies.

On the one hand, most work on compressing time series
has focused on lossy techniques. Classical approaches for
data compression include Fourier transforms [6], wavelets
transforms [7], symbolic representation [8] and piecewise
regression [1], [9].

The Fourier transform is a tool widely used for spectral
analysis, signal filtering and compression. This transforma-
tion is adequate for analyzing the components of a station-
ary signal, as the sinusoidal components are propagated in
all the time domain. For non-stationary signals the Fourier
transform analysis is not appropriate because it is not able to
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maintain any localized information of a signal. Wavelets are
oscillations that decay quickly allowing an adequate analysis
of non-stationary signals [10]. A common application of these
transformations is signal compression. A threshold is defined
and components with smaller value than the threshold defined
are removed. Thus, after reconstruction by inversion formulas
the signal maintains its original shape [11].

Symbolic representation approaches are designed to pre-
serve enough information about the time series to support
indexing or specific data mining algorithms, rather than
to compress the time series per se. In order to change to
symbolic compression, dimensionality reduction is usually
applied by a window aggregation function such as piece-
wise aggregate approximation. Later, the variable values are
normalized. Defining the aggregate functions implies not
being able to reconstruct the signal easily, which amounts to
losing the original measured data points. Finally, a symbol is
selected depending on the range of values that it maps to.

Piecewise regression techniques divide a time series into
fixed-length or variable length intervals and describe them
using regression functions. As for regression functions,
all types of functions can be used in principle. However,
low-order polynomial functions, particularly constant and
linear functions, can be estimated efficiently and are used
frequently [12].

Yang et al. [13] propose using clustering techniques to
group time series by similarity. A workload distribution strat-
egy can be taken using this cluster division saving time in
processing the compression. Then, each of the time series is
compressed using autoregressive models.

Classical compression techniques reduce the volume of
data by using transformations, regression models or aggrega-
tions functions. The result of the transformations, the parame-
ters of the regressionmodels or the symbolic representation of
the aggregated values are stored to represent the signal. None
of the data points measured are transmitted and the signal
representation is dependent on the efficacy and adequateness
of the compression methodology used.

On the other hand, lossless compression techniques use
binary encoding for the representation. Pelkonen et al. [14]
propose a compression algorithm that maintains the full
representation of time series. It compresses separately the
timestamp and the value of the data point. The timestamp
part employs an efficient delta-of-delta encoding, while the
measurement part uses a XOR’d floating point approach. The
strategy of Blalock et al. [5] employs the predictability of a
data point to obtain an effective encoding of the difference
between the predicted values and the original one. This is
done in order to take advantage of the correlation between
continuous data samples.

Vestergaard et al. [15] propose a two step compression
technique that allows advantages in terms of random access.
First, in the preprocessing step the system determines the
adequate values of the input parameters of the compression
technique, such as number of samples in a chunk, using part
of the data for the training. Then, the time series is divided

in chunks and compressed separately, implying no need to
decompress complete the time series for a random access.

Lossless compresssion techniques help reducing the vol-
ume and storage of data to be transmitted and satisfy all
the properties above mentioned. However, the compressed
version of the signal cannot be used for visualization, control
or analytic applications directly, as all the data points are
saved with the same quality, only the encoding time series
data has been optimized to save storage.

An alternative to compressing techniques is using point
selection algorithms to reduce the data volume. These tech-
niques aim to select the most significant or representa-
tive points. One option apart from selecting points from a
regular sampled signal would be using adaptive sampling
methods [16]. These approaches study the level of variance
between the collected data over a certain time frame and
dynamically adjust the sampling frequency of the device.
Adaptive sampling approaches work well in applications
where the collected time series are stationary. In the case of
quickly varying data, these approaches perform poorly.

It is desirable to be able to compress time series from
stochastic processes into streams with constant or limited
length in order to meet memory capacity limitations. To the
best of our knowledge, there has been no reported work on
time series compression with rate adaptability and the ability
to flexibly preserve different characteristics of interest of a
given time series. In this sense, the contributions put forward
by the present paper are:

1) The idea of combining different data points selection
methodologies using their potential in the current signal
window.

2) A definition of errors for the determination of the opti-
mal data points selection methodology in each moment
and for different characteristics of interest relative
depending on the envisaged application

3) An algorithm that implements the above methodology.

The proposed approach searches, inside a defined set
of point selection algorithms, the optimal solution for the
actual time frame of the time series. The adequateness of the
selected algorithm can be evaluated and monitored in time to
guarantee the quality of the compression technique.

Even if this compression strategy is lossy, monitoring the
compression allows controlling window sizes and deciding
when to retrain the point selection model in order to adjust it
to the current characteristics of the signal.With this approach,
the above mentioned desired properties of compression sys-
tems can be controlled by the user. This process is shown
in Figure 1.

This methodology has been validated with several synthet-
ically generated time series and with all the datasets available
in the UCR Time Series Classification Archive [17]. The
proposed approach is capable to adapt to the dynamics of the
time series effectively using different error functions.

The rest of the paper is structured as follows. Section II
introduces the available point selection methods. Then,
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FIGURE 1. Adaptive optimal point selection method process. First,
the training data is selected and multiple point selection methods are
applied. Then, the optimal algorithm is selected and introduced in the
system as subsampling method. Finally, the errors are monitored in the
process and if a model drift is detected, the point selection model is
retrained.

the methodology and the proposed approach are explained in
section III-A. Next, an example is shown in order to demon-
strate its usefulness in section III-B. Section IV provides
a description of the experiments setup, whereas section V
shows the results of those experiments. Finally, conclusions
and future work are presented in section VI.

II. THEORETICAL BACKGROUND
Consider a time series signal which is sampled with a con-
stant frequency. Due to system limitations, for example with
respect to memory, not all captured points can be stored,
and therefore a data point selection methodology needs to be
applied.

One possible classification of the data points selection
algorithms is to consider the way in which those are
applied [18]:
• Algorithms that work in batch mode: the data is pro-
cessed in group or batches. The algorithm is used only
when the batch or group is complete. This can require
fewer network resources than online systems.

• Algorithms that work in online / streaming mode: when
a new point arrives to the system the data points selection
methodology is applied directly. A previously saved
snapshot representing the (e.g. statistical) properties of
previous points and the most recently received points
need to be available in order to decide if the actual
received point is saved.

Other possibility was proposed byKeogh et al. [4], a classi-
fication for data point selection algorithms based on the point
selection strategy they adopt:
• Selection of the best representation of the time series
with a maximum error at each point (local error) less
than a certain value (max_error).

• Selection of the best representation of the time series
with a maximum combined error by all the segments
(global error) less than a given value (max_total_error).

• Selection of the best representation of the time series
using k − 1 segments (or equivalently k points).

In sections II-A, II-B and II-C different point selection
algorithms found in the state of the art are explained using
the above mentioned classification system.

A. DATA POINTS SELECTION USING A MAXIMUM
VALUE FOR LOCAL ERRORS
A review of classical data point selection methodologies
based on a maximal error value in a point of the time series
is described in Watson et al. [19]. All the strategies work
in online mode and depend on a maximum error threshold
(max_error) that should be indicated by the user. This input
value is defined using background knowledge such as sensor
limitations or a variable noise scale. The appropriate selection
of a threshold value guarantees that no important information
is lost in the data point selection procedure.

The boxcar algorithm makes a selection of a point when
the current value differs from the last saved value by an
amount greater than or equal to the determined maximum
error threshold bound for that variable. The last processed
value before the one which exceeds the limit should be saved.

The backward slope methodology projects the error bound
into the future on the basis of the line formed by the previous
two data points. The first data point is selected if the second
value lies outside the error bound. Once a new data point is
recorded, the new line and the error bound are projected into
the future, repeating the same strategy.

The swinging door strategy is similar to the one considered
by the backward slope algorithm, except that the error bound
is based on the slope of the line between the first and the cur-
rent data point. When the current data point has exceeded the
error bound defined, the data point at the previous time index
is selected. Then the error bound and line are recalculated and
the algorithm is repeated.

Keogh et al. [4] propose two point selection strategies
that work in an iterative mode. Therefore, a fixed buffer or
window size is needed in these cases, i.e, these strategies work
in batch mode.

The top-down strategy starts considering all the segments
between adjacent points. Then, the algorithm continuous
merging contiguous segments by removing the intermediate
point, i.e., the common extreme of the contiguous segments,
that adds a minimal error value from all the possibilities. This
is done in a iterative way and until the max_error value is not
exceeded.

The bottom-up strategy starts instead with a unique seg-
ment defined by the two extreme points of the time series
(first and last in time index). The algorithm adds points to the
selected set in an iterative. Each time the point that have the
greatest error in the actual representation of segments is added
in the set and the segments are recalculated. This is done until
the error committed is less than the max_error value.

These two strategies are adapted to the specific cases
detailed in sections II-B and II-C by specifying different
stopping criteria.

B. DATA POINTS SELECTION USING A MAXIMUM
TOTAL ERROR VALUE
In the case of data points selection using a maximum total
error value, a total error is calculated each time using an

44392 VOLUME 9, 2021



A. Gil et al.: Towards Smart Data Selection From Time Series Using Statistical Methods

aggregation function from total errors. That value is used and
points are added to the selected set while the total error value
is higher that the defined limit max_total_error.

C. DATA POINTS SELECTION USING MAXIMUM
NUMBER OF SEGMENTS
The algorithms detailed in this section work in batch mode.
In the case of data points selection usingmaximum number of
segments, a fixedwindow in time series data is used as a batch
and from there a maximum number of points k is selected
to be part of the compressed signal. The value k should be
defined by the user taking into account the limitations of the
system, such as memory limits. The following paragraphs
detail different algorithms with this objective.

The different versions of the largest triangle algorithm [20]
are based on the use of the effective area of the data points:
the significance of a point is indicated by the area of the
triangle formed with its two adjacent points. Depending on
how the adjacent points are selected or how the buckets are
constructed, three different algorithms are generated.

• Largest-triangle-one-bucket (ltob): first, the effective
areas for each point is calculated using prior and pos-
terior data points in the time series. Then, k buckets are
generated splitting the time series with approximately
equal number of points in each of them. From each
bucket the data point with the largest effective area is
selected. In order to guarantee that the first and last point
of the time series are selected, extreme buckets only
contain those points.

• Largest-triangle-three-buckets (lttb): in this case,
the effective area of a point does not depend on the
position of its two adjacent points as in the previous case,
it takes into account all data points from previous and
posterior buckets. For that, first buckets are generated in
the same way as the previous version of the algorithm
(each bucket with nearly equal quantity of data points,
except for extreme buckets that only contain the first
an the last data points). Then, the effective area of each
point is calculated using the mean value of data points
from the posterior bucket and the data point selected
from the previous bucket. Finally, the point with largest
effective area is selected in each bucket.

• Largest-triangle-dynamic: this version of the algorithm
does not rely on equal size buckets, but the buckets are
generated in a iterative mode, starting from default buck-
ets (equally sized). In order to determine which bucket
needs to be larger or smaller, a linear regression model
is fitted with the data points in each the bucket, the last
data point of the previous bucket and the first point of the
posterior bucket. Then, the fitted linear model validity
is measured by the sum of squared error (SSE). Later,
the bucket with the maximum SSE is divided in two
and the bucket containing the minimum error is merged
with one of its adjacent buckets (the one with minimum
error option), guaranteeing that the number of buckets

continuous to be equal to the limitation of the maximum
number of selected points k . After each iteration, as new
buckets are generated, linear regression models need to
be recalculated. After a certain number of iterations,
when the buckets sizes have become stable (or with simi-
lar SSE values), largest-triangle-three-buckets algorithm
is used to calculate the effective area of each data point,
finally selecting the most meaningful data point from
each bucket.

The mode-median-bucket (mmb) [20] algorithm uses the
mode and the median values of data points in each bucket
in order to select a point from it. The data points are split
into buckets that contain approximately the same number of
data points. Then, each bucket is studied separately. If there
is a unique mode in the bucket, the leftmost corresponding
data point is selected. Otherwise, the data point equal to
the median value from the bucket is selected. An exception
happens with the minimum and maximum values of the time
series, these peak points are selected directly from the buckets
that contain them, in order to guarantee the preservation of
extreme data points.

The M4 (m4a) strategy was defined by Jugel et al. [21].
First, n buckets are generated containing approximately equal
number of points. In this case, as 4 points could be selected
from each bucket, the number of buckets is equal to n =
truncate(k/4). Then, from each bucket the minimum and
maximum values from both axis (time index and data values)
are selected (hence the name M4). In some cases, the min-
imum or/and maximum point(s) in both axes can be rep-
resented by a unique data point, i.e., when the maximum
or minimum data values occur in the minimum or maxi-
mum time index of the bucket, one point could be selected
by two rules, selecting finally less quantity of points than
expected initially. Bae et al. [22] expand the m4a point selec-
tion strategy for visualization services also using gradient
values between adjacent columns of pixels to reduce more
points.

Major extrema extraction technique proposed by Fink and
Gandhi [23] consists on ranking the extrema values of the
time series and selecting the most meaningful ones. These
extremes would be the finally selected points for the com-
pressed version of the time series. They considered four types
of extrema: strict, left, right and flat. By strict they refer to
local minimum and maximum points of the time series. Left
and right are the extremes in time of a flat chunk and flat
is a inner point of the flat chunk. Then, the importance of
each type of extrema is calculated by the use of a distance
and a positive parameter that determines the compression
rate.

The simplest way to select data points from a time series
with a constant sampling frequency is to pick them using a
lower frequency value than the original one, i.e, selecting a
point each n points (oen). This algorithm takes into account
the maximum number of selected points (k) in order to select
the new frequency w (w = truncate

(
length(yo)

k

)
).
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Top-down and bottom-up strategies can be modified using
this time the length of the selected points set equal to the
number of desired selected points k as stopping rule.

III. PROPOSED APPROACH: SMART COMPRESS
In this paper, a smart data selection method based on a opti-
mization process is proposed. The aim of this optimization
problem is to select the method that minimizes the errors of
the point selection process for each feature.

First, a detailed explanation of the methodology is pre-
sented in section III-A and an example of application is shown
afterwards in section III-B.

A. METHODOLOGY
The general concept of the proposed Smart Compress
methodology can be described as follows:

1) First, the data point selection model is fitted using
training data; in other words, the fit method selects
the optimal algorithm that suits best the time series
provided in the training.

2) Then, a compressed version of the signal is obtained
by applying the fitted data selection method to the test
data.

3) Finally, the adequateness of the data selection model is
validated using the error between the original and the
recovered signal from decoding the compressed signal.

Suppose there is a time window of the selected time series
yo that needs to be compressed to be transmitted by a limited
channel. First of all, the fitting method is used to identify the
optimal data points selection method for compression. The
inputs needed for the fitting method are the data points in
the selected time window yo and a threshold indicating the
maximum number of points that a compressed version of the
signal could have (k). Then, another window of the same time
series (zo) can be used for testing the adequateness of the data
points selection algorithm by the use of the method score.
Finally, the optimal data points selection method is used for
compressing other windows of the same time series with the
predict method. This process is depicted in Figure 2.

In order to be able to compare different data point selection
methodologies, the compressed version of the time series (yc)
should have a similar quantity of selected points after the
compression strategy is applied to the original data (yo). For
this reason, the methods considered in the smart selection
algorithm are the ones described in section II-C.
The algorithm selected as the baseline is oen as it is the

simplest strategy that can be applied and the quality of the
signal can be random in some cases. Furthermore, top-down,
bottom-up, major extrema extraction and largest-triangle-
dynamic algorithms are not considered in the experiments as
the methods become very slow depending on the length of
points in the window / buffer considered and the number of
points to be selected.

The fitting process to find an optimal data points selection
model could be mathematically represented as follows:

FIGURE 2. High-level view of the Smart Compress concept. The three
available methods (fit, predict and score) are shown to indicate outputs
and inputs in each case. First, a training time series is used, together with
the parameter k , to identify an optimal points selection method (yellow
part of the diagram). Once the method is identified, this optimal point
selection is used by the score method to validate the result (shown in
orange) and by the predict method to obtain the compressed version of a
time series (shown in blue).

Suppose there is a window of the time series yo(to)
where to = [to1, to2, . . . , tom] and being m the number
of points in the selected window. Let d be a data points
selection method from the available methods set D =

{ltob, lttb,m4a,mmb, oen}. Then, the compressed version of
the time series, yc(tc), is defined by the selected data points
from yo corresponding to time indexes tc = [tc1, tc2, . . . , tcn].
The value n ≤ k where k is the maximum allowed quantity
of yc(tc).
From yc(tc) the removed data points values are recovered

by the use of linear interpolation method between available
points of yc(tc). The notation used to refer to the reconstructed
version of the time series is yr and it is defined for time
index values that where contained in the original time series
signal to.

Finally, an optimization problem is defined to select the
most adequate method for the signal. This optimization is
represented by:

argmin
d∈D

E(yo, yr ) (1)

The detail of the fit method just explained is described
graphically in Figure 3.

Depending on the purpose of the application, the most
interesting properties of the signal could be totally different.
The error functions can be defined in order to maintain these
properties of the signal. Different signal characteristics are
listed next for three different purposes:
• In visualization applications, properties such shape of
the signal, visual outliers, linear trend of data and num-
ber of peaks are important to maintain. The general
visual distortion generated from the compression can be
measured by absolute sum of changes, mean absolute
change, mean change, mean second derivative central
and complexity-invariant distance.

• In control applications, the appearance of new events
(peaks), change in signal tendency or frequency are
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FIGURE 3. Fit methodology detail. The k parameter and the time series
used for the training (yo) are the inputs of the fit method. All the points
selection methods available in D are considered separately. From each
method used, a compressed version yc and a recovered version yr of the
time series are obtained. This last time series yr is compared with yo, and
the quality of the compression algorithm is measured by the error
function. Finally, the identified optimal algorithm is saved as an inner
object of the Smart Compress system for its later use by the score and
predict methods.

important. In statistical control process applications,
values ratio beyond r times standard deviation, longest
strike above/below mean and count elements above /
below certain value need to be considered.

• For analytical proposes, outliers and statistical proper-
ties such kurtosis, maximum, mean, median, minimum,
quantiles, skewness, standard deviation and variation
coefficient are essential.

Four different error functions have been used in the experi-
ments. These error functions are selected in order to measure
the distortion generated due to the use of the point selection
algorithm. These error functions are detailed next:
• Percentage RMS difference [24]:

PRD =
(∑

(yo(i)− yr (i))2∑
(yo(i))2

)1/2

(2)

• Normalized root mean square deviation [25]:

NRMSD =

(∑
(yo(i)−yr (i))2

length(yo)

)1/2
max(yo)− min(yo)

(3)

• Mean absolute error [26]:

MeAE =
mean(abs(yo(i), yr (i))))
max(yo)− min(yr )

(4)

• Maximum absolute error [27]:

MaAE =
max(abs(yo(i), yr (i))))
max(yo)− min(yr )

(5)

B. PRELIMINARY APPLICATION EXAMPLE
The considered datasets are the ones available at the UCR
Time Series Classification Archive [17]. The Archive con-
tains 128 classification time series datasets of different types
including sensor data, simulated data, motion data from
several devices and health data such as electrocardiograph
(ECG), electrooculography (EOG) and hemodynamic data.
Depending on the dataset, either all the time series contained

FIGURE 4. yo (in blue), yr (in orange), yr − yo (in green) time series from
a synthetically generated time series. The optimal method selected by
MaAE in each window is highlighted. At right, a detailed view of a
representative time segment is added.

FIGURE 5. yo (in blue), yr (in orange), yr − yo (in green) time series from
a synthetically generated time series. The optimal method selected by
MeAE in each window is highlighted. At right, a detailed view of a
representative time segment is added.

in it have same length, or the length varies between different
time series.

Several synthetic time series are generated combining time
series from two different datasets (AllGestureWiimoteX and
UWaveGestureLibraryX) with significantly different statisti-
cal properties. The optimal method changes depending on the
error considered and the characteristics of the synthetic time
series in the time window that is being processed. Figure 4
considers MaAE, Figure 5 MeAE, Figure 6 NRMS and Fig-
ure 7 PRD. The figures show the original time series values
(blue), the recovered time series values (orange) and the error
in each point (green). The analysis window size is fixed to
200 points and from each window the maximum number of
points that can be selected (k) is fixed to 50. In each window,
the optimal method is marked with a green background.

In all cases, the method that is selected as optimal in most
of the windows is the lttb algorithm. This effect is more
notable where a mean or cumulative value of point to point
errors is used. By contrast, if the importance to extreme values
is given, for example using maximum value, when a function
such as MaAE is used, the optimal method depends more
on the local characteristics of the window studied. Thus,
Figure 4 shows that it is not a clear winner when it comes
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FIGURE 6. yo (in blue), yr (in orange), yr − yo (in green) time series from
a synthetically generated time series. The optimal method selected by
NRMS in each window is highlighted. A detailed view of the some
representative time segment is added. At right, a detailed view of a
representative time segment is added.

FIGURE 7. yo (in blue), yr (in orange), yr − yo (in green) time series from
a synthetically generated time series. The optimal method selected by
PRD in each window is highlighted. At right, a detailed view of a
representative time segment is added.

to point selection strategies, as all depends on the time series
characteristics and on the error used to measure it.

In Figure 8 the effect of the window size selection is shown.
Even if the total number of points in the complete time series
is the same, the optimal method distribution changes. In a
smaller window size, the quantity of points to select from is
reduced so the algorithm can select them quicker. Further-
more, a smaller window allows adjusting the algorithm to the
actual time series characteristics. However, a bigger window
size could help distributing the points in time in an smarter
way.

It is important, therefore, that experiments are made
with data from different origins and characteristics in order
to ensure that the selection of the algorithm does not
only depend on the error function used. For that purpose,
an extensive experimentation is needed and this is shown in
sections IV and V.

IV. EXPERIMENTAL SETUP
The experiments presented in this Section use the UCR
Time Series data archive introduced in Section III-B is used.

FIGURE 8. Effect of window size parameter in the optimal method
selection.

In all experiments, each dataset from the Archive is studied
separately. Furthermore, from each dataset, each time series
contained in the train or test set is used as an independent time
series for point selection algorithm applications.

There are two possible strategies to define window size or
batch length:

1) Based on a temporal window to schedule the data points
selection periodically

2) Based on memory limitations that raise the data points
selection algorithm when a reduction is needed.

In the particular case of having equidistant points, both
previous cases arrive into the same definition of window size
or batch length.

Time series in UCR Time Series Classification Archive do
not have a time index. Therefore, an uniformly sampled index
is used as time index of the series. As an uniformed time
sampling is used, both strategies detailed above are equiva-
lent. For each dataset, each time series is taken independently
and the objective is to reduce at least 50% of the data points
available in each of the time series. If the length of time series
is variant among the dataset, the maximum length of the time
series is taken to define the value of k in the downsampling
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FIGURE 9. Zoom of the Figures 13 and 14 that are commented in the
discussion for an easier comparison.

methodologies. Hence, k value corresponds to:

k = truncate
(
max(length(yo))

2

)
(6)

This k value was selected in order to ensure that in the inner
buckets generated by the algorithms lttb and ltob contain at
least two points. For each time series available in the dataset
the fitmethod is applied, i.e, all available point selection algo-
rithms are tried for compressing the signal and the optimal
solution is saved.

V. EXPERIMENTAL RESULTS
Tables and Figures with the results of all datasets from UCR
Time Series Classification Archive can be found in A.

For each time series from each dataset, themean error value
between yr and yo is used. Tables 2 and 3 report the mean and
standard deviation values of all the errors among datasets for
each method. The opt column presents the mean and standard
deviation values in the case of using the optimal method (min-
imal error) in each of the time series. The datasets are sorted
in ascending order starting with the dataset with the minimal
mean value of the mean of errors of all the time series con-
tained in the dataset. Similar information is shown visually
in Figure 12. Due to printable table dimension limitations,
datasets have been grouped in 8 different groups (16 datasets
per group) in the same order that appear in Tables 2 and 3
and the sum of mean errors per method are shown in the
Table 1.

TABLE 1. Grouped sum of mean errors of MeAE values obtained from
each time series for datasets from URC Time Series Classification Archive.

In general, the lttb method when using the MeAE is the
most adequate method when different datasets are grouped.
Moreover, selecting the optimal method in each time window
when the difference between yr and yo time series is greater
becomes more important. In other words, when the selecting
points are not enough to preserve all the data adequately,

FIGURE 10. Difference between yo and yr when different point selection
algorithms from D are applied to the PigCVP dataset.

FIGURE 11. Difference between yo and yr when different point selection
algorithms from D are applied to the CricketY dataset.

selecting the optimal points each time could have a greater
impact. This is shown in Table 1 as the difference between
choosing the optimal method in each window each time
(column opt of the table) or using the same method for all the
dataset (rest of the columns). The total sum of the grouped
MeAE using the optimal point selection method in each time
series is 86.939 that has nearly eight point difference com-
pared to globally optimal methodology lttb value 94.787.
Furthermore, this difference becomes much bigger when if
another algorithm from the set D apart from lttb is selected,
with value ranges from 31 to 44 points.

Each downsamplingmethod has its own characteristics and
adaptability depending on the time series properties. In case
of having a variable that has a static or similar properties dur-
ing all the time range, it is possible to select an unique optimal
downsampling method that suits adequately the needs. How-
ever, this is not the usual case in real sensor data as process
properties may vary with time and there is an stochastic part
of the variable that cannot be controlled. In Figures 13 and 14
for each dataset, the percentage of the number of times each
method has become the optimal one for downsampling a time
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FIGURE 12. Mean value per dataset of MeAE values obtained for each
time series of the dataset.

series (an instance of the dataset, equivalent to a specific time
window) is shown.

In some cases, a unique method is responsible of being the
most adequate in more than 90% of the cases, as it happens in
StarlightCurves and Fish datasets. However, the selection for
an adequate downsampling method is not obvious for others,
such as for the PigCVP and CricketY datasets where the
optimal solution is divided between lltb and m4a methods or
even more distributed as it happens for datasets ScreenType,
Computers and SmoothSubspace. In Figure 9 a zoom of

FIGURE 13. Distribution by dataset of the optimal data points selection
method as determined by the use of MeAE per time series separately for
datasets in Subset 1 of the UCR archive.

Figures 13 and 14 is shown for datasets mentioned in both
cases.

Figures 10 and 11 show point to point errors between yo
and yr time series of the PigCVP and CricketY datasets where
the optimal point selection strategy is not obvious. In both
Figures, certain peaks of errors that appear using one of the
methods are considerably reduced by the use of the other
method.

This experiment shows that a methodology to adaptively
select or / and monitor the point selection strategy is needed.
Not all the time windows of a certain time series can be
treated equally and even less when it comes to a real sensor
data where all the context variables are not totally controlled.
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FIGURE 14. Distribution by dataset of the optimal data points selection
method as determined by the use of MeAE per time series separately for
datasets in Subset 2 of the UCR archive.

A change in the process, the dependency on other internal or
external variables or even noise can affect the point selection
method. Controlling the error values is critical in order to
detect a point selection model drift and, in consequence,
retrain the point selection strategy to maintain point selection
quality.

VI. CONCLUSION AND FUTURE WORK
Considering the need to adaptively compress time series
from stochastic processes into streams with constant or lim-
ited length in order to meet memory capacity limitations,
this paper has put forward and demonstrated in a practical
implementation the idea of combining different data points

selection methodologies using their potential in the current
signal window, while providing a definition of errors for the
determination of the optimal data points selection method-
ology in each moment, and for different characteristics of
interest relative depending on the envisaged application.

The proposedmethods have been implemented and applied
to a wide variety of real-world time series datasets from
a public open database, demonstrating their value for the
characterization and the compression of the data.

Future work to be considered includes combining algo-
rithms to select points using a maximum value error for local
errors, the ones that appeared in section II-A, in windows
where maximum memory limitation per window is satisfied
with methodologies that use maximum number of segments.
With these combinations, it is possible toworkwith a trade off
between maximum error allowed and memory size control.
Furthermore, it should be possible to select points formultiple
time series at once, as all of them will be saved in the
same dataset or need to be synchronized, for example to be
able to plot them in multiple dimensions. Finally, controlling
the window size and quantity of data points to be selected
depending on the characteristics of the time series would
prove beneficial in a number of application scenarios [28].
Jain et al. [16] introduce an adaptive resampling frequency
depending on the time series characteristics. The idea is using
the actual error values not only to retrain the point selection
strategy, but also to select adequate input parameters.

TABLE 2. Per-dataset mean and standard deviation values of the MeAE
values obtained for each time series and by each method separately for
Subset 1 of the UCR archive. The optimal column shows the mean and
standard deviation values of the MeAE values when the optimal point
selection method is selected for each time series of the dataset.
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APPENDIX
COMPLETE RESULTS OF UCR ARCHIVE
See Tables 2 and 3.

TABLE 3. Per-dataset mean and standard deviation values of the MeAE
values obtained for each time series and by each method separately for
Subset 2 of the UCR archive. The optimal column shows the mean and
standard deviation values of the MeAE values when the optimal point
selection method is selected for each time series of the dataset.
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