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ABSTRACT Privacy in social networks has been a vast active area of research due to the enormous
increase in privacy concerns with social networking services. Social networks contain sensitive information
of individuals, which could be leaked due to insecure data sharing. To enable a secure social network
data publication, several privacy schemes were proposed and built upon the anonymity of users. In this
paper, we incorporate unlinkability in the context of weighted network data publication, which has not been
addressed in prior work. Two key privacy models are defined, namely edge weight unlinkability and node
unlinkability to obviate the linking of auxiliary information to a targeted individual with high probability.
Two new schemes satisfying these unlinkability notions, namelyMinSwap and δ-MinSwapX are proposed to
address edge weight disclosure, link disclosure and identity disclosure problems in publishing weighted
network data. The edge weight is modified based on minimum value change in order to preserve the
usefulness and properties of the edge weight data. In addition, edge randomization is performed to minimally
modify the structural information of a user. Experimental results on real data sets show that our schemes
efficiently achieve data utility preservation and privacy protection simultaneously.

INDEX TERMS Privacy, utility, social networks, unlinkability, randomization.

I. INTRODUCTION
In recent years, social networks such as Facebook, Tik-
Tok, WeChat, LinkedIn, Netflix, Google and Instagram have
gained tremendous popularity as these networks support a
variety of attractive features and services that help to connect
the people. Rapid growth of such networks generates huge
amount of sensitive individual data, which are valuable for
research and development. Network data are digitally col-
lected and the aggregated data are often published, shared or
sold to third parties (such as analytics companies, marketing
companies or commercial data brokers) for further analysis.
Some applications of network data include analyzing the
formation of communities [1], marketing and advertising [2],
[3], opinion modeling [4], network information spread [5],
criminal analysis [6], [7], shortest paths analysis [8]–[11]
and spanning trees [12], [13]. Privacy in the applications of
Ad-hoc social networks [14] and nonAd-hoc social networks
[15] are also gaining the public concerns. There are laws
and guidelines to restrict the types of publishable data and

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Hui Yeh .

agreements on the usage and storage of network data, such as
General Data Protection Regulation (GDPR) [16], [17] and
Personal Data Protection Act [18], [19]. However, privacy
breach could still occur if the data are not released under a
strong privacy scheme [20].

A. MOTIVATION
A typical data publishing scenario involves three parties:
social network users, data publisher and data recipients,
as shown in Figure 1. The data publisher is a trusted
entity who collects information provided by the social net-
work users and releases the collected data to third party
recipients, such as research institutes, companies and public
communities. The trust relationship is not transitive to the
data recipients. Some data recipients (adversaries) are not
honest and attempt to infer sensitive information of a user
from the published data.

Therefore, a privacy breach could occur if the personal
information that a user intends to keep private, is disclosed in
a published data to an entity who is not authorized to access
or have the information. In this paper, we address three
privacy leaks, namely:
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FIGURE 1. Outline of privacy-preserving data publishing (PPDP).

•Edge weight disclosure: Edge weight disclosure is the leak
of true weightage of an edge to an adversary. For example, the
communication frequency between two users.
• Link disclosure: Link disclosure is the inference of the
true relationship between two users in a published data. For
instance, a financial transaction between two users.
• Identity disclosure (node reidentification): Identity dis-
closure or node reidentification occurs when the true identity
of a targeted individual is revealed by an adversary from
the published data. For example, the presence of a user in a
political page on Facebook.

The focus of the paper is to enable a privacy-preserved
and utility-preserved weighted network data publication in an
insecure environment with the assumption of an adversary
attempts to attack the privacy of a user from a published
data. Privacy-Preserving Data Publishing (PPDP) provides
technical solutions that permit useful data mining and pro-
tect sensitive information of a user. There have been con-
siderable interest in preserving privacy of network users
associated to data publication, especially on edge weight
disclosure [21]–[32], link disclosure [33]–[49] and identity
disclosure problems [27], [28], [31], [32], [36]–[57]. These
schemes rely upon edge weight and structural information as
the background knowledge to attack the privacy of a user. The
aforementioned work were mainly built to provide anonymity
of the users so that the edge weight, link or identity are
not identifiable within the published data. The property of
unlinkability proposed in our work offers a stronger layer
of privacy. It implies anonymity and further requires that the
relation between the sensitive information of a user and the
background knowledge are indistinguishable to an adversary.
Unlinkability provides higher privacy protection but has
not been considered in the context of weighted network
data publication.

B. CONTRIBUTIONS
This paper aspires to incorporate unlinkability in weighted
network data publication for a secure and useful sharing
of network data. Specifically, two new privacy models are
defined to address the unlinkability component in weighted
network data publication, namely edge weight unlinkabil-
ity and node unlinkability Furthermore, two new privacy
schemes are designed based on the proposedmodels to satisfy
different privacy and utility goals of the data publication.

The first scheme called MinSwap is proposed based on
edge weight unlinkability to address edge weight disclosure
by breaking the association between the weights and its
values. The edge weight data are modified based on the idea
of data swapping to fully preserve its statistical properties,
including the distribution, mean, standard deviation and other
statistics.

We propose another new scheme called δ-MinSwapX
based on node unlinkability to address edge weight disclo-
sure, link disclosure and identity disclosure simultaneously.
The edge weight data are perturbed to other near values
from the same data set to preserve the shortest path length.
Randomization which includes selective edge deletion and
random edge and node addition are deployed to prevent iden-
tity disclosure and link disclosure that rely upon edge weight
and structural data as the adversary’s background knowledge.
Selective edge deletion allows the data publisher to minimize
the distortion on network structure as the important edges can
be well-preserved in the published data. The randomness is
inserted during the edge and node addition phases to increase
the uncertainty of an adversary in reidentifying the true iden-
tity and link, regardless of the background knowledge an
adversarymay possess. This efficiently protects a user against
privacy leaks as auxiliary structural data provide little useful
information about the true nodes in the published data.

In summary, we make the following contributions:

1) We define edge weight unlinkability and design
a greedy algorithm, namely MinSwap to generate
anonymized data that resist edge weight disclosure.

2) We define node unlinkability and design a greedy algo-
rithm, namely δ-MinSwapX to generate anonymized
data that resist identity disclosure, link disclosure and
edge weight disclosure simultaneously.

3) We deploy data swapping, perturbation and random-
ization to minimally modify original network data to
enhance the data utility preservation.

4) We provide a thorough analysis on the anonymization
strength of the proposed work and present extensive
experiment results on scalable real data sets to validate
the efficiency of our schemes.

The rest of this paper is organized as follows. Section II dis-
cusses the research scope of our work. Section III gives a brief
review of related work associated to privacy-preserving edge
weight anonymization and structural anonymization schemes
in social networks. Section IV defines two new privacy mod-
els, namely edge weight unlinkability and node unlinkability.
Section V and VI elaborate on the proposed schemes for
anonymizing network data. Section VII presents an extensive
evaluation of the proposed algorithms using scalable real data
sets in terms of security, efficiency and utility. Finally, section
VIII concludes the paper.

II. RESEARCH SCOPE
In this section, we discuss the problem setting of a weighted
network data publication. We present a non-directed and
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weighted network model. We also define the capability of
an adversary and how the adversary would utilize the aux-
iliary background knowledge to attack the privacy of users.
In addition, we elaborate upon the desired privacy and utility
objectives of the data publication.

A. NON-DIRECTED AND WEIGHTED SOCIAL NETWORK
We present a non-directed and weighted graphG= (V, E, W)
using Figure 2 as an illustrative example. The nodes of the
graph, V = {ν1, ν2, ν3, . . . , νn} denote meaningful entities
from the real world such as individuals, organizations and
communities. An edge ei,j ∈ E is an association between
two nodes νi×νj ∈ V×V such as friendship, partnership,
co-authorship, co-workership and transaction between any
two entities.

A non-directed graph consists of edges that do not have a
direction (for instance, a mutual friendship). In a weighted
network, each edge ei,j is associated with a weight wi,j ∈ W
which represents the strength of connection between nodes νi
and νj, such as the communication frequency between indi-
viduals, degree of friendship, trustworthiness and transaction
amount.

B. ADVERSARY’s BACKGROUND KNOWLEDGE
An adversary requires some background knowledge to attack
the privacy of a target user in the published network. In this
paper, we assume that an adversarymay possess partial or
complete edge weight and structural information of some
real-world target individuals.

1) Edge weight information. Value or weightage
attached to the edge, which represents the intensity and
strength of the connection.

2) Structural information. The information about the
neighbours of the target node and how these neighbours
are being connected, which includes:
a) Degree of node A, DA: The number of edges con-
nected to node A.
b) Degree pair of A and B, (DA,DB): The degree
information of node A and B.
c) Degree sequence, d: A monotonic non-increasing
sequence of the degree of all nodes in the
network.
d) 1-neighbourhood graph, GA: The structural graph of
node A up to the first neighbourhood of A.
e) Subgraph of node A, SA: A partial network graph that
involves node A.

We focus on these two types of background knowl-
edge as commonly deployed in the current literature
[23], [26], [27], [32], [37]–[39], [50]–[57]. It is relatively
less difficult to collect accurate edge weight information and
structural graph of a targeted individual [32], [55], compared
to other types of implicit information (such as eigenvector,
betweenness and closeness centrality).

FIGURE 2. An example of a weighted and non-directed social network.

FIGURE 3. Privacy attack models.

FIGURE 4. Naive anonymized weighted social network of Figure 2.

C. LINKAGE ATTACK
Linkage attack is one of the major privacy attack models in
network data publication [15], where an adversary attempts
to match the auxiliary background knowledge obtained from
external resources to the published data in order to learn
some useful information about a target victim. In Figure 3,
linkage attack could be categorized as edge weight attack
and structural attack according to the types of background
knowledge summarized in section II.B. As the published
data consists of edge weight and structural data only, other
auxiliary information (such as the node label and edge label)
provides very little additional information about the nodes in
the published data.

Figure 4 shows a naively anonymized network of Figure 2,
where the identities of all nodes are hidden. However, it is
insecure when an adversary learns that node X has two
connections of edge weights 1 and 4, then X ’s true identity
(node 2 in Figure 2) is revealed. In some cases, edge weight
and structural information are combined to reidentify the
target. For instance, although node Y and Z in Figure 4 have
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similar degree, 1-neighbourhood graph and subgraphs (and
thus invulnerable to respective structural attacks), these nodes
can be distinguished if an adversary possesses additional
background knowledge of edge weight data.

D. PRIVACY AND UTILITY GOALS
We consider the data publishing problem where a pub-
lisher attempts to release a secure anonymized version of G,
denoted by G′, to serve a variety of data analysis.

The published data is said to be privacy-preserved if an
adversary cannot infer the identity, link and edge weight
values of a network user from the released data with high
probability. The user’s privacy is protected by limiting the
ability of an adversary to infer this information, given that the
adversary has full access to the published data G′ and some
available background knowledge.

Given an arbitrary query to an original database and its
anonymized database, the outputs of query to both databases
should be almost similar, that is, the difference between the
outputs should be less than a parameter. A utility-preserved
anonymized data could be produced by minimally modify-
ing the edge weight data and network structure so that the
published data remain accurate and meaningful in the data
mining process. In this paper, we assume that the published
data are utilized for several analyses, which include statistical
analysis, shortest path length analysis and network centrality
analysis [21], [23], [24], [29], [32], [42].

III. RELATED WORK
In this section, we present a comprehensive literature review
on the topics related to PPDP in social networks. Particularly,
we focus and discuss relevant structural and edge weight
anonymization schemes that address identity disclosure, link
disclosure and edge weight disclosure in social networks.

A. STRUCTURAL ANONYMIZATION
Structural anonymization schemes modify the structure of
a network to prevent identity disclosure that is based on
structural information as adversary’s background knowledge
and to address link disclosure. The schemes can be grouped
under three main classifications: graph modification, cluster-
ing based method and differential privacy.

1) GRAPH MODIFICATION
Graph modification anonymizes a network by adding, delet-
ing or switching edges or nodes in the original graph.
Although similar techniques were deployed in the literature,
these techniques are the basic tools used to generate different
publishable graphs that satisfy different privacy and utility
requirements. Graph modification can be further classified as
randomization, which performs graphmodification randomly
and k-anonymization method, which performs graph modifi-
cation to meet some desired constraints.

i) Randomization: There are different randomization
approaches proposed to protect the identity and link privacy

of a user [33]–[35], [37], [39]. In [33], a randomization
scheme was proposed to preserve the spectrum of a graph
(the set of eigenvalues of the graph’s adjacencymatrix) which
is important to some topological properties of the graph.
[34] focused on the link privacy protection and presented
a neighbourhood randomization scheme which randomizes
an edge by restricting the randomization to the neighbouring
nodes. Hence, the network structure could be preserved to
a greater extent when the structural proximity of nodes is
considered. A k-candidate anonymity [37] was proposed to
tackle the node reidentification attack such that there exist at
least k different nodes that match every structural query over
the graph. [39] proposed Bernoulli distribution to modify the
edges instead of random edge addition and deletion. Bernoulli
trial is deployed to determine which edge should be added or
removed from the network.

Randomization does not focus on the adversary’s back-
ground knowledge as the sensitive information of a user in the
randomized graph are protected through the random process
that modified the graph. Thus, an adversary cannot utilize
the structural information to reidentify an individual from
the published data as the association rules between the back-
ground knowledge and the sensitive information are dimmed.
Furthermore, the presence of link cannot be inferred with
high probability as randomness is deployed in the published
data. The confidence level in inferring the identity, link and
sensitive information of a user is bounded by a privacy level,
which is affected by the amount of randomization. The data
utility after randomization can only be evaluated empirically.

ii) k-anonymization Method: In k-anonymization method,
the proposed schemes modify the edges and nodes in the
network to produce multiple indistinguishable nodes and
edges with respect to certain privacy requirements. Different
assumption of adversary’s background knowledge leads to
different expectation of privacy criteria.

a) Degree Based Anonymization: A graph-anonymity
model called k-degree anonymity was proposed in [52] to
guarantee that there are at least k nodes with the same degree
in the published graph. Meanwhile, a k2-degree anonymity
[53] requires that for every node with an incident edge of
degree pair (DA,DB), there exist at least k-1 other nodes with
the same degree pair in the published network. Degree of
a node provides a limited structural information of a target
victim. An adversary with such background knowledge is
weak as the degree information can be modified easily by
adding or deleting nodes and edges from the original graph.
Although the schemes are invulnerable to degree attack, they
are insecure against other stronger structural attacks.

b) Neighbourhood Based Anonymization:
A k-neighbour- hood anonymity model [54] was proposed to
guarantee that there exist at least k indistinguishable nodes in
the published graph, such that the 1-neighbourhood graphs of
each of the k nodes are all similar. Moreover, [55] combined
both conventional k-anonymity [58] and `-diversity [59] in
anonymizing the social network data, such that the published
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graph satisfies k-neighbourhood anonymity and contains
at least ` different node labels. Hence, it renders stronger
privacy level to the users.

c) Complete Structural Based Anonymization: In [56], a
k-automorphism was proposed to defend against reidentifi-
cation attacks using the structural information of node, which
include node’s degree, 1-neighbourhood graph, subgraph and
hub fingerprint. Hub fingerprint is the distance between a
hub (a node with high degree exceeding the average degree
of the network) and other nodes. The k-automorphism is a
strong privacy model as it guarantees that there are at least
k indistinguishable nodes in the network in terms of their
structural information. Hence, an adversary cannot reidentify
any individual with a confidence level of higher than 1/k
using the structural information as background knowledge.
In [38], a k-isomorphism was proposed to enhance the ability
of k-automorphism in link protection. The scheme creates k
isomorphic subgraphs through edge additions. Two graphs
are said to be isomorphic if the graphs contain the same
number of nodes and the nodes are connected in the same
pattern.
k-anonymization method incurs unnecessary information

loss when the privacy parameter k is high. More edge modi-
fications are performed to achieve k indistinguishable nodes.
This would significantly compromise the network properties
as well as the data usefulness. If the privacy parameter is low,
the schemes would provide insufficient privacy protection
to the users. An optimized parameter is required to provide
sufficient privacy and utility level. However, the computation
of the optimized privacy parameter is shown to be NP-hard in
k-anonymization [60]. Therefore, modification of k indistin-
guishable nodes with respect to the structural graph is practi-
cally infeasible due to the high cost and high computational
complexity of finding an optimal solution to the algorithms,
especially when the network is scalable.

2) CLUSTERING BASED METHOD
Clustering based method involves the process of clustering
nodes and edges into groups that are called supernodes and
superedges, subject to some constraints on the characteristics
of the nodes and edges [31], [45], [51], [57]. This approach
achieves high privacy level. However, it provides a low utility
as the data are changed extensively and becomes useless for
certain studies. The graph is shrunk post-anonymization and
most of the local structures are difficult to be analyzed.

3) DIFFERENTIAL PRIVACY
Differential privacy [61] provides a formal privacy guaran-
tee to the nodes of a database, regardless of the auxiliary
information available to an adversary. It guarantees that an
adversary in possession of the released results is not able
to determine the existence of an individual in the original
database. Therefore, the released results provide meaningful
interpretations about the underlying population statistics of
the database but obscure the presence of any individual.

The notion of differential privacywas adapted to network data
and several new privacy definitions were formalized.

In edge differential privacy [40], two graphs G and G′ are
said to be edge neighbours if G′ can be obtained from G by
deleting or adding k arbitrary edges from G. Hence, edge
differential privacy guarantees that an adversary is not able to
infer the existence of a particular edge in an original database
G with high probability. A local differential privacy model
was proposed to preserve community structure information
of a centralized and decentralized social graph with higher
accuracy [41], [42].

In node differential privacy [40], two graphs G and G′ are
said to be node neighbours if G′ can be obtained from G by
deleting or adding a single node including all its adjacent
edges from G. Hence, node differential privacy assures that
an adversary is not able to infer the existence of a target node
in an original database G with high probability. Research
on node differential privacy mainly focused on improv-
ing the accuracy of publishing the degree distribution of a
graph [43], [44].

A degree-differential privacy graph generation model with
field theory was presented to preserve the true edges of a
graph [46]. Differential privacy was deployed to add Laplace
noise to the nodes’ degree. The edges are then reconstructed
using the proposed field theory model. A fake edge between
existing nodes is generated with high probability when the
interaction force between the nodes is relatively large. Hence,
the impact on the structure of the graph is reduced.

Meanwhile, a random matrix approach that achieves dif-
ferential privacy was proposed to publish eigenvector of a
graph [47]. Two Gaussian random matrices are added to the
adjacency matrix of a graph to introduce a small amount
of random projection and random perturbation. Then, the
projected and perturbed matrices are released as published
data.

A differential privacy scheme based on graph abstraction
models was proposed [48], which utilizes the dK-1, dK-2
and dK-3 series. The dK-1 level represents the degree dis-
tribution, the dK-2 level is the joint degree distribution and
the dK-3 level contains the number of wedges and triangles.
A differentially private noise is added to the dK-2 level of
an original graph to obtain a perturbed dK-2 level, which is
then used to compute the corresponding new dK-1 and dK-3
levels. Hence, a new graph is generated by combining the
structural information of the three dK levels.

Differential privacy, randomization and clustering were
combined to propose a PBCN (Privacy Preserving Approach
Based on Clustering andNoise) [49]. The nodes are clustered
into groups based on the similarity of the degree, followed
by addition of Laplace noises to the degree sequence of each
group. A new graph is reconstructed using the perturbed
degree sequences. However, the true nodes with low degree
are likely to be deleted and a number of fakes nodes are
injected into the graph for fake edge addition.

Differential privacy is a strong model as it does not depend
on the background knowledge of an adversary. However, the
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main drawbacks of differential privacy model are presented
on the utility aspect. Randomization and k-anonymization
methods release a privacy-preserved graph which can be
studied in place of the original database, to allow a broader
range of analysis. Nevertheless, the released results under a
particular differential privacy model can only serve a specific
query. Furthermore, differential privacy is highly inaccurate
to queries with high sensitivity. The sensitivity of a query is
the largest possible difference that one data point can effect
on the result of that query, for any data set. Instances of
high sensitivity queries include the computation of clustering
coefficient, path length distribution, betweenness distribution
and closeness distribution.

4) OVERALL DISCUSSION ON STRUCTURAL
ANONYMIZATION
The privacy protection is guaranteed in the structural
anonymization schemes above. However, important nodes
and edges are not guaranteed to be preserved in the published
data. Our work fills the gap by proposing a new random-
ization technique that incurs a lower utility loss. This is
achieved by considering edge deletion based on the impor-
tance of edges in the original network, such that essential
edges are preserved in the published data. Hence, this may
preserve network centrality to a greater extent.

B. EDGE WEIGHT ANONYMIZATION
The edge weight anonymization schemes modify the edge
weight data to prevent edge weight disclosure and identity
disclosure, which can be categorized under three classifica-
tions: perturbation, differential privacy and generalization.

1) PERTURBATION
Perturbation is commonly used to modify the edge weight
values to prevent the edge weights from being utilized for
node reidentification while at the same time, maintain the
shortest path characteristic between node pairs in the net-
work. A pioneer work was presented in [21], which devel-
oped two privacy strategies for different natures of network.
The first one is a Gaussian Random Multiplication Perturba-
tion (GRMP) developed for dynamic networks, which adds
Gaussian noise to the original edge weights to achieve short-
est path preservation. However, the edge weight is power-law
distributed in most real life scenarios. Hence, the introduction
of Gaussian noise may not guarantee the desired privacy and
utility preservation of network data if the edge weights are
not normally distributed. The second strategy is a greedy
perturbation algorithm developed for static networks. How-
ever, it is highly possible for an adversary to reidentify the
correct individual by linking the edge weight information to
the associated node as some edge weights are unmodified.

A linear programming model was proposed to anonymize
the edge weight while preserving the properties of graph that
are expressible as linear function of the edge weight [22]. The
edge weight is modeled as a matrix and the anonymization is
formulated as a linear optimization problem. However, there

can be no feasible solution to the optimization problem for
large systemswhich demerits the practicability of this method
in scalable social networks.

A k-anonymous path privacy model was presented to
protect the sensitive shortest path between two nodes in a
weighted graph [23]. It prevents the true shortest path from
being revealed by ensuring that there exist at least k shortest
paths with the same shortest path distance. Thus, this limits
the sensitive path disclosure to a maximum probability of 1/k.
[24] extended k-anonymous path model and modify the edge
weights by considering network centrality such as PageRank
and nodes’ degree. As the edge weights can only be modified
once, k-anonymous path privacy cannot be guaranteed when
multiple node pairs are involved.
k-anonymous path was further improved in [25] with addi-

tional background knowledge of nodes’ degree on the shortest
path. A (k1, k2)-shortest path privacy was proposed to ensure
that there are at least k1 indistinguishable shortest paths
between the source and target nodes. In addition, for the non-
overlapping nodes on the k1 shortest paths, there exist at least
k2 nodes with same node’s degree and lie on more than one
shortest path. There are more restrictions on the modification
of edge weight, which lead to a greater information loss than
that in [23].

The work of [26] and [52] were combined to pro-
pose a k-weighted-degree anonymous model [27]. The edge
weights and nodes’ degree were assumed as an adversary’s
background knowledge. This model ensures that in the
anonymized graph, there are at least k indistinguishable nodes
having the same degree and the distance between the weight
sequence of those nodes is within a predefined constant. After
obtaining a new degree sequence that is k-degree anonymous
using the proposed algorithm in [52], new edge weight values
are assigned to the new created edges. The edge weights are
adjusted using a linear programming model based on three
distance functions (absolute distance, relative distance and
rate distance) to ensure that the edge weights generated are
nearly valued to other edge weights associated to the node.

2) DIFFERENTIAL PRIVACY
Differential privacy is a relatively new approach to modify
edge weight data by adding Laplace noise. It guarantees
that the statistical properties of a database is insensitive on
a record change. Thus, the output probability of the same
results will not change significantly, whether a record is in the
data set or not. [28] deployed differential privacy to preserve
the privacy of social recommendation. It first clusters the
nodes into supergroups, then Laplace noise is added to the
average edge weight of each supergroup to modify all edge
weights.

In [29], differential privacy was applied to protect the
edge weights of social networks and preserve shortest
path. The scheme assumed edge weight sequence as an
unattributed histogram. Barrels with the same count are
merged into one group to reduce the amount of injected noise.
Then, Laplace noise is added to edge weight to guarantee
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k-indistinguishability between groups so that the number of
groups with the same amount of barrels is at least k.

A Variational Bayes-Weighted Network Differential Pri-
vacy (VB-WNDP) scheme was proposed with consideration
of the structural role [30]. VB-WNDP establishes a proba-
bility model of weighted network through Variational Bayes.
Noises are added to the parameters of the probability model
instead of the edge weights to enhance the data accuracy.

Differential privacy is a strong privacy model as it makes
no assumption about the background knowledge of any
potential adversary. However, it generates inaccurate results
to queries with high sensitivity (for example, kurtosis and cor-
relation). Furthermore, the original data could be estimated
with high accuracy from repeated queries.

3) GENERALIZATION
A generalization approach was deployed in [31], where the
edge weights are recalculated as the ratio per total edge
weight. Particularly, the new edge weight provides very little
information about the original network. [32] adopted gen-
eralization to generalize the edge weights in an edge group
into a range of values. For example, if edge weights 3, 4,
8 and 10 are categorized into a group, then range of values
[3,10] is reassigned to the four edge weights. The larger the
range, the higher the information loss.

4) OVERALL DISCUSSION ON EDGE WEIGHT
ANONYMIZATION
While anonymity has been addressed in the schemes pre-
sented, the aspect of unlinkability has not been considered.
The schemes discussed do not consider the weight linkability
property of network data as the association rules between
the original value and the published value are retained in
the released data. Hence, the published data leak some use-
ful information of a user and the noise injected could be
estimated, provided the association rules are clearly defined
to an adversary. Our work fills the gap of the literature
by addressing unlinkability in a social network. Unlink-
ability requires that an adversary cannot sufficiently infer
the association between the background knowledge of an
adversary and the sensitive information of a user. Therefore,
no auxiliary edge weight data could be utilized to infer the
original edge weight data and the identity of a user with high
probability.

From the utility aspect, the aforementioned work were
not designed to preserve the statistical properties of origi-
nal data such as the distribution, mean and standard devia-
tion. Our work adds to the design of a new edge weight
anonymization scheme that fully preserves the statisti-
cal properties of a data set based on the idea of data
swapping.

IV. EDGE WEIGHT UNLINKABILITY AND NODE
UNLINKABILITY
In this section, we present the definition of some key terms
and notation used in this work. We then define edge weight

unlinkability and node unlinkability as two new privacy mod-
els in weighted social networks. Edge weight unlinkability
prevents the inference of true edge weights of a user while
node unlinkability prevents the linkability of edge weight
information to its associated users in the original data.

A. NOTATION

TABLE 1. Notation.

B. EDGE WEIGHT UNLINKABILITY
We define edge weight unlinkability as below.

Definition 1 (Edge Weight Unlinkability): Given an edge
weight w ∈ W with value X in an original network G, w is
said to be unlinkable if w is perturbed to w′ with value Y in a
published network G′, where X 6= Y and there does not exist
an injective function: f (Y ) 7→ X that maps value Y in the
published data to value X in the original data. An anonymized
data is said to be edge weight unlinkable if all edge weights
in the perturbed network G′ satisfy edge weight unlinkability
such that the perturbed edge weight value does not equal
to the original edge weight value for all edge weights in
weight sequence and there does not exist an injective function
f between the original and published data. In mathematical
notation, w′p 6= wp, ∀wp ∈W, ∀w′p ∈W

′, ∀p = 1, 2, 3, . . . ,m
and f (Y ) 7→ X is not an injective function.

Here, we provide the proof that edge weight unlinkability
addresses edge weight disclosure.

Proposition 1: Suppose an adversary possesses full access
to a published data that satisfy edge weight unlinkability, the
adversary cannot infer the true edge weights of an arbitrary
node in the published data with high probability.

Proof: From the definition of edge weight unlinkabil-
ity, the mapping function f between the original data
and the published data is not injective. This implies that
w1 6= w2 when f (w1) = f (w2). That is, different original
edge weight values are mapped to the same published edge
weight value. Furthermore, w′p 6= wp implies that w′p could
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be selected from W - {wp}. Hence, an adversary cannot suf-
ficiently infer the relationship between the original data and
the published data as the association rule is not well-defined.
In real world scenario, the size of W - {wp} is large. This
prevents an adversary from making defined estimation on the
original edge weight with high probability. This completes
the proof.

We further evaluate the probability of edge weight disclo-
sure in section VII.

C. NODE UNLINKABILITY
We define node unlinkability as below.

Definition 2 (Node Unlinkability): Given a node a with
associated edge weight sequenceW(a) in G andW′(a) in G′,
the node is said to be unlinkable if ∀w ∈ W(a) ⇔ @ w ∈
W′(a) and there does not exist an injective function f mapping
an original value X to a new value Y . An anonymized data
is said to be node unlinkable if all nodes in G′ satisfy node
unlinkability such that ∀v ∈ V ∧ ∀w ∈ W(v)⇔ @ w ∈ W′(v)
and there does not exist an injective function: f (Y ) 7→ X that
maps value Y in the published data to value X in the original
data.

The edge weight data are modified such that the asso-
ciations between the edge weight values and its nodes are
broken. Node unlinkability implies edge weight unlinkability
but not vice versa. The proof is direct from the definition and
is omitted. Hence, node unlinkability addresses edge weight
disclosure.

Here, we prove that node unlinkability addresses iden-
tity disclosure that relies on edge weight as background
knowledge. Particularly, we prove that there does not exist
a mapping function that links associated edge weights to its
corresponding node in the perturbed data as shown in propo-
sition 2. Moreover, no linkage attack is possible to reidentify
a target node in the published data with high probability
using edge weight information as background knowledge,
as proven in proposition 3.

Proposition 2: Given there exists a function g that maps a
set of edge weights, W(a) to a node a in an original data,
such function g does not exist in a perturbed data that satisfy
node unlinkability.

Proof: We prove by contradiction. Given that ∀w ∈W(a) are
associated (mapped) to a node a ∈ V, we have a function g
such that g(w) 7→ a. The existence of the function g indicates
that node a is associated with some edge weights w. First,
we assume that such function g exists in the perturbed data
W′(a). However, based on the definition of node unlinkability,
∀w ∈ W(a) ⇒ ∀w /∈ W′(a), we know that there does not
exist a function g that maps w ∈ W(a) to the node a in the
perturbed data as all the associated edge weights of node a
are modified such that w /∈ W′(a). Here, we have arrived at
a contradiction where our original assumption (function g
exists in a perturbed data that satisfy node unlinkability) could
not be true. This completes the proof.

Proposition 3: Given an adversary possesses a complete
edge weight information of a known target node a that exists
in the network, the adversary fails to reidentify correctly node
a in the published data that satisfy node unlinkability using a
linkage attack.

Proof: There are only three possible outcomes of the reidenti-
fication. Let b denotes as an arbitrary node in the network and
W′(b) is the associated edge weight of b that are published.
Outcome 1: There is no exact match ofW(a) andW′(b).
Thus, ∀a, b ∈ V 3W(a) 6=W′(b).
∴ No identity is inferred from the published data.
Outcome 2: There is at least one exact match of W(a) and
W′(b). We have ∀a, b ∈ V 3 ∃W′(b) =W(a).
From the definition of node unlinkability,W(a) 6=W′(a). This
implies thatW′(b) 6=W′(a).
However, it can be deduced that:
a = b⇒W(a) =W(b)⇒W′(a) =W′(b).
Hence,W′(b) 6=W′(a)⇒ b 6= a.
∴ Although there is an exact match, a is not the true identity
of node b.
Outcome 3: There is at least one partial match of W(a) and
W′(b). Thus, ∀w ∈W(a), ∀w′ ∈W′(b)⇒ ∃w = w′.
However, from node unlinkability, we have
∀w ∈ W(a) ⇒ ∀w /∈ W′(a), which implies that w must not
be an edge weight of node a in the published data.
Hence, if w ∈ W(a) is an edge weight of node b in the
published graph, then node a and b must not be the same
individual.
∴ Node a cannot be reidentified by linking the edge weight
information to the published data.

Therefore, although an adversary possesses a complete
edge weight data of a known target node a, the adversary fails
to correctly reidentify node a from the published data using a
linkage attack. This completes the proof.

We further evaluate the probability of identity disclosure in
section VII.

V. MinSwap
In this section, we design MinSwap which deploys edge
weight unlinkabilitymodel to address edge weight disclosure.
This scheme consists of edge weight modification via data
swapping to preserve the edge weight distribution and there-
fore its statistical properties.

A. MinSwap ALGORITHM
MinSwap consists of two main phases, namely possible set
determination and candidate selection. The edge weight data
is perturbed by exchanging edge weight values among data
tuples to achieve privacy preservation. Data swapping is a
value-invariant method where the edge weight distribution is
not changed during program execution, only the edge weight
sequence is altered. It preserves the univariate statistics such
as mean, variance, distribution and lower-order multivariate
statistics such as covariance reasonably. A pseudo algorithm
of MinSwap is presented in Algorithm 1.
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Algorithm 1Minimal Swapping Strategy (MinSwap)
Input: The original edge weight sequence,W

Output: The perturbed edge weight sequence,W′

1 Find ZT and N (ZT ).
2 for p from 1 to m,
3 {Find Zp and N (Zp).
4 if N (Zp) 6= ∅, then
5 {Calculate Prox(w) for each w ∈ Zp.
6 Determine max of Prox(w).
7 Find corresponding w.
8 Update N (ZT ). }
9 else

10 {Select a value w from Zp randomly.
11 Record w in U (ZT ). }
12 Assign the value w to w′p.}
13 returnW′.

Possible set determination (line 1-3 in Algorithm 1): Dur-
ing the first phase, possible candidates that satisfy edge
weight unlinkability are determined from the original data.
We denote ZT as the universal set containing all distinct val-
ues ofW and N (ZT ) as the complete frequency set recording
the frequency of values inW. The set ZT is separated into Zp ∪
{wp}. The new edge weight (qualified candidate) is selected
from the possible set Zp to ensure that the anonymized data
satisfy edge weight unlinkability.

Candidate selection (line 5-7 in Algorithm 1): The new
edge weight, w′ is selected from Zp based on the maximum
of the proximity function (Prox(w)), which we define as:

Prox(w) =
Frequency of w in Zp

|wp − w|
,∀w ∈ Zp (1)

This function serves two purposes: it allows a nearer value to
be selected (a lower information loss) and over the iterations
in greedyAlgorithm 1, one value could bemapped to different
new values (injective function does not exist). This increases
the uncertainty of an adversary in inferring the original edge
weight value.

Example: An example is demonstrated using data in
Figure 2. The original data, W, ZT and N (ZT ) are shown in
Table 2. At first iteration, the possible set Z1 for w1 = 1 is {-,
2, 4, 8, 10, 12, 14, 15} and the frequency set N (Z1) is {-, 1, 1,
2, 4, 1, 1, 1} (which is obtained by referring the corresponding
frequency of each w ∈ Z1 in N (ZT )). Hence, the new edge
weight w′1 is 2, according to the corresponding maximum of
Prox(w). The frequency of 2 is reduced by 1 in the N (ZT ).
At the end of algorithm, the final N (ZT ) = 0 shows that all
the original data are inter-swapped with each other and thus
the distribution is fully preserved.

Special Case (line 10-11 in Algorithm 1): N (Zp) = ∅
implies that all frequency of values from the possible set
are completely consumed. In this case, w′ is selected from
Zp randomly, imposing a certain amount of distortion to the

TABLE 2. Example of MinSwap.

original data distribution. However, randomness is applied
to provide a higher privacy protection. U (ZT ) is utilized to
record the frequency of the overused w. This scenario only
occurs when there is a dominant value in the original data
(> 50% of the edge weight data). Edge weight data are big
data with high diversity, which ensure the availability of ZT .
Therefore, the existence of a solution for Algorithm 1 is
guaranteed, regardless of the types of distribution of the
original data.

B. DISCUSSION
It is not highly possible to reverse-engineer and discover the
true edge weight as there does not exist an injective mapping
between the published data and the original data. The associ-
ation rules between the original data and the published data
are not well-defined. From the utility aspect, the statistical
properties of edge weight data are highly preserved as the
anonymized data is a permutated version of the original data.
This is a scheme designed for networks where the identity
of nodes are public knowledge but the edge weight values are
sensitive. No node anonymization is required and more utility
could be preserved. Examples include research communities
(ResearchGate and DBLP) and professional sites (LinkedIn
and JobStreet).

VI. δ-MinSwapX
In this section, we design another scheme based on node
unlinkability to address edge weight disclosure, link dis-
closure and identity disclosure simultaneously. This scheme
consists of edge weight modification using perturbation and
structural modification using randomization.

A. EDGE WEIGHT MODIFICATION
Perturbation is deployed to prevent edge weight disclosure
and node reidentification using edge weight data as the back-
ground knowledge. It consists of two main phases, namely
candidate set determination and minimal candidate selection.

Candidate set determination (Algorithm 2): The universal
set that contains all the edge weight values (ZT ) is separated
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into two mutually exclusive sets, namely candidate set (S)
and associated edge weight set (W(a∪b)). Candidate set is
the set that collects all the possible candidates, such that the
candidate s ∈ S is not associated with node a and b. Candidate
set is given by S(a, b) = {s|s ∈ ZT - W(a∪b) } = ZT \
W(a∪b). This is to ensure that S contains all the qualified
candidates that satisfy edge weight unlinkability and node
unlinkability, as shown in proposition 4.

Algorithm 2 Candidate Set Determination
1 Find universal set ZT .
2 Find setW(a) = {W(a,b) | ∀ a,b ∈ [1,n]}.
3 Find setW(a∪b) =W(a) ∪W(b).
4 Find candidate set, S = {s|s ∈ ZT −W(a∪b) }.

Minimal candidate selection (line 5 in Algorithm 3): Can-
didate is selected based on the least value change to guarantee
minimum information loss, as shown in proposition 5. The
new edge weight is computed as w′p =min |s−wp| + wp, for
∀s ∈ S.

Algorithm 3 Edge Weight Modification
Input: The original edge weight data,W(a,b)

Output: The perturbed edge weight data,W′(a,b)
1 Determine the weight sequence,W.
2 Find candidate sets for all edge weights.
3 for p = 1 to m
4 {call algorithm 2 to determine the candidate set,

S.
5 Assign w′p = min |s− wp| + wp, for ∀s ∈ S. }
6 returnW′.

Proposition 4: Anonymized edge weight data post-
implementation of Algorithm 3 satisfy node unlinkability.

Proof: From the definition 2, we have
∀w ∈W(a)⇒ @w ∈W′(a)⇒ ∀w /∈W′(a)
Given that ZT = S ∪W(a∪b), this implies
∀w ∈W(a)⇒ ∀w /∈ S
Since the new edge weight is selected from S only, we have
w′ ∈W′(a) ⊆ S, which means that ∀w /∈ S⇒ ∀w /∈W′(a).
∴ ∀w ∈W(a)⇒ ∀w /∈W′(a)
Hence, node unlinkability is satisfied, which further implies
edge weight unlinkability. This completes the proof.

Proposition 5: The information loss due to Algorithm 3 is
minimum.

Proof: The information loss occurs duringminimal candidate
selection. At each iteration, the information loss is |w′p −
wp|. This is the noise injected. The total information loss is∑m

p=1 |w
′
p−wp|, wherem is the number of original data. Since

w′p is selected based on the lowest value change (min |s−wp|),
the total information loss due to Algorithm 3 is minimum.
This completes the proof.

TABLE 3. An example of Algorithm 3.

Example:Using the same data set from Figure 2, an example
is demonstrated using Algorithm 3 in Table 3. At first itera-
tion,W(2 ∪ 4) =W(2) ∪W(4) = {1, 4, 8, 10, 14} ∪ {1, 10,
15} = {1, 4, 8, 10, 14, 15}. Hence, S = {1, 2, 4, 8, 10, 12,
14, 15} \W(2 ∪ 4)= {2, 12} and w′1 = (2−1)+1 = 2. The
iterations terminate at p = m = 12.

Discussion: The perturbed data satisfy both edge weight
unlinkability and node unlinkability. A user could not be
retraced using edge weight data of the targeted victim as the
associations between the edge weights and the nodes have
been broken completely. From the utility perspective, we have
minimally changed the data so that no excessive utility is loss
due to the edge weight modification. If there does not exist
a candidate set for a particular edge weight, then no new
edge weight is published for that particular edge weight to
secure the privacy of a user. However, this is not common
in a scalable network which contains high diversity of edge
weight values.

B. STRUCTURAL MODIFICATION
Randomization is deployed to modify the network structure
to prevent node reidentification using structural data as back-
ground knowledge and to prevent link disclosure. It consists
of four phases, namely edge deletion, fake node addition, fake
edge addition and fake edge weight addition. A pseudo algo-
rithm for structural modification is presented in Algorithm 4.

Edge deletion from existing edges (line 1-5): Most of the
prior work modified the graph based on the network cen-
trality of nodes, which measures the influence of the nodes
in a graph [24], [27], [31], [34]. In our work, the graph is
modified based on the edge betweenness, which represents
the importance of an edge in a graph. Edge betweenness is
the number of shortest paths between pairs of nodes that run
along an edge. An edge should not be removed if the edge
is important in the network (high edge betweenness). A user-
defined parameter δ is selected to remove δ of the existing
edges in the ascending order of edge betweenness. A checker
C is defined to record the change of structural information.
If an edge has been removed, the associated nodes would be
removed from C.
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Algorithm 4 Structural Modification

Input: The perturbed edge weight data,W′(a,b)

Output: Perturbed data that resist edge weight
disclosure, link disclosure and identity disclosure

1 Define a parameter, δ, where 0 ≤ δ ≤ 1.
2 while δ 6= 0,
3 {Edge betweenness is calculated for each edge

using original edge weight data. Denotes C as a
checker set containing all nodes in the network.

4 Remove δ of the existing edges according to the
ascending order of edge betweenness.

5 Record the edge (a, b) that has been removed.

* Remove the corresponding nodes a and b
from C.

6 Add nAdd fake nodes d into the network.

* nAdd = max(b |C|Dmode
c, 1), where Dmode is mode

of degree. If there are at least one mode, choose
maximum mode.

7 while C 6= ∅,
8 {Add edges between the remaining nodes c in

C and the fake nodes d randomly until C is
empty.

* Randomly select Dmode of the remaining
nodes c from C to form edges with a fake node
d .

9 Record the edge (c, d) that has been formed.

* Remove the corresponding nodes c from C.

}
10 for each inserted fake edge, assign an edge weight

value w′ to the edge,
11 {if ∃w ∈ S(c) 3 w > max[W(c)], then

w′ = min w.
12 else w′ = max [S(c)]. } }
13 return perturbed data.

Fake node addition (line 6): Some fake nodes d are added
into the network to conceal the existence of a target victim
in the published data. We determine the minimum number of
fake nodes required to be added, nAdd as follows:

nAdd = max(b
|C|
Dmode

c, 1) (2)

After line 5 of Algorithm 4, |C| represents the number of
nodes with intact structural information. Hence, fake edges

are formed to modify the structural information of the intact
nodes. By considering the degree mode, Dmode (degree that
appears most often) in original network, all the fake nodes
are likely to possess approximately the same degree as the
majority nodes in the network (the presence of fake node is
hidden). Furthermore, important nodes are preserved in the
anonymized network as no true node is removed from the
network.

Fake edge addition from non-existing edges (line 7-9):
Dmode of the remaining nodes c are selected randomly from C
to form edges with a fake node d untilC is empty. An emptyC
indicates that all nodes’ structural information have been
changed. Due to the randomness property of the newly added
edges, an adversary could not confidently infer the structural
properties of the target victim from the published graph.
Furthermore, the structure of the graph is changed without
compromising the important nodes and edges in the original
network.

Fake edge weight addition (line 10-12): New weight is
inserted to each fake edge, which is selected from candidate
set of the original node c so that it satisfies node unlinkability,
such that w′ ∈ S(c). Furthermore, to minimize the influence
of these fake edges on the shortest paths of the original net-
work, the new edge weight must satisfy one of the following
conditions:

1) If there exists a set of values such that w ∈ S(c) 3 w >
max[W(c)], then w′ = min w.

2) Else, w′ = max[S(c)].

δ-MinSwapX algorithm: The pseudo algorithm of
δ-MinSwapX is a combination of Algorithm 2, 3 and 4.
Follow from Table 3, Figure 2 and 5 show the network before
and after edge weight modification while Figure 6, 7 and 8
show the network representation after each phase in structural
modification, using δ = 0.25.

Discussion: The overall edge modification algorithm is flex-
ible and random. During the edge deletion process, a param-
eter δ is defined to determine the portion of edges in the
network that should be removed. Important edges could be
preserved as the edges are deleted according to the influence
of edges (edge betweenness). During the edge addition pro-
cess, the new edges are randomly inserted between the fake
nodes and existing nodes in the original network to conceal
the true nodes and edges. The δ is used to control the balance
between privacy level and utility level. Higher value of δ
implies more deletions of true link and thus the probability
of link disclosure is reduced. This further implies the larger
amount of distortion on the network structure.

Regardless of the value of δ defined, the structural infor-
mation of all real nodes are modified post-implementation
of δ-MinSwapX, include degree of node, degree sequence,
subgraph and 1-neighbourhood graph of the real nodes.
In addition, the edge weight value of the fake edges do
not affect the shortest path in original network as the
assigned values are slightly larger or equal to the edge
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FIGURE 5. Original network after edge weight modification.

FIGURE 6. Network after edge deletion.

weights involved in that particular shortest path. Hence, the
background knowledge of an adversary cannot be utilized to
map to the published data for node reidentification as the
edge weight and structural information are unlinkable and
randomized.

We assume the parameter δ is available to both data miners
and attackers [33], [37]. Although δ is known, the identity and
link of a user is still protected through the edge randomization
process. Note that if δ = 1, the published graph is a null graph
(graph with no edge) with n+1 nodes, which clearly contains
almost no information about the original graph. We intend to
have δ to be a small value.
δ-MinSwapX is a scheme designed for networks where the

identity, the links and the edge weight data of a user are sen-
sitive information. Edge weight anonymization and structural
anonymization are applied simultaneously to fully protect a
network user. Examples of such networks include healthcare
networks (Doctor On Demand, HelloMD and LiveHealth
Online) and social media networks (Facebook, Twitter and
Instagram).

VII. SECURITY AND PERFORMANCE ANALYSIS
In this section, we analyze the security level of our schemes
theoretically and evaluate the performance of our schemes
on three real data sets. All the experiments were conducted
on a machine running Microsoft Windows 10 Home Single
Language operating system, with an Intel Core TM i7-8750H
2.20 GHz CPU and 16GB RAM. All the algorithms were
implemented in Python 3.7.

FIGURE 7. Network after fake node and edge addition.

FIGURE 8. Network after fake edge weight addition.

A. DATA SETS
Three real data sets are used in the experiments to study
the performance of our schemes on the data quality in terms
of security, efficiency and utility. We extracted a subset of
Bitcoin Alpha,1 Facebook Artist2 and Youtube3 to validate
the proposed schemes. All the data considered were weighted
and non-directed. The details of the data sets are shown in
Table 4. The data size is comparable or larger than other
relevant work [29], [32], [41]–[43].

B. SECURITY EVALUATION
In this paper, we proposed two schemes that address edge
weight disclosure, link disclosure and identity disclosure.
We compare our work with some related literature dis-
cussed in section III in terms of the privacy components and
summarize the comparisons in Table 5. We further analyze
the privacy level rendered by our work in proposition 1, 2, 3,
6, 7 and 8.

In the previous work as shown in Table 5, anonymity of
edge weight is achieved through the process of data pertur-
bation, k-anonymization, differential privacy and generaliza-
tion, such that an edge weight could not be reidentified with
high probability. As shown in our gap analysis, these schemes
do not provide unlinkability feature to the edge weight data.
In contrast, our schemes provide anonymity and unlinkability,
such that there does not exist an injective mapping between
the original and the published data. The edge weight protec-

1http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
2https://snap.stanford.edu/data/gemsec-Facebook.html
3https://snap.stanford.edu/data/com-Youtube.html
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TABLE 4. Description of the data sets.

tion rendered in our schemes is higher since the distinct values
in network data are diverse, as shown in proposition 6. All the
edge weights are modified in MinSwap, providing a certain
amount of node protection to the users.

In addition, δ-MinSwapX is proposed to provide addi-
tional link and node protection. Randomization is deployed
to randomly modify the structural information according to
the edge betweenness. Random fake edge addition hides the
presence of true link in the published graph, and thus prevents
the link disclosure, regardless of the background knowledge
an adversary may possess, as shown in proposition 7. Fur-
thermore, fake node addition hides the true nodes in the
published data. The number of fake nodes and fake edges
added are affected by the original data itself, which cannot be
inferred by an adversary with high confidence level. Since the
edges are randomized, the change of structural information is
randomized. An adversary cannot simply map the auxiliary
structural information to attack the published data to infer
the link and identity of a user. Moreover, node unlinkability
further guarantees that the edge weight information cannot
be linked to its corresponding user in the published data,
as shown in proposition 3. The probability of identity disclo-
sure is proven in proposition 8.

Proposition 6: Suppose an adversary possesses full access
to a published data that satisfy edge weight unlinkability,
the probability of edge weight disclosure, P(wA) = 1

N−1
for MinSwap and 1

N−|W ′(A∪B)| for δ-MinSwapX, where N =
number of distinct edge weight values inW.

Proof: For an edge weight value w, every other edge weight
value in the original data has equal chance of being the new

TABLE 5. Comparison of privacy protection.

edge weight w′ of a victim A. Hence, the probability of edge
weight disclosure of victimA underMinSwap,P(wA) = 1

N−1 .
If an adversary has a high confidence level, ε that the true
edge weight lies in a set of x values (x ≤ N − 1), then
P(wA) = ε 1x+(1−ε)

1
N−1−x . An adversary may not have high

confidence level regarding the exact original edge weight
values. Hence, when x approaches N − 1, ε approaches to 1,
and P(wA) approaches 1

N−1 .
In the case of δ-MinSwapX, an adversary learns that the true

edge weight ∈ [W ′(A ∪ B)]′. Hence, P(wA) = 1
N−|W ′(A∪B)| .

P(wA) is arbitrary small sinceN is arbitrarily large in scalable
social network data. This completes the proof.

Proposition 7: Given the assumption of adversary in section
II, the probability of inferring the presence of link under δ-
MinSwapX = 1− δ and the probability of reidentification of
the true link= (1−δ)m

(1−δ)m+mAdd
, where mAdd is the number of fake

edges added.

Proof: The probability of inferring the presence of link =
1 − δ, as δ of the original link are removed from the graph
under δ-MinSwapX.

The probability of link reidentification = fraction of true
link in the published data = (1−δ)m

(1−δ)m+mAdd
. This is the same

privacy level rendered in [34]. This completes the proof.

Proposition 8: Given the assumption of adversary in section
II, the probability of identity disclosure of node A under δ-
MinSwapX = max [ 1

n+nAdd
,
∏DA

i=1
1

N−|W ′(A∪B)| ,
σ (n2−n1)+n1

n1n2n3
],

where n1 is the number of edges deleted for node A, n2 is the
number of edges added for node A and n3 is the number of
nodes with DA in the published data.

Proof: There are three possible alternatives to reidentify a
victim A using edge weight and structural data as background
knowledge:
a) Brute-force: Every node in the published data has equal
chance of being victim A. Hence, the probability of reidenti-
fication of victim A, P(A) = 1

n+nAdd
.

b) Reconstruct the original edge weight from the published
graph and deploy linkage attack: The probability of inferring
all the true edge weights is, P(All edge weights are true) =∏DA

i=1
1

N−|W ′(A∪B)| . By matching the auxiliary edge weight
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FIGURE 9. Running time (s) according to data sets.

TABLE 6. Comparison of time complexity.

values with the reconstructed edge weights, in the worst case,
there is an exact match. P(A) =

∏DA
i=1

1
N−|W ′(A∪B)| .

c) Reconstruct the original structural graph from the pub-
lished data and deploy linkage attack: Every node is subjected
to either edge deletion or edge addition. The change of degree
of node A is [−n1, 0) ∪ (0, n2]. Given an adversary has a
confidence level of σ that a node undergoes edge deletion,
then the probability of inferring the correct degree, P(DA) =
σ
n1
+

1−σ
n2

. If there are n3 nodes withDA in the published data,

P(A) = σ (n2−n1)+n1
n1n2n3

.
This completes the proof.

C. EFFICIENCY EVALUATION
Figure 9 demonstrates the running time of bothMinSwap and
δ-MinSwapX for δ = 0, 0.2, 0.4, 0.6 and 0.8. When δ = 0,
only edge weight modification is applied on the data. When
δ = 1, a null graph is obtained and hence the time taken is
zero. Thus, 1-MinSwapX is not considered in the evaluations.
The times taken for Bitcoin Alpha under both schemes are
less than 52.5s.

The time complexity (also commonly referred as computa-
tional overhead [62]) ofMinSwap isO(m), which has a lower
time complexity than othermodels in Table 6. The linear com-
plexity implies the feasibility of MinSwap in anonymizing
scalable data. The running time increases linearly with the
data size. On the other hand, δ-MinSwapX has a higher time
complexity ofO(n2 × log(n)+ mn) due to the heavy compu-
tation of edge betweenness [63] during the structural modi-
fication. Nevertheless, the time complexity of δ-MinSwapX
is lower than [27] and comparable to [46], [49]. Hence,
δ-MinSwapX is usable for real world implementation.

D. UTILITY EVALUATION
We study a set of statistical aggregate queries, shortest path
analysis and several important graph metrics, which were

FIGURE 10. Edge weight distribution of Bitcoin Alpha.

FIGURE 11. Edge weight distribution of Facebook Artist.

FIGURE 12. Edge weight distribution of Youtube.

similarly adopted in [21], [24], [32], [37], [38] to validate the
utility of the anonymized graph.

1) STATISTICAL ANALYSIS
The impacts of MinSwap and δ-MinSwapX on the statisti-
cal properties of edge weight data are measured using the
Kolmogorov-Smirnovb test and statistical aggregate queries.
Kolmogorov-Smirnovb test at confidence level = 0.05 is
utilized to verify the distribution preservation. As shown in
Figure 10, 11 and 12, the distribution ofBitcoin Alpha,Face-
book Artist and Youtube are preserved at 100% rate under
MinSwap as all the original data are inter-swapped within
the same data set. However, δ-MinSwapX does not preserve
the distribution of all the three data sets as the edge weight
data are modified to satisfy stronger privacy constraints with
a minimal utility loss. As the value of δ increases, the level of
distortion on the data distribution increases.

Table 7, 8 and 9 show the comparison results of answering
statistical aggregate queries. It is observed that MinSwap
preserves all the statistics at 100% rate as the distributions
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TABLE 7. Statistical aggregate query results of Bitcoin Alpha.

TABLE 8. Statistical aggregate query results of Facebook Artist.

are fully preserved. MinSwap outperforms other existing
schemes [21]–[32] in terms of the edge weight statistical
properties preservation. Under δ-MinSwapX, most of the
query results of each data set remain useful even when the
value of δ increases. The maximum deviation of the query
results is observed in the mode of Facebook Artist when δ
is 0.6. Although δ-MinSwapX is not designed to preserve
the statistical properties of the edge weight data, it shows
an acceptable preservation rate provided that it guarantees a
higher privacy level compared toMinSwap. This is a reason-
able trade-off between privacy and utility level.

We further analyze the mean absolute error (MAE) of the
statistical aggregate query results to measure the average
difference between the original data and the published data.
The mean absolute error is one of the common statistical
metrics which is defined as follows:

MAE =

∑n
i=1 |yi − xi|

n
(3)

where yi is the simulated result, xi is the original result and
n is the number of observed results. The smaller the MAE,

TABLE 9. Statistical aggregate query results of Youtube.

TABLE 10. Mean absolute error (MAE) of the statistics.

the higher the utility of the published data. As shown in
Table 10, the MAE of the statistics of all three data sets
under MinSwap is 0. This implies that there is no difference
between the original data and the published data generated
by MinSwap. On the other hand, Table 10 shows low MAE
under δ-MinSwapX for all three data sets, except for mode
and sample variance of Facebook Artist and mode, stan-
dard deviation and sample variance of Youtube. Nevertheless,
the trade-off is affordable and within reasonable bounds as
δ-MinSwapX assures additional privacy protection compared
to MinSwap.

2) SHORTEST PATH ANALYSIS
The Dijkstra algorithm is used to determine the shortest paths
between all reachable node pairs and evaluate the correspond-
ing shortest path length. We consider the change of shortest
path length of the most influential nodes as it is infeasible to
evaluate the shortest paths of all reachable nodes in scalable
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FIGURE 13. Percentage of change per range (PCR) of average shortest
path length.

FIGURE 14. Changes of number of nodes in Bitcoin Alpha.

networks. Figure 13 shows the change of average shortest
path length.

All data sets show low change of average shortest path
length, compared to the range of the edge weight values. This
indicates an acceptable preservation rate of average shortest
path length rendered by our work.

3) NETWORK CENTRALITY ANALYSIS
We used Cytoscape 3.7.2 as a tool to examine some
important graph metrics to evaluate the information loss in
δ-MinSwapX.MinSwap preserves the network structure as no
structural modification is applied, and thus is omitted.

The clustering coefficient is a measure of the extent to
which nodes in a graph tend to cluster together. The closeness
is the inverse of average shortest path length. The normal-
ized connectivity centralization measures the degree to which
a graph resembles a star graph topologically. The average
degree of a graph is the average number of edges per node in
the graph. The diameter of a graph is the maximum distance
between all node pairs. The radius of a graph is the minimum
among all the maximum distances between a node to all other
nodes. The network heterogeneity measures the variance of
the degree distribution.

As shown in Figure 14, 15 and 16, the number of fake nodes
added decreases as δ increases. Furthermore, the number of
fake nodes added is random and depends on the original data
itself. All the original nodes are preserved in the published
data.

In Figure 17, 18 and 19, as δ increases, the total number of
edges, true edges and fake edges added decreases due to the
increasing number of edges deleted. Note that the number of

FIGURE 15. Changes of number of nodes in Facebook Artist.

FIGURE 16. Changes of number of nodes in Youtube.

FIGURE 17. Changes of number of edges in Bitcoin Alpha.

FIGURE 18. Changes of number of edges in Facebook Artist.

fake edges added is random and depends on the data itself.
Regardless of the value of δ (0 < δ ≤ 1), all the structural
information of a node are modified. The higher the value of
δ, the larger the amount of edge modification and hence the
higher the privacy level rendered.

As δ increases, the edge deletion process compensates the
effect of edge addition, which eventually modifies the orig-
inal graph into a null graph. Therefore, the clustering coef-
ficient, closeness, normalized connectivity centralization and
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FIGURE 19. Changes of number of edges in Youtube.

FIGURE 20. Clustering coefficient.

FIGURE 21. Closeness.

FIGURE 22. Normalized connectivity centralization.

average degree decrease as shown in Figure 20, 21, 22 and 23.
Nevertheless, most of the clustering coefficient, closeness,
normalized connectivity centralization and average degree
remain accurate for 0 < δ ≤ 0.8.
In Figure 24, the network diameter changes steadily and

slightly as δ increases. The network radius ofFacebook Artist
is preserved for 0 < δ ≤ 0.6, as shown in Figure 25. Fur-
thermore, the network radius of Bitcoin Alpha and Youtube

FIGURE 23. Average degree.

FIGURE 24. Network diameter.

FIGURE 25. Network radius.

FIGURE 26. Network heterogeneity.

fluctuates with large magnitude as δ increases. This indicates
that the network radius is not preserved in both data sets.
In Figure 26, the change of network heterogeneity of all
three data sets is consistent and minor over the value of δ.
Therefore, the preservation of network centrality is relatively
high and δ-MinSwapX can be efficiently deployed in scalable
real data to provide a high privacy level with a low utility
trade-off.
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4) DISCUSSION
Most of the existing schemes apply to only unweighted
social networks, which do not consider edge weights
[33]–[49], [51]–[57]. Aweighted graph is a generalization of
the unweighted graph. Therefore, our schemes are more prac-
tical, such that the proposed schemes provide higher privacy
level to the users, in terms of edge weight, link and identity
protection by rendering unlinkability in a social network.
From the utility aspect, MinSwap preserves the statistical
properties of edge weight data at rate= 100%. Regardless of
the value of δ defined, all the structural information of each
node are changed, providing a considerable amount of pro-
tections to the users. Furthermore, the average shortest path
length and network centrality are well-preserved, considering
the degree of privacy protection provided.

VIII. CONCLUSION
In this paper, we studied the problem of privacy-preserving
weighted social network data publication. Particularly, our
work adds to the design of two secure anonymization schemes
based on two new privacy models to efficiently address edge
weight disclosure, link disclosure and identity disclosure.
Edge weight unlinkability and node unlinkability are defined
to address sensitive edge weight disclosure and node reiden-
tification that rely upon edge weight data as the background
knowledge. In addition, edge randomization is deployed to
modify the structure of a graph to protect the link and identity
of a user against structural attacks. The privacy-preserving
ability of our work is evaluated extensively. The empirical
study shows that our work maintain high data utility while
protect the privacy of users simultaneously.

Overall, we re-emphasize that our work provides the fol-
lowing unique features which are not rendered in other work:

1) Our schemes address three existing privacy problems,
namely edge weight disclosure, link disclosure and
identity disclosure by achieving anonymity and unlink-
ability to provide stronger privacy protection.

2) Our schemes efficiently preserve the statistical proper-
ties of edge weight data to assure high data utility post-
anonymization.

3) Our schemes minimally modify the structural data
without eliminating the important edges, and thus
resulting in lower information loss compared to other
randomization schemes.

For future work, the schemes could be improved for
dynamic social networks, where the data are collected and
published continuously. Furthermore, another possible direc-
tion is to integrate the schemes with differential privacy to
further protect the data privacy in an interactive publishing
environment.
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