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ABSTRACT We introduce a Physically Unclonable Function (PUF) based on an ultra-fast chaotic network
known as a Hybrid Boolean Network (HBN) implemented on a field programmable gate array. The network,
consisting of N coupled asynchronous logic gates displaying dynamics on the sub-nanosecond time scale,
acts as a ‘digital fingerprint’ by amplifying small manufacturing variations during a period of transient
chaos. In contrast to other PUF designs, we use both N -bits per challenge and obtain N -bits per response by
considering challenges to be initial states of the N -node network and responses to be states captured during
the subsequent chaotic transient. We find that the presence of chaos amplifies the frozen-in randomness
due to manufacturing differences and that the extractable entropy is approximately 50% of the maximum of
N2N bits. We obtain PUF uniqueness and reliability metrics µinter = 0.40±0.01 and µintra = 0.05±0.00,
respectively, for an N = 256 network. These metrics correspond to an expected Hamming distance of 102.4
bits per response. Moreover, a simple cherry-picking scheme that discards noisy bits yields µintra < 0.01
while still retaining ∼ 200 bits/response (corresponding to a Hamming distance of ∼ 80 bits/response).
In addition to characterizing the uniqueness and reliability, we demonstrate super-exponential scaling in the
entropy up to N = 512 and demonstrate that PUFmeter, a recent PUF analysis tool, is unable to model our
PUF. Finally, we characterize the temperature variation of the HBN-PUF and propose future improvements.

INDEX TERMS Chaos, physically unclonable function (PUF), field programmable gate array (FPGA),
autonomous Boolean network (ABN), hybrid Boolean network (HBN).

I. INTRODUCTION
Physically unclonable functions (PUFs) are an emerging
technology that extract randomness, or entropy, from uncon-
trollable manufacturing variations in the physical structure of
identically produced devices [1], [2]. PUFs use this entropy
to reliably generate a ‘digital fingerprint’ - a unique sequence
of 0’s and 1’s known as a bitstream - that is produced by
the device but never stored [3]. In practice, PUFs are often
circuits embedded in other devices that reliably map an input
(or challenge) to an output (or response) in a way that is
unique to a particular copy (or instance) of the device.
For example, the start-up behavior of static random-access

memory (SRAM) produces an identifying bit pattern suitable
for use as a PUF [4]. Ideally, this identifying behavior cannot
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be reproduced (or cloned), either because it is physically
impossible to recreate the same conditions in another device,
or because it is mathematically impossible to accurately pre-
dict the PUF’s behavior. In summary, we highlight three
practical properties of PUFs:

• Uniqueness: Responses from different instances to the
same challenge are different enough to distinctly iden-
tify each instance;

• Reliability: Responses from an individual instance to
the same challenge are similar enough to consistently
identify that instance;

• Unclonability: The challenge-response pairs (CRPs) of
an individual instance cannot be: (1) physically repli-
cated by another instance, or (2) inferred from knowl-
edge of the device manufacturing process or previously
revealed CRPs.
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In early work, PUFs were constructed using complex
optical scattering devices or custom fabricated silicon chips
[5]. More recently, there is an industry trend toward using
reprogrammable devices such as field-programmable gate
arrays (FPGAs) for PUF-based IP protection. For example,
IntrinsicID offers the commercially available ‘butterfly PUF,’
an SRAM-PUF embedded directly into some manufacturers
higher-end FPGAs [6].

However, SRAM-PUFs, such as the butterfly PUF, are
‘weak’ in the sense that there are relatively few CRPs obtain-
able per device (in this case resulting from the static initial-
ization of each memory cell at power-up) [2]. As a result,
their use for authentication purposes are limited because an
attacker can clone the device by obtaining the full set of
CRPs in a short amount of time. ‘Strong’ PUFs, on the other
hand, contain a relatively large number of independent CRPs,
making attempts to extract or predict all of them a difficult
or impossible task [7]. Moreover, the design and practical
implementation of strong FPGA-based PUFs remains an
open problem [1].

Modern PUF proposals have also started to explore chaotic
dynamics as an additional source of entropy [8]–[10]. Chaos
is characterized by an exponential divergence between ini-
tially similar trajectories. As discussed in more detail below,
this behavior can be used by a PUF to amplify the entropy
available from the small physical variations inherent in any
manufacturing process. Moreover, we hypothesize that chaos
provides resilience to machine learning due to the existence
of ‘fractal basin boundaries’ [11], which is a phenomenon
in chaotic systems in which dividing lines between different
behaviors have a fractal structure. In the standard interpre-
tation, this means that an infinitesimal change in the initial
conditions of the system does not yield a smooth change in
the asymptotic behavior of the system; instead, the system
may evolve to a disjoint attracting set. We hypothesize that
a chaotic PUF has a similar behavior with respect to the
system parameters, such that an infinitesimal change does not
yield a smooth change in the measured response. Hence, even
marginal uncertainty in the system parameters changes the
entire class of possible outcomes, likely confusing attempts
at prediction.

Finally, many PUFs incorporate asynchronous (unclocked
and analog-like) logic into their design [1], [2]. Asynchronous
logic can require fewer resources (time, area and power)
than conventional synchronous circuits governed by a global
clock. Morevoer, compared to synchronous designs, asyn-
chronous designs are much more sensitive to manufacturing
variations. This is because clocked operations are stabilized
by waiting an entire clock period before the next operation,
so that any variations in, e.g., rise time or signal propagation
time are eliminated. On the other hand, dynamical properties
of even simple unclocked systems such as the frequency of a
ring oscillator depend sensitively on variations in rise and fall
times. In general, combinatorial loops can be designed that
operate at the maximum frequency allowed by the hardware,
where the dynamics are most sensitive to manufacturing

variations. Thus, asynchronous PUFs are useful as compact,
low-power cryptography primitives.

A. THIS WORK
In this paper, we propose a design for a strong, chaos-
enhanced, asynchronous PUF and demonstrate its imple-
mentation on an FPGA. Our PUF is based on a network
of coupled, unclocked logic gates known as an autonomous
Boolean network (ABN) combined with a clocked digital
control and readout layer, forming what we call a hybrid
Boolean network (HBN, HBN-PUF). The HBN-PUF can be
incorporated into existing FPGA designs without specialized
hardware, having a resource count proportional to the number
of nodes in the network N . The unique properties of the
HBN-PUF compared to existing strong PUF proposals are:

• The HBN-PUF produces N (or potentially more)
response bits per N -bit per challenge. Thus, extracting
secrets of a given length requires ∼ 1/N the number
of queries, which translates into time, storage and net-
work traffic efficiency. Moreover, the additional bits per
response can be used for error correction and improv-
ing environmental resilience, and the multi-dimensional
response space and possible fractal basin boundaries will
likely frustrate machine learning attacks.

• Unlike many conventional PUFs, such as delay-line
PUFs [2], the HBN-PUF does not require carefully
constructed circuit paths with specified delay character-
istics; rather, automatic placement of circuit elements
by standard vendor-supplied compilation and synthesis
tools yield usable HBN-PUFs.

• The ABN part of the HBN-PUF exhibits picosecond-
scale asynchronous transient-chaotic dynamics. Because
of these ultra-fast dynamics, response readout occurs in
less than 10 ns, which has important practical applica-
tions because the number of CRPs required for strong
industrial-scale enrollment can be obtained in a short
time.

The paper is organized as follows. Our proposed
HBN-PUF design is described in Sec. II, with a discus-
sion of the circuit and data collection process in Sec. II-A
and the physical origins of PUF behavior in Sec. II-B.
Section III is devoted to experimentally characterizing
the HBN-PUF behavior by measuring its uniqueness and
reliability (III-A), entropy scaling (III-B), resilience to
machine learning (III-C), and temperature variation (III-D).
Section IV concludes with a brief discussion and future work.
Supporting materials are given in the Appendix, including
the hardware description language code that instantiates our
design.

II. PROPOSED HBN-PUF DESIGN
Our proposed design is shown in Fig. 1, which consists
of a network of N coupled ‘nodes’ and a clocked digital
readout and control layer, forming an HBN. Each node is
a combinatorial logic circuit that takes as input the outputs
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FIGURE 1. Proposed HBN-PUF design. The studied XOR-ABN topology is shown in the upper left, and the logic
of an individual node in the upper right. Shown in the bottom are the clocked logic used to apply the
challenge and the tapped delay line used to select the response. The specific connections between nodes (i.e,
the identity of nodes f − l ) are governed by the topology of the network; shown is an N = 32 regular random
graph of degree 3.

of other nodes in the network and a global reset signal; we
refer to the output of this circuit as the ‘state’ of each node
in the network. When the reset signal is high, the state of the
node is the corresponding bit in the challenge string, and the
state of the entire network is exactly equal to the challenge
string C. When the reset signal is low, the state of the node
is given by the XOR of the states of its input nodes and
the entire network is a large recurrent combinatorial loop
that evolves in time without a clock (i.e., autonomously).
Typical clocked digital logic circuits constrain voltages to be
near logic high or low most of the time so that the output
voltages of a gate is near logic high or low. In contrast, the
individual semiconductor devices in an ABN act as highly
nonlinear input-output devices with analog (but Boolean-
like) dynamics, and the voltages take on a continuous range
of values between logic-high and -low. During this time, the
digital readout layer captures a Booleanized representation
of the true analog network state in discrete time intervals.
A single state at the optimal time of measurement is then
selected as the response R.

In contrast to other PUF designs, we stress that the chal-
lenge and response are both N -bit strings, specifying the
network’s initial condition and Booleanized state in a chaotic
transient, respectively. Thus, there are N response bits for
each of 2N challenges. Hence, the number of extractable bits
from the HBN-PUF may scale super-exponentially as N2N ,
yielding a strong PUF.

A. DESIGN SPECIFICS AND DATA COLLECTION
For the specific HBN considered in this work, each node
takes exactly 3 inputs, and the combinatorial function is the
3-input XOR, as shown in the upper right of Fig. 1. Both
of these design choices are flexible. The XOR function is

chosen because it is maximally sensitive to its inputs, and the
output is balanced between high and low; the overall bias of
the response can be controlled by replacing the XOR with a
Boolean function that has more or fewer high outputs. Three
inputs were chosen in order to fit within a Cyclone V logic
element; more or fewer inputs can be used to match the layout
to other FPGA architecture details. Moreover, structure can
be applied to the network (such as ring topologies [12]) to fine
tune statistical and performance properties of the resulting
response. These aspects will be explored in follow up papers,
but in this work each node’s XOR gate takes the output
of three nodes (f , g, h in Fig. 1), randomly chosen without
replacement from among theN−1 other nodes, and in turn its
multiplexer feeds the XOR gate of three other nodes (j, k, l in
Fig. 1). When the clocked reset signal is low, the multiplexer
passes the node’s XOR gate.When the reset signal is high, the
node’s multiplexer holds the initial condition, which is given
by a corresponding bit of the challenge. In this way, the analog
state of all nodes in the network x(t) = {xi(t)}Ni=1 ∈ [0, 1]N

are initially held fixed to the digital N -bit challenge string C,
described mathematically as

x(0) = C ∈ {0, 1}N . (1)

The HBN stabilizes to the initial condition nearly instan-
taneously, but we hold it there for several ∼ 100 MHz clock
cycles of holding Reset high. The dynamics are then enabled
by setting the Reset signal low, causing each multiplexer to
pass the output of the autonomous XOR gate that feeds it.
The network then evolves continuously in time and eachXOR
gate updates asynchronously based on the analog voltage of
its neighbors.

During this time, the HBN dynamics are measured by
sending the Reset signal down M pairs of inverter gates
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(i.e., a delay line). An associated register is triggered
after the delayed Reset signal passes over a given pair
of inverters. Each register Booleanizes the analog state
of the HBN at that time and stores it digitally. This
results in a sequence of N -bit Boolean state vectors in
memory recording the bitstream produced by the network
{x(2τ ), x(4τ ), . . . , x(2Mτ )} ∈ {0, 1}NM .
Here, τ ∼ 0.25 ns is the mean delay time of a sin-

gle inverter-gate, which is similar to the timescale of the
XOR gate and multiplexer operations. Thus, the bitstream is
sampled at a similar rate as the HBN dynamics, in roughly
2τ ∼ 0.5 ns intervals. However, like all logic elements, each
delay is subject to manufacturing variation, and so the sam-
pling rate is not completely uniform. This also contributes to
the manufacturing variation that gives rise to PUF behavior.
Moreover, by using pairs of inverter gates rather than a clock
source, the delay through the delay line varies with tempera-
ture and voltage in a similar way to the dynamical timescale
of the nodes in the network. Thus, the delay line imparts some
robustness to environmental variation.

The response R is selected from among this bitstream as a
single state of the network at an optimal point in time x(topt )
during the chaotic transient

R = θ (x(topt )) ∈ {0, 1}N , (2)

where θ : [0, 1]N → {0, 1}N is an element-wise thresholding
operation, corresponding to the Booleanization of the real-
valued x(t) performed by the registers. The details of deter-
mining topt are discussed in Sec. III.

B. HBN DYNAMICS AND PUF BEHAVIOR
If each logic gate in anHBNwere synchronously updated by a
global clock, it would execute the digital Boolean XOR func-
tion exactly, and node states would take on discrete values 0 or
1 at each clock cycle. In this mode, the state at each discrete
time step would be exactly determined by the N -bit Boolean
state at the previous time step, and the entire network would
act as a pseudo-random number generator. However, because
the logic gates are unclocked, their inputs can change at the
same time that they are transitioning between logic high and
low. As a result, nodes have the potential to take on interme-
diate logic values (analog voltages) [13]. Thus, the dynam-
ics of nodes are better described by continuous differential
equations that model the rise and fall times resulting from the
finite capacitances and resistances in the devices, and not by
discrete Boolean dynamics. Moreover, the state at a specific
time is not given by the states of its inputs at the current time,
but rather by time-delayed versions, due to the finite speed at
which signals propagate along interconnects. Taken together,
this causes the asynchronous XOR gate to behave as a highly
nonlinear input-output device that multiplies signal edges,
which quickly causes the dynamics to reach the maximum
switching frequency allowed by the hardware [14], [15].

Under these conditions, the network dynamics become
highly sensitive to amplitude fluctuations about the interme-
diate voltage value. Here, small perturbations to the voltage at

the XOR gate, such as those due to manufacturing variation,
noise, and differences in initial conditions, will cause the
time at which the node switches between logic high and low
to vary, resulting in previously similar waveforms diverging.
As a result, ABNs consisting of XOR gates can exhibit chaos
even in small networks [16]. When combined with a digital
readout and control layer to form an HBN, they have been
used as ultra-fast true-random-number generators (TRNGs)
capable of a 12.8 Gbit/s entropy rate [12].

Based on past research and the discussions above, we iden-
tify three sources of entropy in XOR-HBNs related to PUF
behavior:

1) Frozen-in heterogeneity (manufacturing differences),
2) Thermal and charge fluctuations (noise), and
3) Deterministic chaos (unpredictability and nonlinear

amplification of timing differences)

Each source of entropy produces variations in the bitstream
generated by the digital readout layer of the clocked portion
of the network. However, each source has a separate physical
origin as discussed in the rest of this section.

Frozen-in heterogeneity is due to small variations in the
physical properties of the wiring and logic elements and it
is this source of entropy that forms the primary basis of
PUF behavior. Slight physical differences between nodes and
wires - such as node input impedence, switching rate, and
signal propagation time - alter the time at which the analog
voltage of individual nodes cross the logic threshold for
nominally identical inputs. The effect of these manufacturing
variations are more pronounced at the ultra-fast time scale
of the dynamics, which become distinctly correlated with
the unique physical characteristics of an individual device.
Such correlations produce the identifying information used to
distinguish different FPGAs programmedwith the sameHBN
design. They are quantified by the uniqueness parameter
µinter (Appendix C, (9)).

Thermal and charge fluctuations are sources of time-
dependent stochastic behavior (often referred to as ‘noise’),
which reduce the reliability of the PUF. Noise perturbs the
amplitude of the logic gates in the asynchronous portion of
the network and changes the times at which nodes cross the
threshold separating logic high from logic low. If a tran-
sition is near the time at which the readout logic registers
the node state, small variations in the threshold crossing
time can change a registered zero to a one or vice versa.
This alters the bitstream of a single device under repeated
measurement, introducing unreliability quantified by µintra
(Appendix C, (8)).

Chaotic systems have a positive entropy rate separate from
noise and manufacturing variations, which serves to amplify
both of these sources of entropy. The entropy attributed to
chaos is due to the finite precision of physical measurements
and the exponential sensitivity of chaotic systems to initial
conditions. Any physical measurement of initial conditions
has a necessarily limited precision, and so two trajectories
measured to have the same initial conditions will diverge due
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FIGURE 2. (a). µinter (blue) and µintra (red) vs time. Light lines correspond to the metrics calculated on a
single PUF class (i.e., choice of random network and placement on an FPGA) for an N = 256 node
HBN-PUF, and the dark lines correspond to the average values calculated over all PUF classes (i.e., the
average expected behavior for an N = 256 random, 3-input HBN-PUF). (b) 1µintra vs time, with same
definitions for light and dark lines. The highlighted topt is the time at which the average 1µ is maximum.
We note, however, that there is some variation in the specific topt for each PUF class.

to the unmeasurable differences in the true initial state of
each system. Chaos thereby magnifies any small differences
in the applied challenge over time, acting as a nonlinear
amplifier of the other sources of entropy and contributing to
the unclonability property.

These three sources of entropy are visible in Fig. 2(a),
which is a plot of µinter and µintra vs. measurement time.
Frozen-in heterogeneity is illustrated by the separation
between µinter and µintra at very short measurement times,
noise is illustrated by the fact that µintra is non-zero, and the
effect of chaos is illustrated by the fact that both measures
grow exponentially until saturating at 0.5. In the next section,
we discuss finding topt that balances these competing effects.

III. ABN-PUF PERFORMANCE STATISTICS
To be an effective PUF, the entropy rate due to the frozen-
in heterogeneity of the HBN must be greater than the noise-
induced entropy rate. This is captured by the metric

1µ(t) := µinter (t)− µintra(t), (3)

which is plotted vs. time for N = 256 in Fig. 2(b). There is
an optimal time of measurement topt for which the network
has coupled sufficiently to manufacturing variations to act as
a unique identifier (µinter ∼ 1/2), while remaining unper-
turbed enough by noise to be reliable (µintra ∼ 0), defined
by

topt := argmax
t∈[2τ,2Mτ ]

1µ(t). (4)

All future statistics are calculated from the network state at
this time. In practice, we find topt ∼ 2−8 ns for the networks
studied, with slowly increasing topt with network size N .
Note that topt is calculated exactly once over an entire PUF
class and represents a characteristic timescale of the HBN
dynamics. Further, we do not observe significant variation in
topt or 1µ due to differences in the layout of the network
or delay line, as demonstrated in Fig. 2 and described in
Appendix A.

In the remainder of this section, we study the performance
statistics of the proposed HBN-PUF, including its reliability
and uniqueness (III-A), entropy (III-B), resilience to machine
learning (III-C), and temperature variation (III-D). Corre-
sponding definitions and experimental procedures are elab-
orated in Appendices A-G.

A. RELIABILITY AND UNIQUENESS
Reliability and uniqueness are standard means of gauging
PUF performance [1]. The average fraction of dissimilar bits
between responses of different PUFs to a given challenge
is ideally 0.5 (random). It is known as ‘uniqueness’ and
described byµinter . Likewise, the average fraction of dissimi-
lar bits between responses of a fixed PUF to a given challenge,
known as ‘reliability’ (µintra), is ideally 0 (no error). To gauge
these measures, we study the pairwise difference between
HBN-PUF responses to various challenges; see Appendix C
for details.

Figure 3 shows the number of unique challenge bitstrings
yielding response pairs differing on average by the given
fraction (bottom axis) or number of bits (top axis) for three
different PUF sizes, N = 64, 256, and 1024. Two histograms
are plotted, where the differences are calculated with respect
to the same chip (red) and with respect to other chips (blue).
Eight different chips were used to estimate µinter . There
appears clear separation of intra- and inter-device distribu-
tions, indicating vanishing false-positive rate for authenti-
cation using both network sizes, especially as N increases.
This means that our PUF is well-suited to authentication.
Furthermore, fewer challenges (∼ 1/N ) are required for
authentication than with single-bit PUFs since the HBN-PUF
produces N -bit responses.
In practice, we find that µintra is driven by a relatively

small, fixed subset of nodes (where the subset depends
on the chip and the response). We hypothesize that these
nodes are in a metastable state at the measurement time
topt , and that a cherry picking error correction scheme [17]
that removes these error-prone bits from the response can be

VOLUME 9, 2021 44859



N. Charlot et al.: HBNs as PUFs

FIGURE 3. Challenge-response histograms for network sizes (a) N = 64, (b) N = 256, (c) N = 1024. We plot (8) and (9) (see
Appendix C), the means of which are µintra and µinter , respectively.

highly effective. This is illustrated in III-D and will be studied
more extensively in future work.

B. EXPONENTIAL SCALING OF ENTROPY WITH NETWORK
SIZE
Entropy is of central importance in determining the crypto-
graphic and security properties of a PUF [18]. TheHBN-PUF,
with its multiple bits per response, presents unique challenges
to entropy estimation that will be discussed in future work,
but in this section we apply previously reported entropy
estimation techniques adapted to the HBN-PUF. A PUF can
be idealized as a table that gives the response corresponding
to a given challenge (called the ‘CRP table’ below). For most
strong PUFs, the number of challenges (i.e., the number of
rows in the CRP table) grows as 2N , and each response is
a single bit so the CRP table for a given PUF realization
can be described by a binary string of length 2N . For the
HBN-PUF, on the other hand, each row in the CRP table
is itself an N -bit string so the entire CRP table is described
by an N2N -bit string. Estimating the distribution of binary
strings of length N2N is infeasible even for relatively small
N ; however, we can apply entropy estimates from the PUF
literature that make assumptions about this distribution–Hmin,
Hjoint , andHCTW (see Appendices D-F). We do not report the
values of HCTW below because in nearly all cases it produces
full entropy and is never below Hmin or Hjoint .
The most basic measure is the minimum entropy Hmin,

which assumes no correlations between bits and responses
and serves as a median. The joint entropy Hjoint does not
assume independence, but does assume that all correlations
are pairwise and that no other higher-order correlations exist.
Finally, the context-tree weighted entropy HCTW serves as an
upper bound by generating a minimum-length compressed
binary string encoding the CRP behavior.We plot the first two
of these quantities as a function of N in Fig. 4 and Table 1,
observing that Hjoint ≤ Hmin, which is true by definition.
Table 1 records the entropy and entropy density, ρmin or

ρjoint , defined as the fraction of the observed entropy to the
maximum possible entropy N2N . We see that the entropy
density for our median estimate Hmin hovers around 0.6,

TABLE 1. Entropies Hjoint ≤ Hmin and entropy densities ρi ∼ Hi /(N2N )
for N = 4− 512. Only Hmin is estimated for N > 8.

suggesting that the number of extractable bits is roughly
N2N /2 and hence that the min entropy scales super-
exponentially with network size. Note however that there are
theoretical bounds to the maximum entropy of PUFs and
indeed any physical system, with arguments to be made that
the entropy must be bounded polynomially by its size, such
as the number of atoms [7]. What our measurements show is
that in the range N = 4− 8, for which entropy measures are
calculated exactly over all possible CRPs, we observe super-
exponential scaling with N . Outside this region, the entropy
is computationally infeasible to calculate, and the reported
values are extrapolations from limited measurements - which
may not reflect the true entropy bounds of the system.

The inset to Fig. 4 illustrates the distribution of these
entropy measures over 80 PUF classes for the exactly calcu-
lable network sizes N = 4−8 (see Appendix A). We observe
that there is significant variation in the entropy estimates at
very small PUF sizes, and that the joint entropy estimate
in this region is approximately 15 − 20% of full entropy.
Note, however, that the joint entropy density increases and
tightens as N increases. We expect it to approach ρmin for
larger networks.

We expect ρjoint to approach ρmin for two reasons. Firstly,
larger networks (N > 16) consistently exhibit chaos, while
small ABNs (N ≤ 8) may enter non-chaotic periodic regimes
[13] that induce pair-wise correlations. Secondly, there exist
certain challenge strings that are steady-state fixed points. For
the odd-input XOR functions used in this work, the all-zero
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FIGURE 4. Entropy (a) measures and (b) densities of HBN-PUF classes as a function of network size N . Violin plots are over the distribution
of classes, and solid lines indicate an average over classes.

and all-one challenge strings are fixed points; this can be seen
since the output of the 3-XOR is zero or one if all its inputs are
zero or one. (In the case of an even number of inputs, the all-
one challenge is not a fixed point.) These trivial fixed points
are filtered by our analysis, but there may exist other fixed
points based on the details of the network wiring diagram
that would need to be searched for via Boolean satisfiability
algorithms which is not done in this work. We expect the
density of these fixed points to go to zero as N → inf,
but a non-negligible fraction of the challenge space at the
industrially-irrelevant network sizes shown in the inset may
be steady-state fixed points that reduces the entropy. We see
some evidence of this in the observed tightening of both
entropy distributions with increasing N , and by the super-
exponential growth of the extrapolated Hmin curve at larger
sizes (see Appendix D).

Investigating these hypotheses and developing other means
of estimating the entropy from limited samples for large
networks is the subject of future work, as the exponential
growth of the challenge space prevents full exploration even
in principle.

C. MACHINE LEARNING ATTACK WITH PUFmeter
PUFmeter [19] is a recently designed machine learning
platform used to assess the security of a PUF. It attempts
to learn the challenge-response behavior of a given PUF
using probably-approximately-correct learning, and indicates
whether a PUF’s behavior can be learned and hence is suscep-
tible to various attacks without actually performing specific
attacks. The theory behind PUFmeter is based upon single-
bit responses. For this reason, we use PUFmeter to assess
the security of an individual bit of our responses to an attack,
as well as the XOR of our entire response string. These results
are presented in Table 2.

In Table 2, κ is the minimum number of Boolean vari-
ables usable by PUFmeter to predict the response to a given
challenge. Because κ = 0, PUFmeter is unable to model
the behavior of the HBN-PUF. The noise upper bound, aver-
age sensitivity, and noise sensitivity are used to gauge the

TABLE 2. PUFmeter machine-learning attack on an N = 16 node
HBN-PUF with responses taken after 6 pairs of inverter gates, using
PUFmeter parameters δ = 0.01 and ε = 0.05 governing the probability
thresholds for the analysis. Abbreviations Noise Upper Bound (UB),
Average Sensitivity (AS), and Noise Sensitivity (NS). The result κ = 0
indicates a failure of PUFmeter to model our PUF.

theoretical bounds for the types of attacks that are expected
to be possible. From these results, PUFmeter indicates that
an N = 16 HBN-PUF may be susceptible to a Fourier-based
attack.

Summarizing, the observed super-exponential entropy
scaling, the presence of chaotic nonlinear dynamics, and
the failure of PUFmeter to model our PUF suggests that
the behavior of the HBN-PUF may be resilient to machine
learning attack. We have attempted machine learning attacks,
including deep learning-based methods and model-based
attacks, which have also failed and will be described in
future publications. Further study is required to explicitly
rule out any given attack, such as Fourier-based attacks and
side-channel attacks. In such cases, instantiating multiple
HBN-PUFs on the chip may obscure the power supply draw
or the EM radiation emitted due to the chaotic transients of
nearby networks.

D. CHERRY PICKING AND TEMPERATURE VARIATION
A simple method of reducing errors is to mask out unreliable
bits on a per challenge and per device basis, an approach
known as cherry picking [17]. That is, at enrollment, each
PUF is queried multiple times (100 in this case) and any bits
that vary are discarded; the bit mask used to discard bits is
stored as helper data for reconstructing the PUF response at
query time. Fig. 5(a) shows the number of bits retained by this
procedure (termed ‘stable bits’) as a function of measurement
time. As can be seen, for measurement times up to about 7 ns,
more than half of the 256 bits are stable at an error rate of less
than 1%.
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FIGURE 5. (a) The number of cherry picked stable bits vs. time for an N = 256 network. Stable bits are those
that have less than 1% error rate. (b) µintra calculated with respect to a room temperature enrollment (20 ◦C) vs.
measurement time for the same network when queried at different temperatures. Dashed lines correspond to
µintra calculated without cherry picking, and solid lines are with cherry picking.

We illustrate the usefulness of this cherry picking approach
when querying the HBN-PUF at different temperatures,
which is an important practical concern when comparing
PUFs in different environmental conditions or over long oper-
ating times [20]. A single N = 256 HBN-PUF on a single
chip was enrolled at room temperature (20 ◦C), andµintra was
calculated with respect to this enrollment at three additional
temperatures (−20◦C, 0 ◦C, and 40 ◦C, see Appendix G).
Thisµintra; 20 ◦C is plotted vs. measurement time in Fig. 5(b)
in dashed lines, and compared to a control of a second collec-
tion at 20 ◦C (black). We see that indeed there is an increased
error rate compared to the control. It is significant in the case
of raw data; however, the cherry picking procedure (solid
lines) does significantly reduce the error due to temperature
variation.

The HBN-PUF has some degree of environmental stability
due to the use of the delay line for triggering the capture of
the network state. Because the delay line is based on the same
digital logic building blocks as the rest of the ABN, it is likely
affected by temperature and voltage effects (e.g., changing
rise, fall, and signal propagation times) in a way similar to
the rest of the ABN. Thus, if the entire network sped up or
slowed down, the delay line would speed up or slow down
in a commensurate way. Contrast this with, e.g., an external,
temperature-stabilized clock signal. Early designs using a
clock signal rather than delayed reset showed µintra close to
50% for small temperature changes, but the delay line design
is much more robust.

Strategies to reduce environmental variation, as well as
experiments to test voltage sensitivity and aging effects, are
future work for the HBN-PUF. Referring to Fig. 5, we see
that there is a trade-space between entropy/response (i.e.,
shorter measurement time corresponds to less entropy), error
rate, bits/response, and effect temperature range that can be
optimized over for specific applications. This observation
suggests that we can trade some of those bits for error correc-
tion ability to reduce errors to a level needed for key exchange
because of the large number of bits available per response.

Moreover, the temperature effects do not appreciably change
the overall behavior of the PUF. That is, there exists a topt (that
is constant for a PUF class over temperature) corresponding
to 1µ ∼ 0.35 at any given temperature; it is changes to
the specific bitstream, not differences in qualitative behavior,
that drives these errors. As a result, a temperature-aware
enrollment protocol, in which the HBN-PUF is enrolled at
multiple temperatures may be applicable [21].

IV. CONCLUSION AND FUTURE WORK
In summary, we present a novel HBN-PUF design that maps
the challenge-response mechanism of the PUF onto the full
state-space of a chaotic dynamical system (the HBN). The
HBN-PUF represents an improvement in the state-of-the-art
for strong PUFs several ways. First, to our knowledge, the
HBN-PUF is the only strong PUF proposal that produces
multiple bits per response, thus reducing time, network, and
storage resources for authentication and key exchange. This
will also likely frustrate machine learning attacks, as illus-
trated by our tests with PUFmeter, because the attacker will
need to guess an N -dimensional Boolean vector instead of a
one-dimensional one. Second, the HBN-PUF is fast: response
readout occurs in less than 10ns, which combined with the
multiple bits per response, means that Gbps key generation
rates are easily achievable. Finally, theHBN-PUF is relatively
insensitive to placement on the FPGA chip and resource
usage scales linearly with the size of the PUF. As a result,
N = 1024 or larger HBN-PUFs are easily realizable within
resource constraints on modern low-end FPGAs (Cyclone
V), but could produce upwards of 21024 independent cryp-
tographic keys at a rate of 100 Gbps. This is fast enough so
that, for instance, modern communications networks could
be one-time pad encrypted with HBN-PUF output, but with
such a large CRP space that it would take many lifetimes of
the universe to exhaust the entropy.

The HBN-PUF has many attractive properties that suggest
that it could be a true, machine-learning resistant and practical
strong PUF. However, there remain substantial questions to
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be addressed in future work. The most obvious is further
environmental testing and development of error mitigation
strategies that are applicable to the HBN-PUF. On a more
theoretical level, the multiple bits per response stress exist-
ing entropy estimation methods and will require new tech-
niques to more accurately lower-bound the actual extractable
entropy.Moreover, we need to test and confirm the hypothesis
that HBN-PUFs are in fact chaotic to prove the security
properties of the HBN-PUF. We have developed models of
HBN-PUFs that can reproduce the behavior described here,
which will appear in a follow up study, and we will use
these models to execute model-based attacks to demonstrate
machine learning resistance. In addition to this theoretical
work, a study of the effects of the network layout (e.g, random
vs. ring vs. other possible topologies) and detailed placement
of the HBN-PUF elements in terms of the optimal measure-
ment time and entropy per response will also appear in follow
up work.

APPENDIX.
A. EXPERIMENTAL PROCEDURE
The HBN-PUF is created by coding our design using the
hardware description language Verilog (code in Appendix H)
using the Quartus CAD software, which compiles our code
with automatic placement and routing chosen by its optimiza-
tion procedure. We then program Nchips = 8 separate DE10-
Nano SOCs hosting Cyclone V 5CSEBA6U23I7 FPGAswith
the same .sof file. This ensures each FPGA instantiates an
identical copy of our PUF in both layout and design, meaning
the only variations of instances within a PUF class are due to
variations in the manufacturing of the FPGAs.

For each network size N , we instantiate Nclasses =
NgraphNloc different HBN-PUF classes, where each class cor-
responds to a particular network topology randomly drawn
from the set of possible regular graphs of degree 3 (Ngraph
draws) and/or a particular location of the PUF on the chip
(Nloc PUFs per random graph). These draws are performed
using custom Python scripts and the numpy.random module
and written to the indicated positions in the Verilog file in
Appendix H.

In order to reduce the dependence on random seeds in
the CAD’s optimization procedures for the experiments pre-
sented here, we fix the locations of the nodes in the network
to specific logic elements on the chip (which are randomly
chosen from within a grid) but nothing about the HBN-PUF’s
behavior requires detailed control of node placement. For
N ≤ 16, Nloc = 16; else, Nloc = 3. For all sizes, Ngraph = 5.
We create one .sof file per random graph and place Nloc PUFs
at different locations (each with the same graph layout) on
the chip in order to populate the distribution of HBN-PUFs.
We find that the variation due to location is comparable to
the variation due to graph layout, and so treat these on an
equal footing; this yields a total of Nclasses = 80 different
HBN-PUF classes for N ≤ 16 and 15 HBN-PUF classes for
N > 16.

The Cyclone V chips that we use have an integrated hard
processor running Linux. We therefore use Altera’s Avalon
interface to make the PUF accessible to the Linux system and
collect CRPs using custom C code that presents Nchallenges
to each PUF via this interface to set the initial state of a
given HBN. The HBN is held at a challenge for several
200 MHz clock cycles due to synchronous controller logic
and to stabilize the dynamics of the autonomous nodes. The
network is then released and evolves for a short time during
the transient phase, and the state is registered at a given delay
time by choosing the length of the delay line via a multi-
plexer. The response is transferred and the PUF is reset to
the same challenge. The entire process is repeated Nrepeats =
100 times before moving to the next challenge, so that the
total number of applied challenges to each HBN is equal
to Nchallenges × Nrepeats.
Peculiar to the XOR function, there are two steady-state

fixed points corresponding to when the network is all 0 or
all 1. These fixed points are discarded from the challenge
space as they have no entropy, however they can be used to
identify ‘glitchy’ PUF classes. That is, since the HBN-PUF
violates most commonly accepted design rules (in particular
the guidance against large combinatorial loops), occasionally
the Quartus software produces glitchy designs. If a given PUF
class does not produce all-ones or all-zeros as the response
to an all-one or all-zero challenge, we discard the PUF class
from consideration. This occurs approximately 10% of the
time. All metrics are calculated using the valid challenges,
Nvc = 2N − 2. For N < 16, Nchallenges = Nvc. For N ≥
16, Nchallenges = 1000 unique and randomly selected valid
challenges. In all cases, Nrepeats = 100.
These parameters are used for all experimental data collec-

tion unless otherwise noted.

B. FORMAL CHALLENGE-RESPONSE DEFINITIONS
Let P ∈ P be a particular PUF instance P belonging to
the set of all PUF instances P of a particular PUF class.
The response R is a random variable R : SP → {0, 1}N

mapping from the set of all possible physical states SP of PUF
instance P to the set of all binary strings of length N , denoted
{0, 1}N . Specifically, the response takes as input a particular
state SP,C ∈ SP of PUF instance P resulting from challenge
C ∈ {0, 1}N .

We characterize the reliability and uniqueness of P by
studying the distributions of R for various P and C. That
is, we study how our design performs as a PUF by com-
paring responses from individual and different instances on
a per-challenge basis using the metrics defined in the next
appendix.

C. INTRA- AND INTER-DEVICE STATISTICS DEFINITIONS
The degree to which two binary strings are different is given
by the Hamming distance:

D(A,B) =
N∑
i=1

A(i)⊕ B(i), (5)
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where A and B are the two binary strings to compare,
of length N , A(i) and B(i) refer to the i-th bits of A and B,
respectively, and⊕ is the XOR function. For random strings,
the Hamming distance is on averageN/2.Moreover, it is con-
venient to normalize the Hamming distance by N : d(A,B) =
D(A,B)/N . For random strings A and B, d(A,B) = 1/2.
Consider two different responses from the same challenge

stringCc. These responses may result from applying the same
challenge string to the same PUF instance (indexed by p)
two different times (indexed by r for repetition), Rp,r

c and
Rp,r ′
c , or they may result from applying the challenge exactly

once to two different PUF instances,Rp,r
c andRp′,r

c . Repeated
application used to gauge reliability: a single PUF instance
should ideally produce identical responses when presented
with the same challenge (i.e., d(Rp,r

i ,Rp,r ′

i ) = 0 for all
p, r , and r ′). Applying the same challenge to different PUF
instances is used to gauge uniqueness: two different PUF
instances should give responses to the same challenge which,
when compared, appear random and uncorrelated. In terms
of Hamming distances, d(Rp,r

i ,Rp′,r
i ) ≈ 1/2 (although this

does not capture correlations in bits).
For clarity we summarize these indices:

• c ∈ [0,Nchallenges): Distinct challenge;
• r, r ′ ∈ [0,Nrepeats): Separate applications of distinct
challenge;

• p, p′ ∈ [0,Nchips): Separate PUF instances.

If we take each response to be an N -bit string, then the frac-
tion of dissimilar bits between the two responses is denoted
as

R(c, p, r, r ′) = d(Rp,r
c ,Rp,r ′

c ), (6)

U(c, p, p′, r) = d(Rp,r
c ,Rp′,r

c ). (7)

Above,R (mnemonic ‘reliability’) is the intra-device frac-
tional Hamming distance between responses for the fixed
PUF instance p resulting from applications r and r ′ of chal-
lenge c. Likewise, U (mnemonic ‘uniqueness’) is the inter-
device fractional Hamming distance between responses of
PUF instances p and p′ resulting from the fixed application
r of challenge c.
To obtain distributions of these distances on a per-

challenge basis, we average over the pairwise combinations
used to construct them, and then further average over the
remaining indices to obtain mean measures of reliability
µintra and uniqueness µinter . Specifically, if we let 〈·〉a,b
indicate the average of a quantity over indices a, b, then

r(c) = 〈R(c, p, r, r ′)〉r,r ′,p, (8)

u(c) = 〈U(c, p, p′, r)〉p,p′,r . (9)

We record a time series of N -bit strings representing the
time evolution of the network, so that the metrics introduced
above exist at every measurement time. If we wish to measure
the reliability on a per-chip basis, we simply do not average
over p in (8).

TABLE 3. An illustration of response-bit ordering for N = 3, where there
are 3× 6 = 18 total bits.

Fig. 3 shows the histograms of (8) and (9) at time topt .
We further summarize the reliability and uniqueness as single
numbers by averaging (8) and (9) over challenges, i.e.,

µintra = 〈r(c)〉c, (10)

µinter = 〈u(c)〉c. (11)

D. MINIMUM ENTROPY
The min-entropy of a random variable X is defined as

Hmin(X ) = − log(pmax(X )), (12)

where pmax(X ) is the probability of the most likely outcome.
If X = (x1, x2, . . . , xn) is a vector of n independent random
variables, then the min-entropy is

Hmin =
n∑
i=1

− log(pmax(xi)). (13)

In the case of a strong PUF with multiple challenges and a
large response space, we need an ordering of the response
bits in order to make sense of entropy calculations. A natural
ordering is to define the response of the i-th node to the
j-th challenge as xjN+i, where the challenges are ordered
lexicographically. This is illustrated in Table 3 for the sim-
ple case of N = 3. Here, there are only 6 challenges
because we omit the all-0 and all-1 challenges as discussed
in Appendix A.
Assuming independence of xi, the min-entropy for the

HBN-PUF can be readily calculated with (13) from empirical
estimates of pmax(xi) [4], [22]. For each xi, the estimate of
pmax(xi) is simply the observed frequency of 0 or 1, which
ever is larger. To put the entropy calculations into context,
we also present them as a fraction of the optimal case. If all
of the xi were independent and completely unbiased, i.e., each
xi were equally likely to be 0 or 1 (i.e., p(xi) = 1/2), then the
min-entropy would be equal to N times the number of valid
challenges Nvc. We therefore define the min-entropy density
as

ρmin = Hmin/(NNvc). (14)

Due to the exponential scaling of the challenge space, we do
not measure these values using all of the possible valid
challenges for N > 8. This is because of the computing
time required in both calculating the entropy measures and
obtaining the full CRP space. For N > 8, we randomly
choose challenges from a representative sample and mul-
tiply by the fraction of the unused space to obtain Hmin.
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In the next appendix, we study the full challenge space for
low N .

E. JOINT ENTROPY
In the previous appendix, we assume hat xi are independent,
though this need not be the case. It is possible that some
bits reveal information about others, reducing the entropy.
Here we study these correlations between bit pairs, first by
calculating the mutual information defined as

I (xi, xj) =
∑
xi,xj

p(xi, xj) log[
p(xi, xj)
p(xi)p(xj)

] (15)

between all pairs of xi, xj. Unlike min-entropy, the mutual
information is difficult to calculate for higher N , so we will
restrict our attention to N = 4 − 8 and use the full valid
challenge space.

An adversary can use knowledge of any structure in the
mutual information to more effectively guess response bits,
thereby reducing the available entropy. In particular, the
entropy is reduced to [18]

Hjoint = Hmin −
n−1∑
i=0

I (xi, xi+1), (16)

where the ordering of the bits is such that the penalty is
as large as possible. Calculating the ordering of the bits
to maximize the joint information penalty is effectively a
traveling salesman problem, which we solve approximately
with a 2-opt algorithm [23].

F. CONTEXT-TREE WEIGHTING TEST
In this appendix, we estimate the entropy through a string
compression test. The results here should be understood as
an upper-bound for the true entropy, especially for larger N .
In particular, we consider the context tree weighting (CTW)
algorithm [24].

The CTW algorithm takes a binary string called the context
and forms an ensemble of models that predict subsequent bits
in the string. It then losslessly compresses subsequent strings
into a codeword using the prediction model. The size of the
codeword is defined as the number of additional bits required
to encode the PUF instance’s challenge-response behavior.
If the context contains information about a subsequent string,
then the codeword will be of reduced size.

In the case of PUFs, the codeword length approaches
the true entropy of the generating source in the limit of
unbounded tree depth [25]. However, the required memory
scales exponentially with tree depth, so it is not computation-
ally feasible to consider an arbitrarily deep tree in the CTW
algorithm. Instead, we vary the tree depth up to 20 to optimize
the compression.

We perform a CTW compression as follows:

• We collect data for N = 4 − 8 HBN-PUFs with
Nrepeats = 1.

• We concatenate the resulting measurements for all but
one PUF instances into a 1D string of length (Nchips −
1)NvcN to be used as context.

• We apply the CTW algorithm to compress the measure-
ments from the last PUF with the context, using various
tree depths to optimize the result.

• We repeat steps 2-3, omitting measurements from a
different PUF instance, until all PUFs have been com-
pressed.

The final entropy estimate is the average codeword length
from all of the compression tests described above. If the
behavior of the Nchips−1 PUF instance can be used to predict
the behavior of the unseen instance, then the PUFs do not
have full entropy.

G. TEMPERATURE VARIATION
We calculate at each temperature the deviation of an HBN-
PUF with respect to itself at 20 ◦C, a quantity which we
denote µintra; 20 ◦C. This measure is equivalent to consid-
ering an individual chip as consisting of different instances -
one for each temperature. It is calculated at each temperature
by comparing responses to those generated at 20 ◦C, then
averaging over all challenges. These plots are presented in
Fig. 5 as a function of t , the number of inverter gates after
which the response is registered. Each curve is a separate
temperature.

H. HARDWARE DESCRIPTION LANGUAGE CODE
This Verilog code is used for synthesizing the HBN in Fig. 1.

1 / / Th i s module c o r r e s p o nd s t o t h e node zoom−i n o f
F ig . 2 .

2 module Node ( r e s e t , c h a l l e n g e , in1 , in2 , in3 , ou t ) ;
3

4 i n p u t r e s e t ;
5 i n p u t c h a l l e n g e ;
6 i n p u t i n1 ;
7 i n p u t i n2 ;
8 i n p u t i n3 ;
9 ou t p u t ou t ;

10

11 wire node_c locked ;
12 wire node_asynch ronous ;
13

14 a s s i g n node_asynch ronous = in1 ^ in2 ^ in3 ;
15 a s s i g n node_c locked = r e s e t ? c h a l l e n g e :

node_asynch ronous ;
16 a s s i g n ou t = node_c locked ;
17

18 endmodule
19

20

21 module HBN(
22

23 c lk ,
24 r e s e t ,
25 c h a l l e n g e ,
26 d e l a y_ add r e s s ,
27 r e sponse ,
28 r e ady
29

30 ) ;
31

32 pa r ame t e r N = 256 ; / / HBN S i z e
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33 pa r ame t e r INDEX = 0 ; / / Index on t h e ch i p ( 0 . . 2 o r
0 . . 1 5 depend ing on N)

34 pa r ame t e r MEASUREMENT_DELAY = 20 ;
35

36 l o c a l p a r am DELAY_ADDRESS_BITS = $c log2 (
MEASUREMENT_DELAY) ;

37

38 i n p u t c l k ;
39 i n p u t r e s e t ;
40 i n p u t [N−1:0] c h a l l e n g e ;
41 i n p u t [DELAY_ADDRESS_BITS : 0 ] d e l a y _ a d d r e s s ;
42 ou t p u t [N−1:0] r e s p on s e ;
43 ou t p u t r eg r eady ;
44

45

46 wire [N−1:0] r i n g _ s t a t e ;
47 wire [N−1:0] r i n g [ 3 ] ;
48 wire r e s e t _ b u f /∗ s y n t h e s i s keep ∗ / ;
49 wire d e l a y e d _ r e s e t /∗ s y n t h e s i s keep ∗ / ;
50

51

52 a s s i g n r e s e t _ b u f = r e s e t ;
53

54 / / c r e a t e N nodes
55 genva r i ;
56 g e n e r a t e
57 f o r ( i =0 ; i <N; i = i +1) beg in : g e n e r a t e _ r i n g
58 Node n (
59

60 . r e s e t ( r e s e t _ b u f ) ,
61 . r e s e t _ d e l a y ( d e l a y e d _ r e s e t ) ,
62 . c h a l l e n g e ( c h a l l e n g e [ i ] ) ,
63 . i n1 ( r i n g [ 0 ] [ i ] ) ,
64 . i n2 ( r i n g [ 1 ] [ i ] ) ,
65 . i n3 ( r i n g [ 2 ] [ i ] ) ,
66 . ou t ( r i n g _ s t a t e [ i ] ) ,
67 . r e s p on s e ( r e s p on s e [ i ] )
68

69 ) ;
70 end
71 e n dg e n e r a t e
72

73

74 a lways @( posedge c l k ) beg in
75 i f ( r e s e t ) r e ady <= 0 ;
76 e l s e r e ady <= ~ d e l a y e d _ r e s e t ;
77 end
78

79 Add r e s s ab l eDe l ayL in e # (MEASUREMENT_DELAY) DLM (
r e s e t , d e l a y_ add r e s s , d e l a y e d _ r e s e t ) ;

80

81 / / / AUTO−GENERATED CODE TO DEFINE THE WIRING
DIAGRAM

82 a s s i g n r i n g [ 0 ] [ 0 ] = r i n g _ s t a t e [ 5 ] ; / / 0 t h
i n p u t o f node 0

83 a s s i g n r i n g [ 1 ] [ 0 ] = r i n g _ s t a t e [ 3 7 ] ; / / 1 s t
i n p u t o f node 0

84 a s s i g n r i n g [ 2 ] [ 0 ] = r i n g _ s t a t e [ 1 3 1 ] ; / / 2nd
i n p u t o f node 0

85

86 / / / . . . and so−on . . .

This Verilog code is used for synthesizing the tapped-delay
line in Fig. 1.

1 / / Th i s i s t h e t apped de l a y l i n e i n F ig . 1 .
R e c o n s t r u c t i n g t h e t ime s e r i e s r e q u i r e s
r e s e t t i n g t h e PUF and i n c r emen t i n g t h e
d e l a y _ a d d r e s s

2 module Add r e s s ab l eDe l ayL in e (
3 in ,
4 d e l a y_ add r e s s ,
5 ou t
6 ) ;

7

8 pa r ame t e r N = 5 ; / / # o f p a i r s o f i n v e r t e r s .
9 l o c a l p a r am DELAY_ADDRESS_BITS = $c log2 (N) ;

10

11 i n p u t i n ;
12 i n p u t [DELAY_ADDRESS_BITS : 0 ] d e l a y _ a d d r e s s ;
13 ou t p u t ou t ;
14

15 wire [2∗N−1:0] d e l a y /∗ s y n t h e s i s keep ∗ / ;
16

17 a s s i g n d e l a y [ 0 ] = i n ;
18 a s s i g n ou t = de l a y [2∗ d e l a y_ add r e s s −1];
19

20 genva r i ;
21 g e n e r a t e f o r ( i =0 ; i <2∗N−1; i = i +1) beg in :

g e n e r a t e _ d e l a y s
22 a s s i g n d e l a y [ i +1] = ~ de l a y [ i ] ;
23 end
24 e n dg e n e r a t e
25

26 endmodule
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