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ABSTRACT In this paper, Chaotic Artificial Ecosystem-based Optimization Algorithm (CAEO) is proposed
and utilized to determine the optimal solution which achieves the economical operation of the electrical
power system and reducing the environmental pollution produced by the conventional power generation.
Here, the Combined Economic Emission Dispatch (CEED) problem is represented using a max/max
Price Penalty Factor (PPF) to confine the system’s nonlinearity. PPF is considered to transform a four-
objective problem into a single-objective optimization problem. The proposed modification of AEO raises
the effectiveness of the populations to achieve the best fitness solution by well-known 10 chaotic functions
and this is valuable in both cases of the single and multi-objective functions. The CAEO algorithm is
used for minimizing the economic load dispatch and the three bad gas emissions which are sulfur dioxide
(SO2), nitrous oxide (NOx), and carbon dioxide (CO2). To evaluate the proposed CAEO, it is utilized
for four different levels of demand in a 6-unit power generation (30-bus test system) and 11-unit power
generation (69-bus test system) with a different value of load demand (1000, 1500, 2000, and 2500MW).
Statistical analysis is executed to estimate the reliability and stability of the proposed CAEO method. The
results obtained by CAEO algorithm are compared with other methods and conventional AEO to prove that
the modification is to boost the search strength of conventional AEO. The results display that the CAEO
algorithm is superior to the conventional AEO and the others in achieving the best solution to the problem of
CEED in terms of efficient results, strength, and computational capability all over study cases. In the second
scenario of the bi-objective problem, the Pareto theory is integrated with a CAEO to get a series of Non-
Dominated (ND) solutions, and then using the fuzzy approach to determine BCS.

INDEX TERMS Combined economic and emission dispatch, artificial ecosystem-based optimization,
greenhouse gases, Pareto front, price penalty factor, chaotic AEO.

ABBREVIATIONS
CEED Combined Economic and Emission

Dispatch
CAEO Chaotic Artificial ecosystem-based

optimization
BCS Best Compromise Solution
AEO Artificial ecosystem-based

optimization
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GA Genetic Algorithm
PSO Particle swarm optimization
ACO-ABC-HS Ant Colony Optimization-Artificial

Bee Colony-Harmonic Search
RGA Real coded GA
PPF Price Penalty Factor
MOCAEO4 Multi-objective 4th chaotic function

Artificial ecosystem-based optimization
ELD Economic Load Dispatch
DE Differential Evolution
SA Simulated Annealing
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MHBA multi-objective hybrid bat algorithm
PSOGSA PSO-the gravitational search algorithm
CSA crow search algorithm
FFA-BA firefly-bat algorithm
FDM fuzzy decision-making
MBO Modified Biogeography Based

Optimization
SSE Sum of squared errors
RE Relative error
MAE Mean absolute error
ISA Interior search algorithm
CSAISA Chaotic self-adaptive interior search

algorithm
PSO- NN PSO and Neural Network algorithm
QBA Quantum-Behaved Bat
SCA Sine cosine algorithm
SD Standard deviation
RMSE Root mean square error
ND Non-Dominated
HSA Harmony search algorithm
GSA Gravitational search algorithm

I. INTRODUCTION
The electric power supply system faces its main issues, which
are the efficiency of generator and transmission, and distri-
bution grid, or those three issues together. Previous efforts
have been tried to find the optimum solutions for these issues
by decreasing the operating cost of fuel consumption, which
became an objective function besides many other require-
ments. The speedy development of digital computing has
been helping in dealing with these issues by developing
numerous algorithms to limit the quantity of energy that the
station can generate and transfer through the transmission
networks to satisfy consumer requirements within the most
economical way possible taking under consideration the cal-
culation of the system limits and all stations [1]. Some of
the other requirements are such as scale back greenhouse
gas emissions, higher energy quality and improve power grid
efficiency, and high reliability [2].

In general, the fuels consumed in the thermal power sta-
tions have bad environmental impacts as they produce many
types of gases and CO2, SO2, and NOx are considered the
most harmful among them [3]. The aim of CEED is reducing
the total cost of generating, besides, decreasing the pollutant
emission by obliging with all other constraints concurrent [4].
The CEED problem represents a multi-objective optimization
problem, and various techniques have been developed to
solve this problem. One of the most common methods to
represent the CEED problem is using the 2nd order poly-
nomial function [5]. Though, the non-linearity of the actual
thermal power generation system makes the solution of this
problem deviates from the idealist and therefore nullify the
approximation of the 2nd order polynomial function. It had
been noted that the functions with an order higher than 2nd
order might represent the actual response of the thermal
power generation system, and accordingly, these polynomials

can help to improve the solutions [5]. But the downside of
applying these polynomials which have order higher than the
2nd order on the CEED problem makes it more complicated,
and subsequently, it is hard to solve it. Therefore, to reach
the most accurate solution for these two incompatible issues,
several researchers have utilized a 3rd order cost function to
represent the CEED problem. The 3rd-order cost function
successfully decreases the increasing nonlinearities of the
modern thermal generation system when it is utilized to rep-
resent the CEED problem [6]. During this analysis, the CEED
problem was formulated using the cubic function.

The researchers started to solve the CEED problem by
Classical techniques which are the oldest approaches had
used to find the solution for this issue [7]. Then, several
intelligence methods have been developed as an alternative
to the obsolete classical ways of solving the various CEED
problems. They have more advantages than the classical
approaches which make the researchers used them to solve
the CEED problem and reach the best solution between lots
of global solutions. Most of these technologies are nature-
inspired. A number of the most renowned methods are
GA [8], SA [9], PSO [10], flower pollination algorithm [11],
Spider Monkey Optimization [12], Kernel search optimiza-
tion [13], DE [14], and ant lion optimization [15].

Recently, researchers had made modifying and develop-
ing standalone ways by combining the effective features
of two or more methods to become a hybrid method and
thereby to attain superior performance than standalone ways.
A number of the most newly introduced hybrid methods
to achieve the optimum solution for the CEED problem
are ACO-ABC-HS algorithm [16], PSOGSA [17], RGA
and DE [18], backtracking search algorithm with sequen-
tial quadratic programming [19], MHBA [20], CSA and
DE [21], FFA-BA [22], PSO- NN [23], DE-SA [24], and
gradient search method and improved Jaya algorithm [25].
But the long computational time is sometimes one of the
hybrid algorithm drawbacks wherever every one of the algo-
rithms performs separately into the problem and adds more
complexities [5].

Recently, many optimization algorithms depended on
chaos theory to improve their performance such as the chaotic
differential bee colony [26], chaotic bat algorithm[27], mod-
ified artificial bee colony [28], chaotic krill herd [29], modi-
fied artificial bee colony based on the chaos [30] and hybrid
PSO andGSA integratedwith chaoticmaps (CPSOGSA) [31]
and Enhanced chaotic JAYA algorithm [32]. However, these
algorithms have been applied for solving different optimiza-
tion problem such as the economic dispatch, optimal reac-
tive power dispatch, nonconvex emission/economic dispatch,
optimal power flowwith stochastic wind and FACTS devices,
parameter estimation of photovoltaic, and dynamic economic
dispatch with valve-point effects problems in power systems.
It is clear from the results of chaotic optimization algorithms
that these algorithms have proved a reliable performance,
which is more effective than those of the conventional opti-
mization algorithms.
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In this paper, a new modification of the AEO is proposed
and applied for solving the CEED problem. The chaotic maps
help the algorithms to increase their performance by replac-
ing the variables with chaotic variables [33]. The application
of the CAEO technique for the CEED problem is therefore
reasonable if this technique produces optimal results at less
computation time. Hence the main contributions of this work
are summarized as follows:

• Proposing a Chaotic Artificial ecosystem-based opti-
mization (CAEO) based on chaotic maps. These chaotic
maps enhance a variety of the solution spaces in the
optimization process and improve the convergence capa-
bilities to achieve the optimum solutions and help the
proposed technique to avoid the local minima.

• Proposing Multi-Objective Chaotic Artificial
ecosystem-based optimization (MOCAEO).

• Analysing and Appling the proposed CAEO and
MOCAEO4 to find the optimal solution for CEED
problem.

• The effectiveness of the proposed methodology is com-
pared with the conventional AEO and other well-
known optimization methods using four different levels
of demand in a 6-unit power generation system and
11-generating units (69-bus system) with a different
value of load demand (1000, 1500, 2000, and 2500MW).

The proposed technique has been verified for achieving the
optimal solution for the CEED problems and its results have
been compared with those obtained by various recent opti-
mization techniques such as LR [6], PSO [44], SA [45],
QBA [4], MBO [46] and SCA [47] for the 6-unit power
system and CSAISA [39], ISA [39], GA [39], PSO [39],
DE [39], HAS [39], GA similarity [48], and GSA [49].
All results demonstrate that the proposed CAEO4 pro-
vides a more precise solution than original AEO and other
techniques.

Finally, the rest of research is prepared as follows:
Section II comprises the problem description including
the mathematical definition of the CEED, operational lim-
itations, and single and multi-objective functions. Then,
the improved single and bi-objective CAEO technique is
presented in Section III. After that, the simulation stud-
ies, results, and discussion are given in Section IV. Finally,
the conclusions are discussed in Section V.

II. PROBLEM FORMULATION
A. 6-UNIT POWER GENERATION SYSTEM
CEED is a multi-objective optimization problem that gener-
ally indicates the reduction of fuel cost besides the reduction
of risky gases emission at the same time whereas sustaining
all operational limitations. In this paper, the reduction of
SO2, NOx, and CO2 as independent three objectives have
been studied. Consequently, by adding ELD as an objective
function to the three emission objectives, CEED becomes
a four-objective optimization problem [5]. Firstly, fuel cost
F (P) in ($/h) can be calculated from the cubic equation

as follow:

F (P) =
n∑
i=1

aiP3i + biP
2
i + ciPi + di, (1)

where n is the total number of generating units, Pi is the actual
output power of ith generating unit; ai, bi, ci, and di are the
coefficients of fuel cost for each generating unit i.

Secondly, the Emission of risky gases is separated into
independent three objectives and is also expressed as follow:

ESO2 (P) =
n∑
i=1

eSO2iP3i + fSO2iP
2
i + gSO2iPi + hSO2i, (2)

where ESO2 (P) in (kg/h) is the emission function of SO2.
eSO2i,fSO2i, gSO2i, and hSO2i are coefficients of SO2 emission
of the generating unit i, respectively.

ENOx (P) =
n∑
i=1

eNOxiP3i + fNOxiP
2
i + gNOxiPi + hNOxi, (3)

where ENOx (P) in (kg/h) is the emission function of NOx.
eNOxi, fNOxi, gNOxi, and hNOxi are coefficients of NOx emission
of the generating unit i, respectively.

ECO2 (P) =
n∑
i=1

eCO2iP3i + fCO2iP
2
i + gCO2iPi + hCO2i, (4)

where ECO2 (P) in (kg/h) is the emission function of CO2.
eCO2i, fCO2i, gCO2i, and hCO2i are coefficients of CO2 emis-
sion of the generating unit i, respectively.

The equality constraint is Power balancewhere Total actual
output power generation PT (in MW) must cover both total
load demand PD (in MW) and the total transmission power
loss PL (in MW). This equality constraint can be computed
as follow:

PT =
n∑
i=1

Pi =PD + PL , (5)

While the inequality constraint is achieved when each
generating unit operates in its operational limits which can
be described as:

Pi,min ≤ Pi ≤ Pi,max , (6)

where Pi,min and Pi,max are operational limits of each
generating unit i.

1) SINGLE-OBJECTIVE FUNCTION
In this research, a max/max PPF [6] is used to convert the four
objectives (decreasing both of the fuel cost and emissions of
CO2, SO2, and NOx) into a single objective (total cost) and
the goal of CAEO algorithm is minimizing this objective. The
total cost FT in ($/h) can be defined as:

OF = min(FT )

FT =
n∑
i=1

{F(Pi)+ hSiESO2i(Pi)+ hNiENOxi(Pi)

+hCiECO2i(Pi)}, (7)
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where F(Pi), ESO2i(Pi), ENOxi(Pi), and ECO2i(Pi) are fuel cost
($/h), emission of SO2 (kg/h), emission of NOx (kg/h), and
emission of CO2 (kg/h) of each generating unit i, respectively.

The PPF (hi) can be defined as dividing the maximum fuel
cost into the maximum emissions for each gas SO2, NOx,
and CO2. And it can be computed for each gas from these
equations:

hSi =
n∑
i=1

F(Pi.max)
ESO2(Pi.max)

(8)

hNi =
n∑
i=1

F(Pi.max)
ENOx(Pi.max)

(9)

hCi =
n∑
i=1

F(Pi.max)
ECO2(Pi.max)

(10)

2) BI-OBJECTIVE FUNCTION
Generally, a Bi-objective optimization algorithm is used to
optimize two objectives simultaneously [34]. The solutions
that are obtained in each iteration within the algorithm are
classified as dominated solutions and ND solutions, based
on the objective functions. The Pareto dominance concept
is used to execute this classification. Then, the ND solutions
are put within the archiving matrix to select the BCS by the
FDM. However, numerous approaches are used to determine
the BCS [35].

FDM is the most common method that is generally used
to find solutions for decision-making problems [36], [37].
In this research, the FDM method is used to determine the
BCS from the obtainable selections of final Pareto front as
below:

a: PARETO OPTIMIZATION METHOD
First, Pareto optimization reaches a series of reasonable
solutions. Then, the optimization of Pareto considers that a
solution x1 dominates the solution x2 when [38]:

∀i ∈ {1, 2, . . . ,M} , fi (x1) ≤ fi (x2) (11)

∃i ∈ {1, 2, . . . ,M} : fi (x1) < fi (x2) (12)

b: DEFINITION OF THE BC SOLUTION
The fuzzy membership method can normalize the objective
function value F of each ND solution (k) (Figure 1) as
follows:

µki =


1 Fi ≤ Fmini
Fmaxi − Fi
Fmaxi − Fmini

Fmini < Fi <

0 Fi ≥ Fmaxi

Fmaxi (13)

where Fmaxi and Fmini are the maximal and minimal values of
Fi between all ND solutions, respectively.

The normalized membership function (µk ) is defined as:

µk =

∑Nobj
i=1 µ

k
i∑M

k=1
∑Nobj

i=1 µ
k
i

(14)

FIGURE 1. Flowchart membership of objective functions.

where M is the total numeral of ND solutions. The selection
of The BCS from all ND solutions through the value of µk ,
where the BCS which has a maximum value of µk .

In this research, there are 3 cases and two objective func-
tions in each case of the bi-objective optimization problems
which are defined as below:

The first objective function in all cases is minimizing of
fuel cost and the second objective function is given as follow:

1- In the first case, minimizing the Emission of SO2.
2- In the second case, minimizing the Emission of NOx.
3- In the third case, minimizing the Emission of CO2.

B. 11-UNIT POWER GENERATION (69-BUS SYSTEM)
1) SINGLE-OBJECTIVE FUNCTIONS
The total fuel costs based on the output of thermal generating
units along with its constraints is given as [39]:

F1 =
NG∑
i=1

[ai+biPGi + ciP2Gi

+

∣∣∣di sin (ei (PminGi − PGi
))∣∣∣] (15)

where ai; bi; ci; di and ei represent the cost coefficients for
the ith unit; PGi represents the output power of ith (i = 1; 2;
3; . . ; NG) unit, and NG represents the number of generating
units.

The second objective, the emission function, considers
two primary pollutant emissions (SOx and NOx) caused
by fossil-fuel thermal units. The total pollutant emission is
expressed as:

F2 =
NG∑
i=1

[
10−2(αi + βiPGi + γiP

2
Gi)+ ηi exp (δiPGi)

]
(16)

where αi; βi; γi; ηi and δi represent the emission coefficients
for the ith unit.
The CEED is calculated as follows:

FT =
NG∑
i=1

{F1 (PGi)+ hi × F2 (PGi) (17)

where, hi is max/max PPF.
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2) SYSTEM CONSTRAINTS
The equality constraint is the power balance where the total
actual output power generation PT (in MW) must cover
the total load demand PD (in MW) and the total transmis-
sion power loss PLoss (in MW). This equality constraint is
expressed as follows:

PT =
NG∑
i=1

PGi =PD + PLoss, (18)

PLoss is a function of the real output power of the system
generators and it is generally estimated by Kron’s loss for-
mula as follows:

PLoss =
NG∑
i=1

NG∑
j=1

PGiBijPGj +
NG∑
i=1

B0iPGi + B00, (19)

where, B00, B0i and Bij are the transmission loss coefficients.
The inequality constraint is achieved when each generating

unit operates within its operational limits as:

PGi,min ≤ PGi ≤ PGi,max , (20)

where, PGi,min and PGi,max are the operational limits of each
generating unit i.

III. METHODOLOGY
The conventional AEO method and recommended CAEO
technique developed by using 10 chaotic maps are described
in this section.

A. THE CONVENTIONAL AEO
This subsection presents the conventional AEO algorithm
was firstly developed by Zhao et al. This algorithm is based
on the energy flow in a natural ecosystem [40]. An ecosystem
is a group of living creatures, which exist in a specific area,
and it demonstrates the ecological relations among these crea-
tures. As any population-based optimization technique, AEO
has included production, consumption, and decomposition
behaviours of creatures on the earth and the sequence of those
behaviours represent the energy flow in an ecosystem.

Figure 2 shows the energy flow in an ecosystem, wherever
most producers (green plants) depend on the photosynthesis
process to gets their food energy. After the green plants were
growing, a number of the consumers (animals) feed only on
a part of these plants, and these consumers are known as
herbivores. Other animals are dividing into two types. One
of them feeds on both plants and animals and they are called
omnivores.

The last type of animal is known as carnivores and this
type eats only other animals. Decomposers are most bacteria
and fungi. This phase starts once the producers and animals
die when Decomposers convert them into small particles,
like minerals, carbon dioxide, and water. The black arrow
in Figure 2.a represents the various energy levels that reduce
from plants (producers) to bacteria and fungi (decomposers),
whereas the arrows within Figure 2.b refer to the energy
transfer path.

FIGURE 2. The energy flow in an ecosystem.

FIGURE 3. An ecosystem representation in the AEO technique.

Based on the previous discussion, the AEO consists of
three operators;

(i) the production is used to strengthen the balance
between the exploration and exploitation phases,

(ii) the role of consumption is an improvement of
exploration,

(iii) Decomposition is used to enhance the exploitation of
the AEO.

The individuals in the population of the AEO algorithm are
divided into three groups as follows, only one of them is
a producer and only one is a decomposer, while all other
individuals are consumers from the three predefined sorts
and they have the same probability. The energy level of each
individual is set by the fitness function of that individual.

The representation of the AEO technique is shown
in Figure 3. The energy flow is represented by the brown
arrows. x1 (producer) is the worst individual and having
the highest function fitness value and xn (decomposer) is
the best individual having the lowest function fitness value.
Consumers are the other individuals, and according to the

51150 VOLUME 9, 2021



M. H. Hassan et al.: Developing Chaotic Artificial Ecosystem-Based Optimization Algorithm

previous classification of consumers, it is supposed that x2
and x5 are the types of herbivores, x3 and x7 are omnivores
while x4 and x6 are carnivores.

B. PRODUCTION
The production operator can be modeled mathematically as
follows:

x1 (t + 1) = (1− a) xn (t)+ axrand (t) (21)

a = (1−
t

max_iter
)r1 (22)

xrand = r (Ub − Lb)+ Lb (23)

where a is a linear weight coefficient, n is the population size,
xrand is an individual position of randomly produced in the
search space, max_iter is the maximum number of iterations,
r1 is a random number within the range of [0, 1], r is a random
vector within the range of [0, 1], and Lb and Ub are the lower
and upper limits, respectively.

C. CONSUMPTION
A consumption parameter having the Levy flight feature is
given as [40]:

C =
1
2
v1
|v2|

(24)

v1 ∼ N (0, 1) , v2 ∼ N (0, 1) , (25)

where N (0, 1) is a normal distribution.
The following equations of three types of consumers

depend on the randomly chosen and how each type of them
deals with the producers and the other consumers where:

1- herbivore can be presented mathematically as follows:

xi (t + 1) = xi (t)+ C . (xi (t)− x1 (t)) ,

i ∈ [2, . . . ., n]

(26)

2- carnivore can bemathematically formulated as follows:
xi (t + 1) = xi (t)+ C .

(
xi (t)− xj (t)

)
,

i ∈ [2, . . . ., n]
j = randi([2i− 1])

(27)

3- omnivore can be modeled mathematically as below:
xi (t + 1) = xi (t)+ C . (xi (t)− x1 (t))+ (1− r2)(
xi (t)− xj (t)

)
, i = 3, . . . ., n

j = randi ([2i− 1])

(28)

D. DECOMPOSITION
The i-th individual position xi in the population can be
improved to the better position depending on the decomposer
xn, the decomposition factor D, and the weight coefficients e
and h as follow:

xi (t + 1) = xn (t)+ D. (e.xn (t)− h.x i (t)) , i = 1, . . . ., n

(29)

D = 3u, u ∼ N (0, 1) (30)

e = r3.randi ([12])− 1 (31)

h = 2.r3 − 1 (32)

E. PROPOSED CAEO TECHNIQUES
The proposed CAEO technique is to improve early conver-
gence of conventional AEO to local optimum or convergence
to near-global optimum with an increase in the number of
iterations and enhance the non-dominated solution of the
algorithm to solve multi-objective functions to obtain the best
value. This modification is based on chaotic maps. Instead
of using random parameters, a set of chaotic equations [41]
is used to improve the convergence properties of the con-
ventional AEO. Table 1 presents the ten chaotic maps are
applied for the conventional AEO to update the parameter of
exploration q as below [42]:

q = yk+1 (33)

where yk+1 is the chaos map that is chosen to solve the
problem and it is presented in Table 1. The description of
CAEO is displayed in the flowchart of Figure 4.

F. MULTI-OBJECTIVE 4th CHAOTIC FUNCTION ARTIFICIAL
ECOSYSTEM-BASED OPTIMIZATION
(MOCAEO4) ALGORITHM
Two main structures called archive, and chaotic maps help to
implement the Multi-objective 4th chaotic function artificial
ecosystem-based optimization (MOCAEO4) algorithm. The
function of the archive is to organize the non-dominated
solutions obtained so far while the chaotic maps are used
to enhance the strength of AEO and to lead the individuals
to update their position directly to the next best position.
Finally, an appropriate decision-making approach is neces-
sary to obtain the best compromise solution between the
NDS [43]. The flow chart of the (MOCAEO4) algorithm is
shown in Figure 5 which is used to solve the CEED problem.

IV. SIMULATION RESULTS AND DISCUSSION
MATLAB (R2019a) is used to simulate conventional AEO
and proposed CAEO techniques to solve the CEED problem
for two power generation systems (6-unit and 11-units). The
description of the portable computer, which is used to solve
this problem, are Intel Core i5-4210U CPU@2. 40GHz with
a 4.00 MB RAM.

A. 6-UNIT POWER GENERATION SYSTEM
In this subsection, the CEED problem is solved for 4 levels
of demand, where the first level of demand is 150 MW and
it is increased by 25MW each time to reach 225 MW in the
fourth level of demand.

1) SINGLE-OBJECTIVE FUNCTION
The best-estimated parameters achieved by the proposed
CAEO have been confirmed using measured data of a CEED
problem for the first level of demand (150 MW) provided in
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TABLE 1. Ten Chaotic maps.

TABLE 2. The coefficients of fuel cost and operational limits.

the research. The proposed CAEO with 10 chaotic functions
according to the previous section has been confirmed by
several operating scenarios. In this research, the following
control variables have been assumed: the number of popu-
lation is 100 and the maximum number of iterations is 200.
The number of 50 independent runs has been executed under
each chaotic function in addition to the conventional AEO
to overcome the randomness of the proposed optimization
technique and to check the quality of these chaotic functions.
According to the results of these independent runs, the best
solution is taken as the lowest value of the fitness function.
Tables 2, 3, 4, and 5 display the data of the 6-unit system [6],
which is used for this study.

FIGURE 4. Flowchart of proposed CAEO technique.

TABLE 3. The coefficients of SO2 Emission and its max/max PPF.

TABLE 4. The coefficients of NOX Emission and its max/max PPF.

a: CASE 1: ESTIMATION OF TOTAL COST ($/H)
FOR LOAD = 150 mW
To validate the strength of proposed CAEO for the parameters
identification of Total cost ($/h) to solve a CEED problem
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FIGURE 5. MOCAEO technique for the CEED problem.
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TABLE 5. The coefficients of CO2 Emission and its max/max PPF.

for load demand equals 150 MW, a statistical analysis is pre-
sented for the lowest values of fitness function (SSE) which
obtained from 50 individual runs This analysis is presented to
provide a clear estimation of 10 chaotic functions and choose
the most precise one for completing the study of the sug-
gested system with other levels of demand in the rest of this
research.

The comparisons between the proposed CAEO according
to 10 chaotic functions and the conventional AEO are exe-
cuted regarding nine metrics. The first four of these metrics
are the best and worst values of SSE, the mean value of SSE,
and Median. The other metrics are SD, RE, RMSE, MAE,
and efficiency and these metrics can be calculated from the
following equations [41]:

SD =

√∑50
i=1 (SSE i − SSE)

50− 1
(34)

RE =

∑50
i=1 (SSE i − SSEmin)

SSEmin
(35)

MAE =

∑50
i=1 (SSEi − SSEmin)

50
(36)

RMSE =

√∑50
i=1 (SSE i − SSEmin)

2

50
(37)

efficiency =
SSEmin
SSE i

× 100% (38)

where SSE i is the lowest value of the objective function in
each run. SSE is the mean value of SSE overall. SSEmin is the
lowest best value of SSE over the 50 runs. Table 6 presents
the statistical results of ten proposed CAEO as well as the
conventional AEO. From this table, it can be noticed that
the lowest value of SSE obtained by the 4th chaotic function is
the best within all functions and the conventional AEO algo-
rithm and gives the best value of Total cost (10179.349 $/h).

Therefore, the 4th chaotic function is selected to complete
study of the suggested system with other levels of demand.
Figure 6 illustrates the convergence characteristics of ten
proposed CAEO and conventional AEO.

The results for the 6-unit system considering the first level
of demand equals 150MW are provided in Table 7. These
results include the value of fuel cost, the value of three types
of emission (SO2,NOx, andCO2, respectively), and the value

FIGURE 6. Convergence characteristics of proposed CAEO and AEO.

of total cost. Table 7 displays the comparison between the
results obtained by the proposed CAEO techniques and the
results of the conventional AEO as well as the other recent
optimization techniques which studied this problem previ-
ously. From Table 7, we can see that the fuel cost, the value of
three types of emission, and total cost, for the 150MW load
demand obtained by CAEO4 are 2702.94 $/h,2885.21 kg/h,
2249.1 kg/h, 2448.86 kg/h, 10179.349 $/h, respectively.

We conclude that CAEO4 technique is better than the
others proposed CAEO and the conventional AEO as well
as other recent optimization techniques such as LR [6],
PSO [44], SA [45], QBA [4], MBO [46] and SCA [47]
methods. Because CAEO4 has the best values for 150MW
load demand, we will continue the next simulation results
for other loads as single and multi-objective functions using
CAEO4.

b: CASE 2: SIMULATION RESULTS FOR DIFFERENT
LOAD DEMANDS
Table 8 and Figure 7.a show a comparison of fuel cost ($/h)
considering 4 levels of demand in the 6-unit power generation
system. It can be noticed from Table 7 that CAEO4 gives the
best value of fuel cost for all levels of demand. The differ-
ences between the proposed CAEO4 method and the nearest
method (conventional AEO) to it are 0.75 $/h for the first level
of demand, 7.97 $/h for the second level of demand, 2.26 $/h
for the third level of demand, and 0.59 $/h for the fourth level
of demand.

Figure 7.a displays the comparison graph of different meth-
ods for levels of demand. According to Table 8 and Figure 7.a,
we can conclude that CAEO4 provides the best value of
fuel costs, conventional AEO closely follows the proposed
CAEO, whereas MBO, QBA, SA, PSO, and LR methods
provide the highest value of fuel cost.
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TABLE 6. Statistical results of proposed CAEO and conventional AEO for the total cost of the 6-unit system (150MW load).

TABLE 7. Estimated parameters of Cost for 150MW using CAEO, AEO, and other well-known optimization techniques.

TABLE 8. The results of fuel cost considering 4 levels of demand in the 6-unit power generation system.

TABLE 9. The results of SO2 emission considering 4 levels of demand in the 6-unit power generation system.

From Table 9, we can see that the comparison of emis-
sion for SO2 considering 4 levels of demand in a 6-unit
power generation system. CAEO4 provides the best value
(2885.21 kg/h) for the first level, whereas SA provides the
best results (3,763.48; 4,553.97 kg/h) for the second and third
levels. Finally, AEO has the best value (5,235.67 kg/h) for the
fourth level.

From Table 10, we can see that the comparison of emission
for NOx. CAEO4 provides the best value (2,249.11kg/h)

for the first level, whereas LR provides the best results
(2,604.89; 3,102.08kg/h) for the second and third levels.
Finally, AEO has the best value (3,758.10kg/h) for the fourth
level.

From Table 11, we can see that the comparison of emission
for CO2. CAEO4 provides the best value (2,448.86kg/h) for
the first level, whereas SA provides the best results (3,094.69;
3,714.33kg/h) for the second and third level. Finally, AEOhas
the best value (4,255.72kg/h) for the fourth level.
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TABLE 10. The results of NOx emission considering 4 levels of demand in the 6-unit power generation system.

TABLE 11. The results of CO2 emission considering 4 levels of demand in the 6-unit power generation system.

TABLE 12. The results of total cost considering 4 levels of demand in a 6-unit power generation system.

TABLE 13. Results of CEED for the 6-unit system using AEO and CAEO4.

Finally, Table 12 and Figure 7.b present a comparison of
the lowest value of the total cost ($/h), which is considered the
main objective in this studying as a single objective function.
From this table, the CAEO4 method provides the best overall
results for all levels of demand in the 6-unit power generation
system.

Figure 8 illustrates the convergence curves of the proposed
CAEO4 technique for obtaining the optimum convergence
to single-objective CEED problems using different levels of
demand. From this Figure, it can be noticed that the curves
tend to converge very fast and they are converging to achieve
the optimal value through 200 iterations. It also displays
that the CAEO4 technique has the highest computational
prowess. The simulation results obtained from the four cases
also show that they are robust and reliable. Finally, it can

be confirmed that the proposed CAEO4 technique provides
accurate and reliable solutions with strong computational
competence after it is compared with the conventional AEO,
MBO, QBA, SA, PSO, and LR.

Figure 9 shows the comparison between the convergence
curves of proposed CAEO4 and the conventional AEO for
the total cost at 3 levels of demand in a 6-unit power system.

Also, it can be seen from Table 13 that the results of
CAEO4 are more reliable and robust than the conventional
AEO for different levels of demand.

B. BI-OBJECTIVE FUNCTION
In this subsection, a MOCAEO4 algorithm is applied for
obtaining the optimal point to minimize the first objective
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FIGURE 7. Variations of methods for different levels of demand in 6-unit system (a) Fuel cost ($/h) (b) Total cost ($/h).

FIGURE 8. Convergence curves of the CAEO4 method for different levels
of demand.

function (the fuel cost) with one of three emission types
(SO2, NOx, and CO2) as the second objective function in
the 6-unit power generation system for the fourth level of
demand (250MW).

1) CASE 1: THE OPTIMUM VALUES OF THE FUEL
COST AND SO2 EMISSION
In the 1st case, theMOCAEO4 algorithm is used for obtaining
the best values of fuel cost (1st objective function) and SO2
emission (2nd objective function) simultaneously. Figure 10.a
shows The Pareto optimal values of this case. The best solu-
tions obtained by the MOCAEO4 algorithm are presented
in Table 14. From this table, the best compromise fuel costs

and emission of SO2 are 4348.79 $/h and 5297.95 kg/h,
respectively.

2) CASE 2: THE OPTIMUM VALUES OF THE
FUEL COST AND NOx EMISSION
In the 2nd case, the MOCAEO4 algorithm is used for obtain-
ing the best values of fuel cost (1st objective function)
and NOx emission (2nd objective function) simultaneously.
Figure 10.b shows The Pareto optimal values of this case. The
best solutions obtained by the MOCAEO4 algorithm are pre-
sented in Table 14. From this table, the best compromise fuel
costs and emission of NOX are 4332.28 $/h and 3789.72 kg/h,
respectively.

3) CASE 3: THE OPTIMUM VALUES OF THE
FUEL COST AND CO2 EMISSION
In the 3rd case, the MOCAEO4 algorithm is used for obtain-
ing the best values of fuel cost (1st objective function) and
emission of CO2 (2nd objective function) simultaneously.
Figure 10.c shows The Pareto optimal values of this case.
The best solutions obtained by the MOCAEO4 algorithm
are presented in Table 14. From this table, the best compro-
mise fuel costs and emission of CO2 are 4310.178 $/h and
4323.98 kg/h, respectively.

C. 11-UNIT POWER GENERATION 69-BUS SYSTEM
1) CASE 1: THE OPTIMUM VALUES OF THE FUEL COST
This test system consists of 11-generating units (69-bus,
11-generator, coal-fired power system) with different load
demand values (1000, 1500, 2000, and 2500MW) and the
optimal results obtained by the CAEO-4 are compared with
the conventional AEO algorithm. At the load demand =
2500 MW, the results of the proposed algorithm are com-
pared with six-recent methods beside the original AEO algo-
rithm to check the effectiveness of the proposed technique.
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FIGURE 9. Convergence Characteristics of AEO and CAEO4 for 3 levels of demand in 6-unit power system (a) Load Demand = 175 MW (b) Load
Demand = 200MW (c) Load Demand = 225MW.

TABLE 14. BCS for multi-objective functions using MOCAEO4 (load = 225MW).

The number of populations is 20, and the maximum number
of iterations is 2000. The Generation limits, Fuel cost coef-
ficients, and emission coefficients of the system are given
in Table 15.

In Table 16, the best values of fuel cost attained using the
proposed CAEO-4 were 8408.4307, 9623.5203, 10912.3379,
and 12274.4028 $/h for the load demand of 1000, 1500,
2000, and 2500 MW, respectively. These results confirm
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FIGURE 10. Pareto-optimal front for (a) Fuel cost and SO2 emission (b) Fuel cost and NOx emission (c) Fuel cost and CO2 emission.

TABLE 15. Data of the 11-unit system: Generation limits, Fuel cost coefficients and Emission coefficients.

the superiority of the proposed CAEO-4 method compared
with the conventional AEO. The comparative convergence
curves between the proposed CAEO4 and AEO are shown
in Figure 11.

The best fuel cost results obtained by the pro-
posed CAEO4, original AEO, and other metaheuristic
(CSAISA [39], ISA [39], GA [39], PSO [39], DE [39],
HAS [39]) techniques are compared in Table 17.
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FIGURE 11. Fuel cost convergence curves of AEO and CAEO4 techniques (case study 2) (a) 1000MW (b) 1500MW (c) 2000MW (d) 2500MW.

TABLE 16. Results of the fuel cost for the 11-unit system using AEO and CAEO4.

2) CASE 2: THE OPTIMUM VALUES OF THE TOTAL EMISSION
The optimal power generation achieved by proposed
CAEO4 and AEO algorithms with system demands rising

from 1000 MW to 2500 MW for the best total emission
are tabulated in Table 18. When the results are com-
pared, the proposed CAEO4 gives the better values of

51160 VOLUME 9, 2021



M. H. Hassan et al.: Developing Chaotic Artificial Ecosystem-Based Optimization Algorithm

FIGURE 12. Total emisssion convergence curves of AEO and CAEO4 techniques (case study 2) (a) 1000MW (b) 1500MW (c) 2000MW (d) 2500MW.

TABLE 17. The best solution values for the fuel cost of the case study 2 (2500 MW).

total emission with different load demand than the AEO
algorithm.

Figure 12 shows the convergence characteristics of
the CAEO4 and AEO. From this Figure, it can be

seen that the convergence characteristic curves of the
CAEO4 is fast, smooth and smoothly reach to the opti-
mal value of objective function, compared with the original
AEO.

VOLUME 9, 2021 51161



M. H. Hassan et al.: Developing Chaotic Artificial Ecosystem-Based Optimization Algorithm

TABLE 18. Results of the Total Emission for the 11-unit system using AEO and CAEO4.

TABLE 19. The best solution values for the Total Emission of the case study 2.

TABLE 20. The best solution values for the CEED of the case study 2 (2500MW).

Table 19 presents the best solution values for the total emis-
sion of the case study 2 using the proposed CAEO4, original
AEO and other algorithms. From Table 19, it can be observed
that the optimal emission obtained using CAEO4 and
CSAISA [39] was 1659.35 ton/h.

3) CASE 1: THE OPTIMUM VALUES OF THE COMBINED
ECONOMIC EMISSION DISPATCH (CEED)
Table 20 gives the best optimal power output of generators
for CEED problem using proposed CAEO4 technique, AEO,
GA [48], and GSA [49] with 2500MW system demands for
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FIGURE 13. Total cost convergence curves of AEO and CAEO4 techniques
(case study (2) - 2500MW).

11-generator system. From this table, it is clear that the pro-
posed approach gives the best total cost (18953.49162 $/h).
The convergence characteristic curve for the best total cost
is shown in Figure 13. It can be observed that the proposed
CAEO4 has a steady and faster convergence characteristic
than the conventional AEO algorithm.

V. CONCLUSION
In this research, single and multi-objective CEED problems
in power grids have been solved to obtain economic and
environmental profits. In the 6-unit power system, the tar-
get has been achieved by minimizing the total fuel cost
and the emission of the three risky gases SO2, NOx, and CO2.
The proposed CAEO4 algorithm has been modified to solve
the multi-objective CEED problem according to the Pareto
theory. After the determination of the ND solutions, the BCS
is chosen using the fuzzy set theory. The MOCAEO4 algo-
rithm has been established for obtaining the best solution
of two objective functions simultaneously.Also, the proposed
CAEO4 has been tested by the 69-bus 11-unit power system.
The results demonstrated the superiority of the developed
algorithms for achieving the optimal solution to decrease the
total cost and reduce the bad emission for different levels of
demand.
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