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ABSTRACT In this paper, Chaotic Artificial Ecosystem-based Optimization Algorithm (CAEO) is proposed
and utilized to determine the optimal solution which achieves the economical operation of the electrical
power system and reducing the environmental pollution produced by the conventional power generation.
Here, the Combined Economic Emission Dispatch (CEED) problem is represented using a max/max
Price Penalty Factor (PPF) to confine the system’s nonlinearity. PPF is considered to transform a four-
objective problem into a single-objective optimization problem. The proposed modification of AEO raises
the effectiveness of the populations to achieve the best fitness solution by well-known 10 chaotic functions
and this is valuable in both cases of the single and multi-objective functions. The CAEO algorithm is
used for minimizing the economic load dispatch and the three bad gas emissions which are sulfur dioxide
(802), nitrous oxide (NOx), and carbon dioxide (CO2). To evaluate the proposed CAEQ, it is utilized
for four different levels of demand in a 6-unit power generation (30-bus test system) and 11-unit power
generation (69-bus test system) with a different value of load demand (1000, 1500, 2000, and 2500MW).
Statistical analysis is executed to estimate the reliability and stability of the proposed CAEO method. The
results obtained by CAEO algorithm are compared with other methods and conventional AEO to prove that
the modification is to boost the search strength of conventional AEO. The results display that the CAEO
algorithm is superior to the conventional AEO and the others in achieving the best solution to the problem of
CEED in terms of efficient results, strength, and computational capability all over study cases. In the second
scenario of the bi-objective problem, the Pareto theory is integrated with a CAEO to get a series of Non-
Dominated (ND) solutions, and then using the fuzzy approach to determine BCS.

INDEX TERMS Combined economic and emission dispatch, artificial ecosystem-based optimization,
greenhouse gases, Pareto front, price penalty factor, chaotic AEO.

ABBREVIATIONS GA Genetic Algorithm
CEED Combined Economic and Emission

PSO Particle swarm optimization
ACO-ABC-HS Ant Colony Optimization-Artificial

Dispatch .

CAEO Chaotic Artificial ecosystem-based Bee Colony-Harmonic Search
optimization RGA Re.al coded GA

BCS Best Compromise Solution PPF Price Penalty Factor

AEO Artificial ecosystem_based MOCAEO4 Multi—objective 4th chaotic function
optimization Artificial ecosystem-based optimization

ELD Economic Load Dispatch
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MHBA multi-objective hybrid bat algorithm
PSOGSA  PSO-the gravitational search algorithm
CSA crow search algorithm

FFA-BA firefly-bat algorithm

FDM fuzzy decision-making

MBO Modified Biogeography Based
Optimization

SSE Sum of squared errors

RE Relative error

MAE Mean absolute error

ISA Interior search algorithm

CSAISA  Chaotic self-adaptive interior search
algorithm

PSO- NN PSO and Neural Network algorithm

QBA Quantum-Behaved Bat

SCA Sine cosine algorithm

SD Standard deviation

RMSE Root mean square error

ND Non-Dominated

HSA Harmony search algorithm

GSA Gravitational search algorithm

I. INTRODUCTION

The electric power supply system faces its main issues, which
are the efficiency of generator and transmission, and distri-
bution grid, or those three issues together. Previous efforts
have been tried to find the optimum solutions for these issues
by decreasing the operating cost of fuel consumption, which
became an objective function besides many other require-
ments. The speedy development of digital computing has
been helping in dealing with these issues by developing
numerous algorithms to limit the quantity of energy that the
station can generate and transfer through the transmission
networks to satisfy consumer requirements within the most
economical way possible taking under consideration the cal-
culation of the system limits and all stations [1]. Some of
the other requirements are such as scale back greenhouse
gas emissions, higher energy quality and improve power grid
efficiency, and high reliability [2].

In general, the fuels consumed in the thermal power sta-
tions have bad environmental impacts as they produce many
types of gases and CO2, SO2, and NOx are considered the
most harmful among them [3]. The aim of CEED is reducing
the total cost of generating, besides, decreasing the pollutant
emission by obliging with all other constraints concurrent [4].
The CEED problem represents a multi-objective optimization
problem, and various techniques have been developed to
solve this problem. One of the most common methods to
represent the CEED problem is using the 2nd order poly-
nomial function [5]. Though, the non-linearity of the actual
thermal power generation system makes the solution of this
problem deviates from the idealist and therefore nullify the
approximation of the 2nd order polynomial function. It had
been noted that the functions with an order higher than 2nd
order might represent the actual response of the thermal
power generation system, and accordingly, these polynomials
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can help to improve the solutions [5]. But the downside of
applying these polynomials which have order higher than the
2"d order on the CEED problem makes it more complicated,
and subsequently, it is hard to solve it. Therefore, to reach
the most accurate solution for these two incompatible issues,
several researchers have utilized a 3rd order cost function to
represent the CEED problem. The 3rd-order cost function
successfully decreases the increasing nonlinearities of the
modern thermal generation system when it is utilized to rep-
resent the CEED problem [6]. During this analysis, the CEED
problem was formulated using the cubic function.

The researchers started to solve the CEED problem by
Classical techniques which are the oldest approaches had
used to find the solution for this issue [7]. Then, several
intelligence methods have been developed as an alternative
to the obsolete classical ways of solving the various CEED
problems. They have more advantages than the classical
approaches which make the researchers used them to solve
the CEED problem and reach the best solution between lots
of global solutions. Most of these technologies are nature-
inspired. A number of the most renowned methods are
GA [8], SA [9], PSO [10], flower pollination algorithm [11],
Spider Monkey Optimization [12], Kernel search optimiza-
tion [13], DE [14], and ant lion optimization [15].

Recently, researchers had made modifying and develop-
ing standalone ways by combining the effective features
of two or more methods to become a hybrid method and
thereby to attain superior performance than standalone ways.
A number of the most newly introduced hybrid methods
to achieve the optimum solution for the CEED problem
are ACO-ABC-HS algorithm [16], PSOGSA [17], RGA
and DE [18], backtracking search algorithm with sequen-
tial quadratic programming [19], MHBA [20], CSA and
DE [21], FFA-BA [22], PSO- NN [23], DE-SA [24], and
gradient search method and improved Jaya algorithm [25].
But the long computational time is sometimes one of the
hybrid algorithm drawbacks wherever every one of the algo-
rithms performs separately into the problem and adds more
complexities [5].

Recently, many optimization algorithms depended on
chaos theory to improve their performance such as the chaotic
differential bee colony [26], chaotic bat algorithm[27], mod-
ified artificial bee colony [28], chaotic krill herd [29], modi-
fied artificial bee colony based on the chaos [30] and hybrid
PSO and GSA integrated with chaotic maps (CPSOGSA) [31]
and Enhanced chaotic JAYA algorithm [32]. However, these
algorithms have been applied for solving different optimiza-
tion problem such as the economic dispatch, optimal reac-
tive power dispatch, nonconvex emission/economic dispatch,
optimal power flow with stochastic wind and FACTS devices,
parameter estimation of photovoltaic, and dynamic economic
dispatch with valve-point effects problems in power systems.
It is clear from the results of chaotic optimization algorithms
that these algorithms have proved a reliable performance,
which is more effective than those of the conventional opti-
mization algorithms.
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In this paper, a new modification of the AEO is proposed
and applied for solving the CEED problem. The chaotic maps
help the algorithms to increase their performance by replac-
ing the variables with chaotic variables [33]. The application
of the CAEO technique for the CEED problem is therefore
reasonable if this technique produces optimal results at less
computation time. Hence the main contributions of this work
are summarized as follows:

o Proposing a Chaotic Artificial ecosystem-based opti-
mization (CAEO) based on chaotic maps. These chaotic
maps enhance a variety of the solution spaces in the
optimization process and improve the convergence capa-
bilities to achieve the optimum solutions and help the
proposed technique to avoid the local minima.

e Proposing  Multi-Objective ~ Chaotic
ecosystem-based optimization (MOCAEO).

o Analysing and Appling the proposed CAEO and
MOCAEO4 to find the optimal solution for CEED
problem.

o The effectiveness of the proposed methodology is com-
pared with the conventional AEO and other well-
known optimization methods using four different levels
of demand in a 6-unit power generation system and
11-generating units (69-bus system) with a different
value of load demand (1000, 1500, 2000, and 2500MW).

The proposed technique has been verified for achieving the
optimal solution for the CEED problems and its results have
been compared with those obtained by various recent opti-
mization techniques such as LR [6], PSO [44], SA [45],
QBA [4], MBO [46] and SCA [47] for the 6-unit power
system and CSAISA [39], ISA [39], GA [39], PSO [39],
DE [39], HAS [39], GA similarity [48], and GSA [49].
All results demonstrate that the proposed CAEO4 pro-
vides a more precise solution than original AEO and other
techniques.

Finally, the rest of research is prepared as follows:
Section II comprises the problem description including
the mathematical definition of the CEED, operational lim-
itations, and single and multi-objective functions. Then,
the improved single and bi-objective CAEO technique is
presented in Section III. After that, the simulation stud-
ies, results, and discussion are given in Section IV. Finally,
the conclusions are discussed in Section V.

Artificial

Il. PROBLEM FORMULATION

A. 6-UNIT POWER GENERATION SYSTEM

CEED is a multi-objective optimization problem that gener-
ally indicates the reduction of fuel cost besides the reduction
of risky gases emission at the same time whereas sustaining
all operational limitations. In this paper, the reduction of
SO,, NOy, and CO; as independent three objectives have
been studied. Consequently, by adding ELD as an objective
function to the three emission objectives, CEED becomes
a four-objective optimization problem [5]. Firstly, fuel cost
F (P) in ($/h) can be calculated from the cubic equation
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as follow:

n
F(P) =Y aiP} +biP} + ciP; + d;, (1
i=1

where 7 is the total number of generating units, Pi is the actual
output power of ith generating unit; a;, b;, ¢;, and d; are the

coefficients of fuel cost for each generating unit i.
Secondly, the Emission of risky gases is separated into
independent three objectives and is also expressed as follow:

n
Esop (P) =) _ eso2iP} + fs0aiP} + gso2iPi + hsonir (2)
i=1
where Esoo (P) in (kg/h) is the emission function of SO».
es02i.fso2i, gso2i, and hspo; are coefficients of SO, emission
of the generating unit i, respectively.

n
Enox (P) = Z enoxiP; + fyoxiP? + gnoxiPi + hnosi, (3)
i=1
where Enoy (P) in (kg/h) is the emission function of NOy.
eNoxi»JNOxi» ENoxi» and hnoyi are coefficients of NOy emission
of the generating unit i, respectively.

n
Ecor (P) = Z eco2iP; + fcoaiP? + gcoaiPi + hconis (4)
i=1
where Ecos (P) in (kg/h) is the emission function of CO;.
econi» fcozi» gcori, and hcopa; are coefficients of CO, emis-
sion of the generating unit i, respectively.

The equality constraint is Power balance where Total actual
output power generation Py (in MW) must cover both total
load demand Pp (in MW) and the total transmission power
loss Py (in MW). This equality constraint can be computed
as follow:

n
Pr=Y Pi=Pp+PpL, &)
i=1
While the inequality constraint is achieved when each
generating unit operates in its operational limits which can
be described as:

Pi,min = Pi =< Pi,ma)m (6)

where P;min and Pj . are operational limits of each
generating unit i.

1) SINGLE-OBJECTIVE FUNCTION

In this research, a max/max PPF [6] is used to convert the four
objectives (decreasing both of the fuel cost and emissions of
CO2, SO2, and NOx) into a single objective (total cost) and
the goal of CAEO algorithm is minimizing this objective. The
total cost FT in ($/h) can be defined as:

OF = min(Fr)

n

Fr = Z {F(P}) + hsiEs02i(Pi) + hniEnoxi(Pi)
i=1

+hciEco2i(Pi)}, @)
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where F(P;), Es02i(P;), Enoxi(Pi), and Ecop;(P;) are fuel cost
($/h), emission of SO, (kg/h), emission of NOyx (kg/h), and
emission of CO; (kg/h) of each generating unit i, respectively.

The PPF (h;) can be defined as dividing the maximum fuel
cost into the maximum emissions for each gas SO;, NOy,
and CO». And it can be computed for each gas from these
equations:

n

_ F(Pi.max)

hSl B ; ESOZ(Pi.max) (8)
_ Z F(Pi.max)

th a ; ENOx(Pi.max) (9)
Z F Pi max

hei = Z _FPimar) (10)

=1 ECO2(Pi.max)
2) BI-OBJECTIVE FUNCTION
Generally, a Bi-objective optimization algorithm is used to
optimize two objectives simultaneously [34]. The solutions
that are obtained in each iteration within the algorithm are
classified as dominated solutions and ND solutions, based
on the objective functions. The Pareto dominance concept
is used to execute this classification. Then, the ND solutions
are put within the archiving matrix to select the BCS by the
FDM. However, numerous approaches are used to determine
the BCS [35].

FDM is the most common method that is generally used
to find solutions for decision-making problems [36], [37].
In this research, the FDM method is used to determine the
BCS from the obtainable selections of final Pareto front as
below:

a: PARETO OPTIMIZATION METHOD

First, Pareto optimization reaches a series of reasonable
solutions. Then, the optimization of Pareto considers that a
solution x1 dominates the solution x2 when [38]:

Viell,2,.... M}, fi(x1) <fi(x2) (11)
e {l,2,....M}: fi(x)) <fi(x2) (12)

b: DEFINITION OF THE BC SOLUTION

The fuzzy membership method can normalize the objective
function value F of each ND solution (k) (Figure 1) as
follows:

1 F; < Fmin
n; = T E—— : <r;< .
i Fimax _ Fimm [ i
0 F; > FI"ex

where F["* and F i””" are the maximal and minimal values of
F; between all ND solutions, respectively.
The normalized membership function (uy) is defined as:

Nobj
k Dict M

===l B (14)
M Nob,
> k=1 Zi:olj Mf

7
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H(F)

3

>

I:min Fmax g

FIGURE 1. Flowchart membership of objective functions.

where M is the total numeral of ND solutions. The selection
of The BCS from all ND solutions through the value of u*,
where the BCS which has a maximum value of X,

In this research, there are 3 cases and two objective func-
tions in each case of the bi-objective optimization problems
which are defined as below:

The first objective function in all cases is minimizing of
fuel cost and the second objective function is given as follow:

1- In the first case, minimizing the Emission of SO;.

2- In the second case, minimizing the Emission of NOy.

3- In the third case, minimizing the Emission of CO;.

B. 11-UNIT POWER GENERATION (69-BUS SYSTEM)
1) SINGLE-OBJECTIVE FUNCTIONS
The total fuel costs based on the output of thermal generating
units along with its constraints is given as [39]:

Ng
Fi =Y lai+bhiPgi + ciPy;

i=1

+

d; sin <e,- (ngi” - PGl-)) )] (15)

where a;; b;; ci; d;i and e; represent the cost coefficients for
the i unit; Pg; represents the output power of ith (i=1,2;
3;..; Ng) unit, and Ng represents the number of generating
units.

The second objective, the emission function, considers
two primary pollutant emissions (SOx and NOy) caused
by fossil-fuel thermal units. The total pollutant emission is
expressed as:

Ng
Fa=Y [1072@; + BiPai + viPE) + miexp 6P | (16)
i=1
where «;; Bi; ¥i; i and §; represent the emission coefficients
for the i unit.
The CEED is calculated as follows:
Ng
Fr =Y _{Fi (P)) + hi x F2 (PGi) (17)
i=1
where, h; is max/max PPF.
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2) SYSTEM CONSTRAINTS
The equality constraint is the power balance where the total
actual output power generation Py (in MW) must cover
the total load demand Pp (in MW) and the total transmis-
sion power loss Pr,s (in MW). This equality constraint is
expressed as follows:
Ng
Pr =" PGi =Pp + PLog. (18)
i=1
Pross 1s a function of the real output power of the system
generators and it is generally estimated by Kron’s loss for-
mula as follows:
NG Ng Ng
Pross =Y > PGiBiPci+ Y _ BoiPgi + Boo.  (19)
i=1 j=1 i=1
where, By, Bo; and Bj; are the transmission loss coefficients.
The inequality constraint is achieved when each generating
unit operates within its operational limits as:

PGimin < PGi < PGimaxs (20

where, PG;i min and Pg; max are the operational limits of each
generating unit i.

lll. METHODOLOGY

The conventional AEO method and recommended CAEO
technique developed by using 10 chaotic maps are described
in this section.

A. THE CONVENTIONAL AEO

This subsection presents the conventional AEO algorithm
was firstly developed by Zhao et al. This algorithm is based
on the energy flow in a natural ecosystem [40]. An ecosystem
is a group of living creatures, which exist in a specific area,
and it demonstrates the ecological relations among these crea-
tures. As any population-based optimization technique, AEO
has included production, consumption, and decomposition
behaviours of creatures on the earth and the sequence of those
behaviours represent the energy flow in an ecosystem.

Figure 2 shows the energy flow in an ecosystem, wherever
most producers (green plants) depend on the photosynthesis
process to gets their food energy. After the green plants were
growing, a number of the consumers (animals) feed only on
a part of these plants, and these consumers are known as
herbivores. Other animals are dividing into two types. One
of them feeds on both plants and animals and they are called
omnivores.

The last type of animal is known as carnivores and this
type eats only other animals. Decomposers are most bacteria
and fungi. This phase starts once the producers and animals
die when Decomposers convert them into small particles,
like minerals, carbon dioxide, and water. The black arrow
in Figure 2.a represents the various energy levels that reduce
from plants (producers) to bacteria and fungi (decomposers),
whereas the arrows within Figure 2.b refer to the energy
transfer path.
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FIGURE 2. The energy flow in an ecosystem.
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FIGURE 3. An ecosystem representation in the AEO technique.

Based on the previous discussion, the AEO consists of
three operators;

(i) the production is used to strengthen the balance
between the exploration and exploitation phases,

(i) the role of consumption is an improvement of
exploration,

(iii) Decomposition is used to enhance the exploitation of
the AEO.

The individuals in the population of the AEO algorithm are
divided into three groups as follows, only one of them is
a producer and only one is a decomposer, while all other
individuals are consumers from the three predefined sorts
and they have the same probability. The energy level of each
individual is set by the fitness function of that individual.
The representation of the AEO technique is shown
in Figure 3. The energy flow is represented by the brown
arrows. X1 (producer) is the worst individual and having
the highest function fitness value and x, (decomposer) is
the best individual having the lowest function fitness value.
Consumers are the other individuals, and according to the
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previous classification of consumers, it is supposed that x»
and xs are the types of herbivores, x3 and x; are omnivores
while x4 and xg are carnivores.

B. PRODUCTION

The production operator can be modeled mathematically as
follows:

x1(t+1) ={A—a)x, )+ axna (t) 21

a=(1-— ) (22)
max_iter

Xrand = ¥ (Up — Lp) + Ly (23)

where a is a linear weight coefficient, n is the population size,
Xrand 18 an individual position of randomly produced in the
search space, max_ifer is the maximum number of iterations,
r1 is arandom number within the range of [0, 1], r is arandom
vector within the range of [0, 1], and L, and Uy, are the lower
and upper limits, respectively.

C. CONSUMPTION
A consumption parameter having the Levy flight feature is
given as [40]:

1
=L (24)
2 v

vi ~N (O, 1),va~N(0,1), (25)
where N (0, 1) is a normal distribution.
The following equations of three types of consumers

depend on the randomly chosen and how each type of them
deals with the producers and the other consumers where:

1- herbivore can be presented mathematically as follows:

x(t+D=x@+C. (xi(t) —x1 (),
iel2,....n]
(26)

2- carnivore can be mathematically formulated as follows:

Xt +1)=x@)+C. (50 —x 1),
i€l2,....n 27
Jj = randi([2i — 1])

3- omnivore can be modeled mathematically as below:

xi(t4+ 1D =x)+C.(xi(0)—x1 )+ A —=r)
(i () —x;(1),i=3,....n (28)
Jj = randi ([2i — 1])

D. DECOMPOSITION

The i-th individual position x; in the population can be
improved to the better position depending on the decomposer
X, the decomposition factor D, and the weight coefficients e
and % as follow:

xi(t+1) =x,@t)+D.(ex, (t) —hxi(t)), i=1,....,n

(29)
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D =3u,u~N(0,1) (30)
e = ry.randi ([12]) — 1 31
h=2r—1 (32)

E. PROPOSED CAEO TECHNIQUES

The proposed CAEO technique is to improve early conver-
gence of conventional AEO to local optimum or convergence
to near-global optimum with an increase in the number of
iterations and enhance the non-dominated solution of the
algorithm to solve multi-objective functions to obtain the best
value. This modification is based on chaotic maps. Instead
of using random parameters, a set of chaotic equations [41]
is used to improve the convergence properties of the con-
ventional AEO. Table 1 presents the ten chaotic maps are
applied for the conventional AEO to update the parameter of
exploration q as below [42]:

q = Yk+1 (33)

where yx41 is the chaos map that is chosen to solve the
problem and it is presented in Table 1. The description of
CAEO is displayed in the flowchart of Figure 4.

F. MULTI-OBJECTIVE 4th CHAOTIC FUNCTION ARTIFICIAL
ECOSYSTEM-BASED OPTIMIZATION

(MOCAEO4) ALGORITHM

Two main structures called archive, and chaotic maps help to
implement the Multi-objective 4th chaotic function artificial
ecosystem-based optimization (MOCAEQO4) algorithm. The
function of the archive is to organize the non-dominated
solutions obtained so far while the chaotic maps are used
to enhance the strength of AEO and to lead the individuals
to update their position directly to the next best position.
Finally, an appropriate decision-making approach is neces-
sary to obtain the best compromise solution between the
NDS [43]. The flow chart of the (MOCAEO4) algorithm is
shown in Figure 5 which is used to solve the CEED problem.

IV. SIMULATION RESULTS AND DISCUSSION

MATLAB (R2019a) is used to simulate conventional AEO
and proposed CAEO techniques to solve the CEED problem
for two power generation systems (6-unit and 11-units). The
description of the portable computer, which is used to solve
this problem, are Intel Core i15-4210U CPU@2. 40GHz with
a4.00 MB RAM.

A. 6-UNIT POWER GENERATION SYSTEM

In this subsection, the CEED problem is solved for 4 levels
of demand, where the first level of demand is 150 MW and
it is increased by 25MW each time to reach 225 MW in the
fourth level of demand.

1) SINGLE-OBJECTIVE FUNCTION

The best-estimated parameters achieved by the proposed
CAEO have been confirmed using measured data of a CEED
problem for the first level of demand (150 MW) provided in
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TABLE 1. Ten Chaotic maps.

No. Name Chaotic map formula
CAEO1  Chebyshev Vi1 = cos(k cos™1(y))
CAEO2 Circle b,\ .

Ve = mod(y + by = (52) sin(2my), 1)
b, =0.5,b, =0.2
CAEO3 Gauss/ 1 y»=0
mouse Yt =V~ otherwise
mod (yy)
AEO4 Iterati b
CAEO:! erative ey = sin (_ﬂ)b — 07
Yk
CAEOS5S Logistic Vi1 = byr(1-yx), b = 4
CAEO6 Piecewise % 0<y,<H
—-H
k= <y, <05
_ 05— H
Y1 S\1—H -y, H
— 05<y,<1-H
0.5—H =Yk=
1—yi
1-H<y, <1
k H Sy s
=04
CAEO7 Sine b .
Vi1 = g sinmy), b = 4
CAEOS8 Singer 7.86y,* — 2331y, '
Yiert UL o8 75y,% — 13.302875y, )
=1.07
CAEOQ9  Sinusoidal Yis1 = byi sin(my,), b = 2.3
CAEO10 Tent Ye o7
_ 0.7
Ye+1 =910

?(1 —Yik) Y 207

TABLE 2. The coefficients of fuel cost and operational limits.

Unit  Ai(10%) Bi ci (10 di (10%) fMW) {ﬁ"{,‘v)
P1 0.1000  0.092  0.145  -0.1360 50 200
P2 0.4000  0.025 0220  -0.0035 20 80
P3 0.6000  0.075 0230  -0.0810 15 50
P4 02000  0.100  0.135  -0.0145 10 50
P5 0.1300  0.120  0.115  -0.0098 10 50
P6 0.4000  0.084  0.125 0.0756 12 40

the research. The proposed CAEO with 10 chaotic functions
according to the previous section has been confirmed by
several operating scenarios. In this research, the following
control variables have been assumed: the number of popu-
lation is 100 and the maximum number of iterations is 200.
The number of 50 independent runs has been executed under
each chaotic function in addition to the conventional AEO
to overcome the randomness of the proposed optimization
technique and to check the quality of these chaotic functions.
According to the results of these independent runs, the best
solution is taken as the lowest value of the fitness function.
Tables 2, 3, 4, and 5 display the data of the 6-unit system [6],
which is used for this study.
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Start

Input population size, number of decision variables, and
maximum number of iterations

| Initialize the CAEO4 population x; (i=1,2,....,n) ‘

Evaluate the fitness function value in (7)
for each solution
i

l Store the best solution xbest l

]

Initialize the x, for the selected chaotic map ‘
}

| Update solution of individual x; using (21) |

¥

| Update y for the selected chaotic map and set q=y |

_ye

No
Update its solution using pdate its solution using Update its solution using
(26) @ (28)
[ Evaluate the objective function

| value for each individual

| Update the best solution found so far xbest |

!

Update the position of each individual using
(29),(30), and (31)
v

Evaluate the objective function value of each
individual

T

Return xbest

FIGURE 4. Flowchart of proposed CAEO technique.

TABLE 3. The coefficients of SO, Emission and its max/max PPF.

max/max PPF of

Unit The coefficients of SO, emission S0,
€s02i fsoni Zso2i hsooi hy
1 0.0005 0.150 17.00 -90 1.09
2 0.0014 0.055 12.00 -30.5 1.06
3 0.0010 0.035 10.00 -80 2.11
4 0.0020 0.070 23.50 -34.5 0.60
5 0.0013 0.120 21.50 19.75 0.68
6 0.0021 0.080 22.50 25.60 0.62

TABLE 4. The coefficients of NOy Emission and its max/max PPF.

max/max PPF of

Unit The coefficients of NO, emission No

©NOxi fNoxi ZNOxi hyoxi h,
1 0.0012 0.052 18.5 -26 0.94
2 0.0004 0.045 12.0 -35 1.50
3 0.0016 0.050 13.0 -15 1.39
4 0.0012 0.070 17.5 74 0.83
5 0.0003 0.040 8.5 89 2.17
6 0.0014 0.024 15.5 75 1.09

a: CASE 1: ESTIMATION OF TOTAL COST (3/H)

FOR LOAD = 150 mW

To validate the strength of proposed CAEO for the parameters
identification of Total cost ($/h) to solve a CEED problem
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FIGURE 5. MOCAEO technique for the CEED problem.
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TABLE 5. The coefficients of CO, Emission and its max/max PPF.

The coefficients of CO2 emission max/max PPF of

Unit CO,
Cco2i feoai gcozi heoai h,

1 0.0015 0.092 14.0 -16.0 0.78
2 0.0014 0.025 12.5 -93.5 1.19
3 0.0016 0.055 135 -85.0 1.44
4 0.0012 0.010 13.5 -24.5 1.13
5 0.0023 0.040 21.0 -59.0 0.75
6 0.0014 0.080 22.0 -70.0 0.7158

for load demand equals 150 MW, a statistical analysis is pre-
sented for the lowest values of fitness function (SSE) which
obtained from 50 individual runs This analysis is presented to
provide a clear estimation of 10 chaotic functions and choose
the most precise one for completing the study of the sug-
gested system with other levels of demand in the rest of this
research.

The comparisons between the proposed CAEO according
to 10 chaotic functions and the conventional AEO are exe-
cuted regarding nine metrics. The first four of these metrics
are the best and worst values of SSE, the mean value of SSE,
and Median. The other metrics are SD, RE, RMSE, MAE,
and efficiency and these metrics can be calculated from the
following equations [41]:

o \/ S0 (SSE; — SSE)

34
50 — 1 34
0 (SSE; — SSE min)
RE = ==L (35)
SSEmin
50
50 (SSE; — SSE
MAE = 21:1 ( i mln) (36)
50
330 (SSE; — SSE pin)?
RMSE = i= (37)
50
SSE i
efficiency = Tg”” x 100% (38)

1

where SSE; is the lowest value of the objective function in
each run. SSE is the mean value of SSE overall. SSE i is the
lowest best value of SSE over the 50 runs. Table 6 presents
the statistical results of ten proposed CAEO as well as the
conventional AEO. From this table, it can be noticed that
the lowest value of SSE obtained by the 4th chaotic function is
the best within all functions and the conventional AEO algo-
rithm and gives the best value of Total cost (10179.349 $/h).

Therefore, the 4th chaotic function is selected to complete
study of the suggested system with other levels of demand.
Figure 6 illustrates the convergence characteristics of ten
proposed CAEO and conventional AEO.

The results for the 6-unit system considering the first level
of demand equals 150MW are provided in Table 7. These
results include the value of fuel cost, the value of three types
of emission (SO2, NOx, and CO2, respectively), and the value
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FIGURE 6. Convergence characteristics of proposed CAEO and AEO.

of total cost. Table 7 displays the comparison between the
results obtained by the proposed CAEO techniques and the
results of the conventional AEO as well as the other recent
optimization techniques which studied this problem previ-
ously. From Table 7, we can see that the fuel cost, the value of
three types of emission, and total cost, for the 150MW load
demand obtained by CAEO4 are 2702.94 $/h,2885.21 kg/h,
2249.1 kg/h, 2448.86 kg/h, 10179.349 $/h, respectively.

We conclude that CAEO4 technique is better than the
others proposed CAEO and the conventional AEO as well
as other recent optimization techniques such as LR [6],
PSO [44], SA [45], QBA [4], MBO [46] and SCA [47]
methods. Because CAEO4 has the best values for 150MW
load demand, we will continue the next simulation results
for other loads as single and multi-objective functions using
CAEO4.

b: CASE 2: SIMULATION RESULTS FOR DIFFERENT

LOAD DEMANDS

Table 8 and Figure 7.a show a comparison of fuel cost ($/h)
considering 4 levels of demand in the 6-unit power generation
system. It can be noticed from Table 7 that CAEO4 gives the
best value of fuel cost for all levels of demand. The differ-
ences between the proposed CAEO4 method and the nearest
method (conventional AEO) to it are 0.75 $/h for the first level
of demand, 7.97 $/h for the second level of demand, 2.26 $/h
for the third level of demand, and 0.59 $/h for the fourth level
of demand.

Figure 7.a displays the comparison graph of different meth-
ods for levels of demand. According to Table 8 and Figure 7.a,
we can conclude that CAEO4 provides the best value of
fuel costs, conventional AEO closely follows the proposed
CAEOQO, whereas MBO, QBA, SA, PSO, and LR methods
provide the highest value of fuel cost.
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TABLE 6. Statistical results of proposed CAEO and conventional AEO for the total cost of the 6-unit system (150MW load).

optimization

techniques Min Max MEAN Median SD RE MAE RMSE Eff.

AEO 10180.834 10201.468 10187.4646 10187.499 601.491 0.0242 4917 7.7220 99.95
CAEO1 10189.257 10206.534 10193.4787 10191.777 637.238 0.0277 5.645 8.4655 99.94
CAEO2 10182.023 10197.209 10187.0025 10185.448 504.950 0.0255 5.199 7.2122 99.95
CAEO3 10180.948 10206.169 10187.8050 10185.155 677.080 0.0282 5.741 8.8252 99.94
CAEO4 10179.349 10219.630 10186.6464 10183.197 778.508 0.0250 5.084 9.2329 99.95
CAEO5 10180.724 10217.198 10188.0959 10184.764 766.531 0.0275 5.599 9.4304 99.95
CAEO6 10181.969 10204.980 10188.2257 10184.733 576.669 0.0187 3.814 6.8655 99.96
CAEO7 10180.402 10202.343 10186.7732 10186.442 548.832 0.0219 4.465 7.0324 99.96
CAEO8 10188.519 10212.684 10196.0928 10193.216 811.825 0.0308 6.262 10.188 99.94
CAEO9 10181.087 10205.830 10189.4777 10188.000 654.437 0.0261 5.318 8.3818 99.95
CAEO10 10183.274 10192.094 10185.9889 10184.137 372.765 0.0152 3.095 4.8162 99.97

TABLE 7. Estimated parameters of Cost for 150MW using CAEO, AEO, and other well-known optimization techniques.

Otl:ezll:l; liflaut:;n Fuel cost ($/h) SO, Emission (kg/h) NO, Emission (kg/h) CO, Emission (kg/h) Total cost ($/h)
CAEO1 2703.540 3037.750 2335.920 2502.55 10189.260
CAEO2 2702.217 3028.343 2339.656 2605.428 10182.023
CAEO3 2704.835 2931.922 2362.363 2528.619 10180.948
CAEO4 2702.944 2885.210 2249.105 2448.860 10179.349
CAEOS5 2702.914 3071.733 2409.679 2649.255 10180.724
CAEO6 2704.007 2936.314 2305.776 2462.078 10181.969
CAEO7 2702.738 3129.145 2410.572 2571.062 10180.402
CAEO8 2701.003 3370.514 2589.438 2932.466 10188.519
CAEQ9 2703.582 3051.836 2335.906 2551.257 10181.087
CAEO10 2701.254 2927.012 2282.086 2480.293 10183.274

AEO 2703.686 2978.035 2349.853 2480.418 10180.834
SCA [47] 2704.923 3146.831 2406.237 2564.567 10255.208
MBO [46] 2704.922 3146.831 2406.236 2564.572 10255.210
QBA [4] 2704.970 3147.380 2408.100 2565.140 10255.280
SA [45] 2705.210 3138.446 2379.350 2568.946 10261.490
PSO [44] 2734.200 3193.600 2424.600 2607.100 10385.000
LR [6] 2729.350 3091.648 2448.218 2537.122 10264.570
TABLE 8. The results of fuel cost considering 4 levels of demand in the 6-unit power generation system.
Load Total fuel cost ($/h)
(MW) LR [6] PSO [44] SA [45] QBA [4] MBO [46] SCA [47] AEO CAEO4
150 2,729.35 2,734.2 2,705.2 2,704.97 2,704.92 2704.92 2,703.69 2,702.94
175 3,475.41 3,236.3 3,220.5 3,188.10 3,188.13 3188.15 3,187.31 3,179.34
200 4,210.30 3,784.9 3,735.7 3,726.08 3,727.43 3727.45 3,724.71 3,722.45
225 5,130.53 4,402.3 4,321.5 4,314.63 4,315.63 4315.05 4,314.97 4,314.38
TABLE 9. The results of SO2 emission considering 4 levels of demand in the 6-unit power generation system.
Load Emission of SO,(kg/h)
(MW) LR [6] PSO [44] SA [45] QBA [4] MBO [46] SCA [47] AEO CAEO4
150 3,091.65 3,193.60 3,138.45 3,147.38 3,146.83 3146.8310 2,978.03 2,885.21
175 4,142.18 3,904.90 3,763.48 3,858.96 3,859.49 3859.3593 3,829.72 3,891.64
200 5,053.58 4,670.60 4,553.97 4,598.20 4,592.64 4592.4934 4,618.24 4,589.87
225 6,106.50 5,426.10 5,287.31 5,344.75 5,335.81 5339.9612 5,235.67 5,360.57

From Table 9, we can see that the comparison of emis-
sion for SO2 considering 4 levels of demand in a 6-unit
power generation system. CAEO4 provides the best value
(2885.21 kg/h) for the first level, whereas SA provides the
best results (3,763.48; 4,553.97 kg/h) for the second and third
levels. Finally, AEO has the best value (5,235.67 kg/h) for the
fourth level.

From Table 10, we can see that the comparison of emission
for NOx. CAEO4 provides the best value (2,249.11kg/h)
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for the first level, whereas LR provides the best results
(2,604.89; 3,102.08kg/h) for the second and third levels.
Finally, AEO has the best value (3,758.10kg/h) for the fourth
level.

From Table 11, we can see that the comparison of emission
for CO2. CAEO4 provides the best value (2,448.86kg/h) for
the first level, whereas SA provides the best results (3,094.69;
3,714.33kg/h) for the second and third level. Finally, AEO has
the best value (4,255.72kg/h) for the fourth level.
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TABLE 10. The results of NOx emission considering 4 levels of demand in the 6-unit power generation system.

Emission of NOy (kg/h)

Load (MW) LR [6] PSO [44] SA [45] QBA [4] MBO [46] SCA [47] AEO CAEO4

150 2,44822 2,424.60 2,379.35 2,408.10 2,406.24 2406.2374 2,349.85 2,249.11

175 2,604.89 2,879.70 2,789.92 2,853.40 2,854.13 2854.0066 2,883.36 2,847.56

200 3,102.08 3,373.20 3,285.65 3,327.78 3,325.35 3325.3389 3,362.90 3,301.53

225 3,798.38 3,877.60 3,781.19 3,822.53 3,811.18 3820.2894 3,758.10 3,832.07

TABLE 11. The results of CO2 emission considering 4 levels of demand in the 6-unit power generation system.

Load Emission of CO,(kg/h)

(MW) LR [6] PSO [44] SA [45] QBA [4] MBO [46] SCA [47] AEO CAEO4
150 2,537.12 2,607.10 2,568.95 2,565.14 2,564.57 2564.5670 2,480.42 2,448.86
175 3,613.53 3,178.00 3,094.69 3,129.78 3,129.20 3129.1869 3,136.06 3,154.93
200 4,473.37 3,771.50 3,714.33 3,719.64 3,715.69 3715.6370 3,719.48 3,725.20
225 5,502.52 4,403.00 4,324.30 4,323.47 4,328.07 43225213 4,255.72 4,322.68

TABLE 12. The results of total cost considering 4 levels of demand in a 6-unit power generation system.
Load Total cost ($/h)

(MW) LR [6] PSO [44] SA [45] QBA [4] MBO [46] SCA [47] AEO CAEO4
150 10,264.57 10,385 10,261.49 10,255.28 10,255.21 10255.208 10,180.83 10,179.35
175 13,251.52 12,425 12,280.04 12,241.74 12,241.67 12241.668 12,172.06 12,164.36
200 16,077.41 14,642 14,421.30 14,413.88 14,413.71 14413.709 14,293.19 14,287.65
225 19,661.33 17,125 16,790.69 16,783.91 16,784.34 16783.781 16,617.10 16,603.90

TABLE 13. Results of CEED for the 6-unit system using AEO and CAEO4.
Load (MW) AEO CAEO4 AEO CAEO4 AEO CAEO4 AEOQ CAEO4
150 MW 175 MW 200 MW 225 MW

P1 (MW) 50.000 50.000 50.074 50.00823 50.010 50.002 50.0 50.004

P2 (MW) 20.024 20.007 22.683 21.24516 29.909 29.602 37.2 39.421

P3 (MW) 15.000 15.000 15.999 15.01373 15213 15.002 16.8 16.079

P4 (MW) 24.096 23.968 30.159 32.97348 40.223 38.672 44.8 45271

P5 (MW) 16.179 18.988 24.745 26.27831 27.354 30.327 36.4 34.260

P6 (MW) 24.701 22.038 31.339 29.48110 37.297 36.396 39.7 39.965

F“(;'/;;’“ 2703.686 2702.944 3187.307 3179.337 3724.708 3722.450 4315.0 4314.380

Emission of 2978.035 2885.210 3829.720 3891.639 4618.244 4589.868 52357 5360.573

SO, (kg/h)
'?V“;‘s(sl‘("g'/‘h‘;f 2349.853 2249.105 2883.358 2847.565 3362.898 3301.527 3758.102 3832.066
Emission of 2480.418 2448.860 3136.058 3154.931 3719.476 3725.202 4255.7 4322.681
CO; (kg/h)
T"gllhc)"“ 10,180.8 10,179.35 12,172.1 12,164.4 14,293.19 14,287.65 16,617.1 16,603.9

Finally, Table 12 and Figure 7.b present a comparison of
the lowest value of the total cost ($/h), which is considered the
main objective in this studying as a single objective function.
From this table, the CAEO4 method provides the best overall
results for all levels of demand in the 6-unit power generation
system.

Figure 8 illustrates the convergence curves of the proposed
CAEO4 technique for obtaining the optimum convergence
to single-objective CEED problems using different levels of
demand. From this Figure, it can be noticed that the curves
tend to converge very fast and they are converging to achieve
the optimal value through 200 iterations. It also displays
that the CAEO4 technique has the highest computational
prowess. The simulation results obtained from the four cases
also show that they are robust and reliable. Finally, it can
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be confirmed that the proposed CAEO4 technique provides
accurate and reliable solutions with strong computational
competence after it is compared with the conventional AEO,
MBO, QBA, SA, PSO, and LR.

Figure 9 shows the comparison between the convergence
curves of proposed CAEO4 and the conventional AEO for
the total cost at 3 levels of demand in a 6-unit power system.

Also, it can be seen from Table 13 that the results of
CAEO4 are more reliable and robust than the conventional
AEOQ for different levels of demand.

B. BI-OBJECTIVE FUNCTION
In this subsection, a MOCAEO4 algorithm is applied for
obtaining the optimal point to minimize the first objective
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FIGURE 8. Convergence curves of the CAEO4 method for different levels
of demand.

function (the fuel cost) with one of three emission types
(SO7, NOy, and CO,) as the second objective function in
the 6-unit power generation system for the fourth level of
demand (250MW).

1) CASE 1: THE OPTIMUM VALUES OF THE FUEL

COST AND SO, EMISSION

In the 1% case, the MOCAEO4 algorithm is used for obtaining
the best values of fuel cost (1%t objective function) and SO,
emission (2" objective function) simultaneously. Figure 10.a
shows The Pareto optimal values of this case. The best solu-
tions obtained by the MOCAEO4 algorithm are presented
in Table 14. From this table, the best compromise fuel costs
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and emission of SO, are 4348.79 $/h and 5297.95 kg/h,
respectively.

2) CASE 2: THE OPTIMUM VALUES OF THE

FUEL COST AND NOyx EMISSION

In the 2nd case, the MOCAEOA4 algorithm is used for obtain-
ing the best values of fuel cost (lst objective function)
and NOx emission (2nd objective function) simultaneously.
Figure 10.b shows The Pareto optimal values of this case. The
best solutions obtained by the MOCAEO4 algorithm are pre-
sented in Table 14. From this table, the best compromise fuel
costs and emission of NOX are 4332.28 $/h and 3789.72 kg/h,
respectively.

3) CASE 3: THE OPTIMUM VALUES OF THE

FUEL COST AND CO, EMISSION

In the 3™ case, the MOCAEOQ4 algorithm is used for obtain-
ing the best values of fuel cost (1% objective function) and
emission of CO, (2" objective function) simultaneously.
Figure 10.c shows The Pareto optimal values of this case.
The best solutions obtained by the MOCAEQO4 algorithm
are presented in Table 14. From this table, the best compro-
mise fuel costs and emission of CO, are 4310.178 $/h and
4323.98 kg/h, respectively.

C. T1-UNIT POWER GENERATION 69-BUS SYSTEM

1) CASE 1: THE OPTIMUM VALUES OF THE FUEL COST

This test system consists of 11-generating units (69-bus,
11-generator, coal-fired power system) with different load
demand values (1000, 1500, 2000, and 2500MW) and the
optimal results obtained by the CAEO-4 are compared with
the conventional AEO algorithm. At the load demand =
2500 MW, the results of the proposed algorithm are com-
pared with six-recent methods beside the original AEO algo-
rithm to check the effectiveness of the proposed technique.
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FIGURE 9. Convergence Characteristics of AEO and CAEO4 for 3 levels of demand in 6-unit power system (a) Load Demand = 175 MW (b) Load
Demand = 200MW (c) Load Demand = 225MW.

TABLE 14. BCS for multi-objective functions using MOCAEO4 (load = 225MW).

Objective Fuel Cost ($/h) Emission (kg/h)
Case (1) Best Fuel Cost 4343.48 5342.96
Best Emission of SO, 4352.39 5285.28
Best Compromise 4346.44 5310.487
Case (2) Best Fuel Cost 4313.49 383979
Best Emission of NO, 4332.28 3798.72
Best Compromise 4321.18 3811.77
Case (3) Best Fuel Cost 4309.51 4332.88
Best Emission of CO, 4310.93 4319.83
Best Compromise 4310.178 4323.98
The number of populations is 20, and the maximum number In Table 16, the best values of fuel cost attained using the

of iterations is 2000. The Generation limits, Fuel cost coef- proposed CAEO-4 were 8408.4307, 9623.5203, 10912.3379,
ficients, and emission coefficients of the system are given and 12274.4028 $/h for the load demand of 1000, 1500,
in Table 15. 2000, and 2500 MW, respectively. These results confirm
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TABLE 15. Data of the 11-unit system: Generation limits, Fuel cost coefficients and Emission coefficients.
Unit Pimin(MW) Pimax(MW) a($) b{($/MW) c{$/MW?) a; B Yi
1 20 250 387.85 1.92699 0.00762 33.93 -0.67767 0.00419
2 20 210 441.62 2.11969 0.00838 24.62 -0.69044 0.00461
3 20 250 422.57 2.19196 0.00523 33.93 -0.67767 0.00419
4 60 300 552.5 2.01983 0.0014 27.14 -0.54551 0.00683
5 20 210 557.75 2.22181 0.00154 24.15 -0.40006 0.00751
6 60 300 562.18 1.91528 0.00177 27.14 -0.54551 0.00683
7 20 215 568.39 2.10681 0.00195 24.15 -0.40006 0.00751
8 100 455 682.93 1.99138 0.00106 30.45 -0.51116 0.00355
9 100 455 741.22 1.99802 0.00117 25.59 -0.56228 0.00417
10 110 460 617.83 2.12352 0.00089 30.45 -0.41116 0.00355
11 110 465 674.61 2.10487 0.00098 25.59 -0.56228 0.00417

the superiority of the proposed CAEO-4 method compared
with the conventional AEO. The comparative convergence
curves between the proposed CAEO4 and AEO are shown

in Figure 11.

VOLUME 9, 2021

The best fuel cost results obtained by the pro-
posed CAEO4, original AEO, and other metaheuristic
(CSAISA [39], ISA [39], GA [39], PSO [39], DE [39],

HAS [39]) techniques are compared in Table 17.
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FIGURE 11. Fuel cost convergence curves of AEO and CAEO4 techniques (case study 2) (a) 1000MW (b) 1500MW (c) 2000MW (d) 2500MW.
TABLE 16. Results of the fuel cost for the 11-unit system using AEO and CAEO4.
Generating 1000MW 1500MW 2000MW 2500MW
Unit, MW AEO CAEO4 AEO CAEO4 AEO CAEO4 AEO CAEO4
P1 28.1109 26.9032 38.2802 37.9728 47.6185 47.6678 57.0104 57.0440
P2 20.1227 20.0474 23.1434 23.1548 31.7279 31.2992 40.4182 40.5110
P3 20.0881 20.0000 29.7579 30.1502 43.4838 43.6162 57.6054 58.0006
P4 119.0846 119.5868 174.2851 171.9100 226.1858 225.2687 277.8938 278.1442
P5 44.0101 44.1590 91.7651 92.2375 138.7365 138.5868 187.2295 186.5444
P6 126.3340 120.3953 166.6362 166.4011 208.0531 207.9147 249.7332 249.6237
P7 60.2112 63.4011 101.0234 102.3885 139.8906 139.7655 177.4899 177.3503
P8 166.2222 172.0383 2423194 242.4297 309.2088 312.7202 380.3062 380.7580
P9 154.6643 153.7968 215.9341 216.3218 278.0736 279.7097 341.2216 341.4758
P10 132.8594 135.7267 213.5000 214.2392 297.6213 296.3373 378.5940 377.8372
P11 128.2927 123.9454 203.3553 202.7944 279.3999 277.1138 352.4965 352.7109
Pr 1000 1000 1500 1500 2000 2000 2500 2500
Fuel cost, $/h 8408.4353 8408.4307 9623.5218 9623.5203 10912.3394 10912.3379 12274.4032 12274.4028
E‘?éj;‘ﬁ’“ 369.9576 368.8915 821.0156 819.0274 1541.7568 1541.4073 2541.9545 2540.7367
C°‘t?rlr’;t*(‘;°“ 4.6609 4.6550 4.6613 4.6579 4.8261 4.7930 4.8812 4.8626

2) CASE 2: THE OPTIMUM VALUES OF THE TOTAL EMISSION
The optimal power generation achieved by proposed
CAEO4 and AEO algorithms with system demands rising

51160

from 1000 MW to 2500 MW for the best total emission
are tabulated in Table 18. When the results are com-
pared, the proposed CAEO4 gives the better values of
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FIGURE 12. Total emisssion convergence curves of AEO and CAEO4 techniques (case study 2) (a) 1000MW (b) 1500MW (c) 2000MW (d) 2500MW.

TABLE 17. The best solution values for the fuel cost of the case study 2 (2500 MW).

Generating
Unit, MW HSA DE PSO GA ISA CSAISA AEO CAEO4
Pl 56.5750 57.5683 57.6582 57.4565 57.3520 56.9465 57.0104 57.0440
P2 41.7558 39.8234 41.7560 40.7339 40.3501 40.5882 40.4182 40.5110
P3 58.8239 57.3622 57.0840 60.6382 58.5628 57.9381 57.6054 58.0006
P4 277.6793 277.6343 279.6482 279.8546 278.7029 2779182 277.8938 278.1442
P5 189.5183 189.2732 189.7429 191.7492 189.2024 186.7996 187.2295 186.5444
P6 250.1128 249.9246 249.7420 249.2131 249.5435 249.2460 249.7332 249.6237
P7 176.9563 175.6345 176.6402 178.2341 176.0364 177.6527 177.4899 177.3503
P8 379.8753 378.7465 377.7493 379.3367 379.9651 380.7402 380.3062 380.7580
P9 341.0440 340.8126 341.8462 344.1547 340.7782 341.7721 341.2216 341.4758
P10 379.8564 378.1122 378.7465 378.6473 378.8541 377.8633 378.5940 377.8372
P11 351.6593 352.8493 350.8284 353.6394 350.6525 352.5351 352.4965 352.7109
Fuel cost, $/h 12275.46 12277.92 12276.42 12278.42 12274.42 12274.40 12274.40 12274.40
Emission, ton/h 2538.76 2538.74 2534.69 2531.32 2539.69 2540.41 2541.9545 2540.7367
Time (s) 12.65 12.68 12.69 12.71 12.65 12.64 4.8812 4.8626

total emission with different load demand than the AEO

algorithm.

Figure 12 shows the convergence characteristics of
the CAEO4 and AEO. From this Figure, it can be

VOLUME 9, 2021

seen that the convergence characteristic curves of the
CAEO4 is fast, smooth and smoothly reach to the opti-
mal value of objective function, compared with the original

AEO.
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TABLE 18. Results of the Total Emission for the 11-unit system using AEO and CAEO4.

Generating 1000MW 1500MW 2000MW 2500MW
Unit, MW AEO CAEO4 AEO CAEO4 AEO CAEO4 AEO CAEO4
P1 114.9310 115.6166 170.3952 169.9899 222.3402 222.5858 250.0000 250.0000
P2 110.4444 106.6322 157.8394 157.9584 203.2599 203.9822 210.0000 210.0000
P3 108.5783 117.1041 168.7295 171.1396 222.5538 223.4453 249.9905 250.0000
P4 63.5394 62.9325 95.1658 94.9936 127.2490 127.3814 170.6799 166.5864
P5 50.0853 48.1375 77.0199 76.7260 105.7898 105.9247 145.3686 142.1694
P6 61.4376 60.9420 95.2664 94.0723 126.8799 126.9826 166.7993 166.7366
P7 47.0821 47.2607 76.9046 76.9785 105.3808 105.8052 142.5525 142.0880
P8 116.3723 117.6070 178.7900 177.4586 239.7585 238.9238 313.1171 316.3717
P9 105.8973 103.2849 158.6913 157.6715 210.4395 209.8031 274.0111 276.1787
P10 110.0000 110.0001 164.2761 164.2563 226.9829 225.8490 305.3927 302.5881
P11 111.6323 110.4824 156.9217 158.7554 209.3656 209.3168 272.0884 277.2812
Pr 1000 1000 1500 1500 2000 2000 2500 2500.0000
Fuel cost, $/h 8606.9017 8610.7957 10042.1191 10045.6046 11607.8374 11612.4854 13046.2434 13046.8016
Emission, ton/h 184.9225 184.4483 452.0682 452.0588 937.8131 937.8040 1659.6402 1659.3528

Computation

time (s) 4.92856 4.82575 5.04369 4.84046 4.89423 4.80766 7.88432 7.81721

TABLE 19. The best solution values for the Total Emission of the case study 2.

Generating
Unit, MW HAS DE PSO GA ISA CSAISA AEO CAEO4
P 249.5765 249.2256 249.3756 249.2323 249.5639 250.0000 250.0000 250.0000
P2 209.2341 209.0785 209.5345 209.1423 209.5641 209.9829 210.0000 210.0000
P3 248.7676 248.6894 248.0876 248.4236 248.9627 250.0000 249.9905 250.0000
P4 169.0712 169.0586 169.8945 169.6453 169.6364 169.9912 170.6799 166.5864
Ps 145.5326 145.2794 145.0675 145.9786 145.8813 142.9608 145.3686 142.1694
P6 171.6924 171.5923 171.5547 171.3854 171.0137 166.0797 166.7993 166.7366
P7 145.3356 145.4902 145.2246 145.3782 145.8453 142.2710 142.5525 142.0880
P8 300.5643 300.4168 300.1156 300.2742 300.8375 316.6614 313.1171 316.3717
P9 275.5923 275.4901 2753345 275.1153 275.8335 275.4746 274.0111 276.1787
P10 300.2686 300.4233 300.6754 300.7655 300.7452 300.8140 305.3927 302.5881
P11 2822216 282.5901 282.5646 282.3766 282.1124 275.7644 272.0884 277.2812
Fuel cost, $/h 13040.46 13040.83 13039.39 13036.95 13041.04 13046.31 13046.2434 13046.8016
E“t‘éis/fn 1661.96 1661.58 1663.74 1662.96 1661.36 1659.35 1659.64 1659.35
Time (s) 12.70 12.69 12.73 12.72 12.69 12.66 7.88432 7.81721

TABLE 20. The best solution values for the CEED of the case study 2 (2500MW).

Generating Unit, MW GA similarity GSA AEO CAEO4
P1 138.8618 138.9382 139.7138708 139.5510382
P2 112.1312 110.2728 112.7197442 112.7841557
P3 146.7169 147.9728 145.8199968 145.8042388
P4 222.1041 221.1072 221.7609406 221.6021175
P5 137.1962 137.7986 136.8983313 136.739107
P6 217.3208 217.9015 218.4680741 218.6680504
P7 140.4711 141.3801 140.3670688 140.2660913
P8 348.9008 349.6497 344.7404472 344.9562373
P9 326.5188 327.3178 329.3798993 329.6177547
P10 363.5275 363.4766 363.5154487 363.8805598
P11 346.2508 344.1847 346.6159412 346.1306494
Fuel cost, $/h 12423.7667 12422.66 12424.90013 12424.77517
Emission, ton/h 2003.10456 2003.024 2003.420114 2003.613181
Total Cost, $/h 18953.9567 18954.73 18953.49305 18953.49162
Time (s) - - 10.8593 10.4268

Table 19 presents the best solution values for the total emis- 3) CASE 1: THE OPTIMUM VALUES OF THE COMBINED
sion of the case study 2 using the proposed CAEO4, original ECONOMIC EMISSION DISPATCH (CEED)
AEO and other algorithms. From Table 19, it can be observed Table 20 gives the best optimal power output of generators
that the optimal emission obtained using CAEO4 and for CEED problem using proposed CAEO4 technique, AEO,
CSAISA [39] was 1659.35 ton/h. GA [48], and GSA [49] with 2500MW system demands for
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FIGURE 13. Total cost convergence curves of AEO and CAEO4 techniques
(case study (2) - 2500MW).

11-generator system. From this table, it is clear that the pro-
posed approach gives the best total cost (18953.49162 $/h).
The convergence characteristic curve for the best total cost
is shown in Figure 13. It can be observed that the proposed
CAEO4 has a steady and faster convergence characteristic
than the conventional AEO algorithm.

V. CONCLUSION

In this research, single and multi-objective CEED problems
in power grids have been solved to obtain economic and
environmental profits. In the 6-unit power system, the tar-
get has been achieved by minimizing the total fuel cost
and the emission of the three risky gases SO», NOy, and CO».
The proposed CAEO4 algorithm has been modified to solve
the multi-objective CEED problem according to the Pareto
theory. After the determination of the ND solutions, the BCS
is chosen using the fuzzy set theory. The MOCAEO4 algo-
rithm has been established for obtaining the best solution
of two objective functions simultaneously.Also, the proposed
CAEO4 has been tested by the 69-bus 11-unit power system.
The results demonstrated the superiority of the developed
algorithms for achieving the optimal solution to decrease the
total cost and reduce the bad emission for different levels of
demand.
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