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ABSTRACT This paper presents a sample rate conversion filter for decimation with flat passband. The
proposed linear programming optimization (LPO) technique improves the magnitude response of filter with
least computational complexity. Computational complexity has been a major factor in selection of decimation
filter. Simulation results indicate that the proposed filter shows passband droop less than 0.007 dB with
50.5% decrease in computational complexity. The proposed filter eliminates the need of compensator.
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I. INTRODUCTION
Multi-rate signal processing has emerged as an essential
requirement in the domain of digital signal processing.
It requires resampling the original signal at a different sample
rate [1]-[3]. The desired sampling rate is achieved by either
increasing or decreasing the original sampling rate without
destroying the signal components. Decimator decreases the
original sampling rate and interpolator increases the sampling
rate. Such changes in the sampling rate demand proper filter-
ing techniques to conserve original signal components.
Comb is the simplest multiplierless decimation filter. How-
ever, its magnitude response exhibits a considerable droop
in the passband and low attenuation in the stopband. The
transfer function of the comb filter is given by:

A =
HK(Z)Z(A_/II——z—l> = A_lzz k (D
k=0
where M is the decimation factor and K represents the num-
ber of stages.

An efficient architecture of comb decimation filter was
proposed by Hogenauer in the year 1981, popularly termed
as CIC (Cascaded Integrated Comb) decimation filter [4] as
shown in Fig. 1. It consists of two main sections: an integrator
section and a differentiator section, separated by a down-
sampler. It moves part of the filtering at lower rate. As all
the filter coefficients are unity, the hardware implementation
of this filter is highly economical. In 1997, Tapio Saramiki
and Tapani Ritoniemi proposed another comb filter structure
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FIGURE 1. CIC structure by hogenauer.

for decimation, popularly known as the Saramiki-Ritoniemi
structure [5]. It uses the sharpening polynomial as tapped
interconnection to improve the frequency response of deci-
mation filter.

Research in the design of a comb decimation filter are
focused on:

1) Minimization of the passband droop

2) Increase alias rejection (stopband attenuation)

3) Improve magnitude response with least increase in
computational complexity

Developing strategies to overcome the above limitations
has been an active area of research. To improve magnitude
characteristics comb based zero rotation technique was intro-
duced by Presti [6]. However, it suffers from two draw-
backs; introduction of multiplier in structure and susceptible
to imperfect pole-zero cancellation. The problem is solved
by using nonrecursive filter in polyphase form [7]. These
approaches provide solutions, but the passband improvement
cannot be completely controlled. Therefore, these methods
are convenient for narrow bandwidth of interest.
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The passband droop and alias rejection can be improved
by employing sharpening techniques like Kaiser-Hamming
sharpening [8]-[12], Chebyshev polynomial sharpening [13],
[14]. Sharpening techniques are effective and does not suffer
from finite-precision effects as in comb based zero rotation
method. Further to reduce the computational complexity the
overall decimation factor M is split as M = MM, where
both My, M, € Z*, popularly known as two-stage decima-
tion. Sometimes these two-stage decimation structures use
compensator to improve the overall magnitude response of
the filter [7], [13], [15]. Later compensators are designed
for sharpened CIC. The sharpening coefficients and compen-
sator’s coefficients are expressed as SOPOT (Sum Of Power
Of Two), converting multipliers to shift and add network. This
facilitates a multiplierless implementation [16]-[18].

Il. METHODS

Aim is to design a comb decimation filter with minimum
passband droop while providing considerable attenuation in
stopband. In this paper we propose an approach for comb
decimation filter sharpening. Designing of filter and calcu-
lations to find sharpening coefficients are done in MATLAB.
The optimized framework to design sharpened comb-based
filters to attain minimum passband distortion is provided.
The optimized sharpening coefficients are in SOPOT (Sum
Of Power Of Two) form leading to multiplierless structure,
which is important for low power applications.

The rest of this paper is organized as follows. Section III
details the implementation of the proposed decimation filter.
Section IV compares the magnitude response of the proposed
filter with existing ones. Finally, Section V concludes this
paper.

1ll. PROPOSED COMB DECIMATION FILTER

We propose a cascade of comb filter followed by lin-
early sharpened structure to realize a decimation filter with
improved magnitude characteristics. Second stage sharpen-
ing polynomial is derived using optimization technique. The
overall decimation factor M is split as M = M{M;. The
design parameters include M1, M3, Q, N, ni. The transfer
function of the proposed comb filter is given by:

Hpy (2) = Hi1(2)Hn (") )
where,
Mi—1 0 0
1 '} 1 1—zM
Hi@) = | 7~ YoM = |:A71—Z—1} 3)
[ 1 1=z
N
Hy(@) =y mz PVHS(2) “)
k=0
Here,
1 1—7M7°2 M —1
Ha(2) = [Eﬁ} =" Dv—we )

nx and Dy are sharpening coefficient and delay respec-
tively. N is the degree of sharpening.
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Substituting (4) in (2), we get:

o k
HSH (Z) = [H] 1 (Z)] [Z Nk I:HZ(ZMI )] Z_Ml(Dk)} (6)
k=0

The magnitude response of the above transfer function is

given as:
. i k
‘H (d“’)) 1 sm“’TM1 e i 1 sm% @
SH = |77 Nk | =~
M; sin% = M; sin“’TM1

(N

As seen from the above equation the magnitude response
of the proposed two-stage comb filter is the multiplication
of two individual magnitude responses; where the first one
corresponds to the magnitude response of the comb filter
and second to sharpened structure which depends on the
coefficients ny.

A. LINEAR PROGRAMMING OPTIMIZATION

Linear programming optimization is the problem of finding a
vector x that minimizes a linear function f 7 x subject to linear
constraints.

A x<b
minfTx  such that *= 8)
X

eqw X =Dbey

There are three algorithms to solve this problem.

1) Dual-simplex algorithm

2) Interior-point algorithm

3) Interior-point-legacy algorithm

The general steps for these algorithms are same. Presolve
or preprocessing, meaning simplification and conversion of
the problem to a standard form. Then generate an initial point.
Finally, the iterations to solve the equations [19].

By default, dual-simplex algorithm is used to find opti-
mal solution for linear programming. It is recommended
due to least memory usage and fast processing. There can
be potential inaccuracy with interior-point algorithm and
interior-point-legacy algorithm can be slower, less robust,
or use more memory [20]. Fig.2 shows flow chart of
LPO using dual-simplex algorithm. MATLAB uses x =
linprog(f, A, b, Aey, bey) function and uses dual-simplex by
default to find optimized solution.

B. DESIGN OF SECOND STAGE

Now, we introduce the optimization framework to obtain the
discrete coefficients n; for which the passband droop § is
minimized.

1) Estimate the degree of sharpening polynomial N and
order of comb Q.

2) A constraint for maximum passband droop § with
equi-ripple in stopband is defined.

3) Create f, A and b using constraints. Then, solve
the problem for x. A straight forward way is using
MATLAB for linear programming optimization.

4) Obtain the sharpening coefficients 7.
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Define constraints A, b, A, b,y and formulate linear objective function

eq?

| Generate initial point using heuristic method |

| Simplex algorithm to solve linear penalty function |

| Initial basic feasible solution |

Update the current
solution

l

Choose entering and
leaving variable

Simplex algorithm to solve
original objective function

FIGURE 2. LPO technique based on dual simplex method.

The sharpening coefficients and appropriate tap locations
condition the frequency response of the sharpened structure.
We use linear programming optimization in MATLAB to
determine these taps and coefficients. Simulations are run
to derive a set of coefficients. The proposed second-stage
sharpened structure shown in Fig. 3 has transfer function as:

N
Hy(@) =y mz POHS(2) ©)
k=0
—'W >

-D,;

FIGURE 3. Proposed sharpened second stage H,,.

1 1—zM Q
[Vz 1—z! ] ’
(M2 —1)
T(N -0 (10)
Given that 1 is any real number, the magnitude response of
the above transfer function is given by:

Here,

H>(2)

D, =

N
Ha(e)| =) mipt (o),

k=0
sin€(wM,/2)
sin€(w/2)

To calculate the coefficients n, we use linear program-
ming, which finds the minimum of a problem specified by:

where p(w) =

(11)

A- <b
minfo such that { = (12)
X

eqr X =bey
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Here in our case, we define:

ff=[1 0 0 0 0 O]
=8 m0 m - ] (13)
where § determines the passband droop and the cost function
f minimizes §. The equality constraints A.,; and b, are
defined for dc frequency as:
Ag=[0 1 1 1 1 1]
bey = [1] (14)
A passband droop of § with equi-ripple in stopband modifies
the limits of magnitude response as:
1—6 < [Hp()| <1+38,
~8 < [Hn(d”)| <3,

where o € wp

where o € wy (15)

Based on the above criterion we define constraint matrices as:

[—1  p(w) PN (1)
Ar=1| 1 : :
L -1 plen) PN (i)
(=1 —p(w1) - —p"(w1)
A= S :
| =1 —plwyi) -+ —pN (@)
by=[1 1 --]ixi
by=[-1 -1 ---]ix1
b3 =10 0 .- Dixi
A = ((A1142) yrea, | A11AD 0 e0, )
b = (b1|b2|b3) (16)

Once we obtain the coefficients after running x =
linprog(f, A, b, Aey, bey) function in MATLAB, these are
rounded-off to express them as SOPOT. For low complexity
we consider Q = 2. Simulations are run for different values
of N. Fig. 4 shows effect of varying degree (N) and for flat
passband we consider N = 4.

—— 3 Degree
—4 Degree
5 Degree
sk ——6 Degree il
—— 2 Degree

Magnitude (dB)
B
T
|

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
N ized Frequency ( x

FIGURE 4. Comparison of magnitude response for various degree(N) for
decimation factor M = 32, M, = 8.

Table 1 shows sharpening coefficients of second stage.
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TABLE 1. Second stage sharpening coefficients of proposed decimation
filter(N = 4,Q = 2).

Second | Value Number of adders/subtractors
Stage

coeffi-

cients

1o 0 0

m —1=-20 1

72 19= (2% + 2T +20) 2

73 —27=—(25-22_-20) |3

N4 11 = (2% + 22 + 20) 2

C. COMPUTATIONAL COMPLEXITY
The computational complexity for CIC structure is given by:

APOScic = QM + 1) (17)

The computational complexity of a sharpening structure in
Additions Per Output Sample (APOS) for comb filters is
given as

P
APOS;y =NQM +1)+P— 1+ A(ng)  (18)
=1

Here,

N is degree of the sharpening polynomial used in that
structure.

Q is order of comb.

P is number of nonzero sharpening coefficients.

A indicates the number of adders required to implement the

sharpening coefficients.

The overall computational complexity of proposed struc-
ture is given as:

APOSspp = APOScic1 +APOSgpn
= [QM; + D]

Py
+ [NQ(MZ +D+P -1+ ) A (nk,)}
=1
(19)

For example, the proposed filter uses Q = 2, P, = 4,
N =4 forM = 32, My = 4 and M, = 8 and total number
of adders to implement sharpening coefficients A, = 8, we
get 93 APOS.

From above equation we can say that applying sharpen-
ing technique in second stage results in less complexity as
M is divided into smaller parts M| and M>, in comparison
to where sharpening is applied directly to comb filter having
decimation factor M.

IV. RESULTS AND DISCUSSION

For decimation-by-32, let’s say we choose M| = 4, M, = 8
for proposed decimation filter. Fig. 5 and Fig. 6 shows com-
parison of magnitude response of proposed filter with existing
filters.

A. COMPARISON WITH REF [16]
In Ref [16], compensators are designed for sharpened comb
filter. The existing two-stage designs with compensators are
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FIGURE 5. Comparison of magnitude response of proposed decimation
filter with SCIC filters [16] for decimation-by-32.

designed for M = 32 only and uses different sharpening
polynomial p (x) for different compensators.

Complexity Analysis: One of the sharpening polynomial
for compensated minimax SCIC is p(x) = x2 — 27 7x. Thus,
degree of sharpening polynomial is 2. Order of comb filter
is 2. Number of sharpening coefficients are P = 2 and total
number of adders to implement sharpening coefficient (1,-2)
is A = 2. Total number of additional adders for compensator
is N4 = 7. Overall APOS of Compensated minimax SCIC is
given as

P
APOS =4M + 1)+ P—1+Y A(ng) +Na  (20)
=1

B. COMPARISON WITH REF [17]

In Ref[17], compensators are designed for sharpened CIC.
Complexity Analysis: The sharpening polynomial for com-
pensated minimax SCIC in Ref[17] is = x* — 2762 Thus,
degree of sharpening polynomial is 4. Order of comb filter
is 1. Number of sharpening coefficients (P) is 2 and total
number of adders to implement sharpening coefficient (1,-2)
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ax SCIC(17]
ated Chebyshev SCIC[17]|

TABLE 2. Comparison of magnitude response parameters of proposed
decimation filter with existing filters for decimation-by-32.

1 Design Passband Alias
~ Droop (in dB) | Rejection(in
g T NN T TN S N o e o dB)
‘-’ i i f e A TR I TN ‘,“ b YA Compensated minimax SCIC [16] | 0.04 86.0
Z 1 Y y ‘1:‘ 31 ¢ NG 7 L=3,px)=2%—-2""zw, = z
Tl /Aﬂ(\iﬂ N Proposed 0.0014 1837
| | Compensated minimax SCIC [16]|0.09 82.5
- ‘/\ /\ ( t /\ L=3,p(x)=a%—-2"%w, = T
| | | o Proposed 0.007 44.91
’ R Nermalzd Fequeney x radisample e Compensated Cheblysshgv scgc [16]]0.06 90.2
(a) Magnitude Response Lw;jbpégéw_ 2 S
‘ ‘ ‘ ‘ ST m,',‘, H Proposed 0.002 16.42
. Compensated minimax SCIC [17]|0.03 74.34
i ] L =3,p(z) = 2t — 2752, w, =
us
RN S T — 1 f’lmposed 0.007 44.91
H TR T~ Compensated Chebyshev SCIC [17] [ 0.02 38.12
S~ L =3,p(x)=20z% - 2922 + 1,
T ™ | wp = 0.2267
Proposed 0.002 46.42
“r 7 Compensated CIC based on PSO [18] | 0.02 —
| | | | | RN | | Proposed 0.007 44.91
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(b) Passband Magnitude Response (zoomed view)

TABLE 3. Complexity analysis in terms of APOS.

501~ \ - Compensated minimax SCIC{17]
\ Compensated Chebyshev SCIC17)

701

80—

Magnitude (dB)

00 f / | B
o[- i \ ! e
1 I I L I I ! I I

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
Normalized Frequency (x rad/sample)

(c) Stopband Magnitude Response (zoomed view)

FIGURE 6. Comparison of magnitude response of proposed decimation
filter with SCIC filters [17] for decimation-by-32.

is A = 2. Total number of additional adders for compensator
is N4 = 4. Overall APOS of Compensated minimax SCIC is
given as

P

APOS =4M +1)+P—1+ ZA (m) +Na 21
=1

C. COMPARISON WITH REF[18]

In Ref [18], compensator is designed for comb filter using
particle swarm optimization (PSO) technique for passband
ripple less than 0.02 dB.

Complexity Analysis: The decimation factor is 32 and the
order of filter is 5. Total number of additional adders required
for compensator is Ny = 23. Overall APOS of compensated
CIC is given as

APOS =532+ 1) + N4 (22)

Table 2 compares the passband droop and correspond-
ing alias-rejection for the proposed and existing decimators
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Design APOS APOS | Complexity|
for Reduction
M=32
Proposed QM + 1) +|93 —
LK(M> + 1) +
P—14+>0 Alk)
Compensated 4M+1)+P—-1+]142 |[34.5%
minimax _ SCIC  [16] [ =7 | A (nx,) + Na
p(z) =22 - 277z )
Compensated AM+1)+P—-1+]144 [35.4%
Chebyshey  SCIC [16] | =2 A (ny,) + Na

p(x) = 21522 - 2%+ 1
Compensated AM+1)+P—-1+[139 [33%
minimax  SCIC ~ [17] [ S°7 | A (nx,) + Na
p(x) =zt — 27622

Compensated 4M +1)+ P —1+]138 [32.6%
Chebyshey  SCIC [17]| 52 A (ny,) + Na
p(z) = 21524 292241
Compensated CIC based | Q(M + 1) + N4 188 | 50.5%
on PSO [18]
Pass band droop
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FIGURE 7. Comparison of passband droop.

for decimation-by-32. The proposed decimation filter
has passband droop < 0.007 dB with stopband attenuation
> 4491 dB, which is sufficient for many applications like
SDR (Software defined radio) receiver [3], [21], [22] and
sigma-delta ADC [2]. Other applications of SRC (sample rate
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conversion) filter includes image filtering [23], digital audio
resampling [24] and continuous-time signal processing [25].

Table 3 compares the computational complexity in terms of
APOS for decimation by 32. The compensated CIC based on
PSO in Ref [18] has highest complexity. As seen the proposed
design has least passband droop with suitable alias rejection
and low computational complexity. Proposed decimation fil-
ter shows 65% improvement in passband droop with 50.5%
less complexity when compared with compensated CIC based
on PSO. Fig. 7 shows comparison of passband droop for var-
ious cut off frequencies and proposed filter shows minimum
passband droop.

V. CONCLUSION

This proposed work considers the optimal design of dec-
imation filter and compared its performance with other
approaches like particle swarm optimization (PSO) based
CIC compensator and compensated SCIC. Filter coefficients
have been obtained by linear programming optimiza-
tion (LPO) technique. It is observed that proposed filter pro-
vides a better solution in terms of computational complexity,
passband droop and eliminates the need of compensator. This
filter can be employed in applications that demand lesser
passband ripples and stopband attenuation.
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