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ABSTRACT Siamese network based trackers describe object tracking as a similarity matching problem and
these trackers achieve state-of-the-art performance on multiple benchmarks. However, due to the non-update
of the appearance template and the change of the object appearance, the tracking drift problem often occurs,
especially in the background clutter scene. Effective appearance template update methods can improve
tracker performance, but most trackers use simple linear interpolation to update the template or do not update
the initial template at all. Through experiments, we find that the channel response of the search region with
the adjacent frame appearance template is often better than that with the initial frame appearance template.
So we add the results of the previous frame prediction as a new template branch to the Siamese network
to form a Triplet network. We applied the Triplet network to the SiamFC and SiamCAR, called TripFC
and TripCAR. We tested on four challenging benchmarks (GOT-10K, OTB2013, OTB2015, UAV123). The
experiments show that our method is powerful and effective, it can be easily embedded into the Siamese
trackers. TripFC has a good effect on solving the problem of tracking drift. If necessary we can publish the

code to facilitate research in this area.

INDEX TERMS Siamese trackers, tracking drift, triplet network, visual tracking.

I. INTRODUCTION

As an important part of computer vision, visual object track-
ing technology has been greatly developed with the rapid
development of artificial intelligence technology and the
continuous progress of hardware facilities in recent years.
Visual object tracking has always been a challenging work in
video surveillance [1], video understanding [2], autonomous
driving [4], to robotics [3], navigation, positioning, and other
fields. It often faces the influence of object occlusion, disap-
pearance, morphological change, and other factors [5].

In recent years, visual object tracking has been a basic
topic, and many deep learning-based trackers have achieved
state-of-the-art performance on multiple benchmarks. The
current popular visual tracking methods revolve around
the Siamese network based architecture, such as Siam-
CAR [7], SiamFC++ [8], SiamBAN [9], which have excel-
lent performance recently. The Siamese network describes
the tracking problem as a object matching problem. First,
the object template and the search region are extracted by
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convolution neural network with the same weight, and use
the cross-correlation operation for position encoding. Then,
the object position and size are predicted by classification
and border regression. However, the object template of these
Siamese network trackers is often the initial frame object
template, and the template is not updated in the tracking
process. When the object changes in shape or occlusion, the
tracking drift often occurs.

In order to solve the above problems, template updating is
generally used to adapt to the current object state. Template
updating using linear interpolation with fixed learning rates is
a simple method. It assumes that the object shape conversion
rate in the video is constant, and replaces the template at a
fixed time [10]. Some recent template update methods with
excellent performance all use complex strategies to update
the template, such as using a neural network to determine
whether the template needs to be updated and how to update
it [25]. Regardless of the simple or complex update strategy,
the update is performed on the initial template. These update
methods will change the object information in the initial tem-
plate. With the continuous update of the template, the object
template will often lose the information of the initial state of
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the target. This template update method will make the tracker
perform better in a short time after the template update, but
when tracking for a long time, a large amount of useless
information will be obtained to affect the tracking effect.

In this paper, we use the Triplet network [11] to solve the
problem of template updating. The initial template contains
complete object information, so the integrity of the initial
template should be maintained during the tracking process
and should not be changed at will. Therefore, we add a sup-
plementary template branch on the basis of the Siamese net-
work to implement the update of the template. The Siamese
network tracker contains two branches: a object template
branch which takes the object template as input, and a search
branch which takes the search region as input. Compared
with Siamese network, Triplet network have one more input
branch than Siamese network. Through experi-ments, we find
that the channel response of the search region with the adja-
cent frame is often better than the search region with the initial
frame. Therefore, we add the results of the previous frame
prediction as a supplementary template branch to the Siamese
network to form Triplet network. We applied the Triplet
network to the SiamFC [12] (TripFC) and SiamCAR [7]
(TripCAR), Experiments on multiple bench-marks with good
results, TripFC has a good effect on solving the problem of
tracking drift.

Our main contributions are as follows:

1) We introduce the Triplet network into the Siamese
net-work tracker. Add the adjacent frame result as a
supplementary template branch to the Siamese network
to form the Triplet network.

2) Our Triplet network does not require training and can
be directly applied to the Siamese network tracker.
Easy to use.

3) Our network is simple and effective. The experiment
shows that TripFC has a good effect on solving the
problem of tracking drift and improves the results of
SiamFC with an absolute gain of 2.2% in terms of
success score on OTB2013.

Il. RELATE WORKS
In this section, we mainly review the tracking framework and
template update method.

A. TRACKING FRAMEWORK

Most existing trackers are based on tracking-by-detection or
template matching method. The tracker based on tracking-
by-detection treats object location as a classification problem,
in which the decision boundary is implemented by the online
learning classifier. In order to solve the drift problem in the
tracking process, Zhong et al. [48] proposed a probabilistic
method in a new type of weakly supervised learning scenario
to judge the position of the object and the accuracy of each
tracker. And online evaluation and heuristic training are used
to make tracking faster and more effective. In order to make
full use of the object motion model, Zhong et al. [49] use
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TripFC ——— GroundTruth

FIGURE 1. Through comparison, it can be seen that the Triplet network
can suppress the drift phenomenon in the SiamFC, and the coincidence
between the prediction bounding box and the ground-truth bounding box
is high.

the data-driven motion model learned by deep recursive rein-
forcement learning to coarsely locate the object, and use the
appearance model to perform fine positioning based on the
coarse positioning. Guo et al. [50] proposed a fast compres-
sion tracking scheme through structural regularization and
online data-driven sampling. In order to solve the motion
blur, [51] proposed a GAN network to improve the robustness
of the tracker to motion blur. In order to solve the optimization
complexity brought by spatial regularization, [52] introduced
selective spatial regularization.

The Siamese network describes the tracking problem as
an object matching problem. The Siamese network tracker
contains two branches, one is the template branch and the
other is the search region branch. The input image is sub-
jected to feature extraction through a convolutional neural
network (CNN) to obtain a feature map, and then the feature
map of the two branches are subjected to a cross-correlation
operation to obtain response map. Although SiamFC is not
the first to use the Siamese network for object tracking, it
is appearance breaks the dominance of correlation filtering.
The object template and search region are extracted through
a fully-convolutional network, and the obtained feature maps
are subjected to cross-correlation operations, achieve dense
and effective sliding window evaluation.

Inspired by the region proposal network for object
detection, the SiamRPN [13] tracker performs the region
proposal extraction after the Siamese network outputs.
SiamRPN defines the tracking task as a one-time detec-
tion task, which consists of a Siamese Sub-network and a
Classification-Regression Sub-network. The template branch
uses a Siamese network, and the detection branch uses a
regional proposal network (RPN) [14].

As the development of object tracking, AlexNet [15] is not
enough to meet the requirements of tracker. In order to solve
this problem, SiamRPN+-+4- [16] introduces the deep network
into the Siamese network tracker, and uses random translation
to solve the problem of translation invariance. SiamRPN++
uses ResNet [17] as the backbone of the Siamese network,
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proposes depth-wise Cross Correlation Layer, and adds mul-
tiple layers of information fusion to the tracker according to
different feature information between different layers of the
deep network.

The above Siamese trackers are anchor-based trackers,
SiamCAR uses the anchor-free strategy to convert the regres-
sion output of the network into the distance between the
point on the search patch and the four edges of the selected
ground-truth box on the feature map. Determine the best
object center point by observing the classification score
map and the centrality score map. Then extract the distance
between the best target center point and the four sides of the
box to get the prediction box.

However, since the size of the object feature region needs
to be determined in advance, the cross-correlation method
either retains a lot of unfavorable background information or
loses a lot of foreground information. To solve this problem,
SiamGAT [18] proposes a Graph Attention Module (GAM)
to achieve part-to-part matching of information embedding.
Compared with traditional methods based on cross corre-
lation, GAM [19] can greatly eliminate their shortcomings
and effectively transfer object information from the template
patch to the search region.

B. OBJECT TEMPLATE UPDATE

Object template update is an important part of object tracking
and plays an important role in improving tracking accuracy.
Generally, linear interpolation [20]-[24] is used to update
the object template, but this template update method is often
inaccurate. The object often appears occluded, disappeared,
blurred, and light changes. A simple template update method
may make the new template unable to fully express the
object and reduce the tracking accuracy. DSiam [53] can
effectively learn the changes of target appearance varia-
tion online and suppress the background from the previ-
ous frame through the fast conversion learning model, use
element-based multi-layer fusion to adaptively integrate the
network output. Unlike traditional trackers, it can be trained
on video sequences.

Recently, Yang et al. [25] introduced Long short time
memory (LSTM) to control template updates. Pass the fea-
ture map that obtained through CNN to the LSTM [28] that
controls the reading and writing of the memory stack. LSTM
returns a residual template, which is convolved with the
object feature map to obtain a response map. Use the same
interpolation method as SiamFC to get the final bounding
box, and write this result to the memory stack.

Zhang et al. [26] proposed an update component
called UpdateNet, which can be easily embedded in the
Siamese tracker to achieve adaptive update of the template.
Update-Net takes the initial frame template, the previous
cumulative template, and the current frame template as the
input, outputs the updated cumulative template. Use the dis-
tance to the ground-truth object template of the next frame
to train the UpdateNet. Experiments on four standard track-
ing benchmarks show that UpdateNet is universal, can be
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embedded in all Siamese trackers, and can effectively update
template to improve tracking performance.

Dai et al. [27] proposed an offline training Meta-Updater
to solve the problem of template update. Meta-Updater can
effectively integrate geometric, discriminative, and appear-
ance information, use cascaded LSTM to mine sequence
information, and finally learn a binary output to guide the
update. Geometric information refers to a series of bounding
boxes in consecutive frames that contain important object
motion information, such as speed and scale changes, that is,
the coordinate vector of the bounding box. The discriminant
information is that the maximum value of the response graph
is also discriminant information, but it is unstable, so CNN is
used to fully mine the information of the response graph.

Compared with the above complex template updating
method, our template updating method does not require
offline training. The newly added supplementary template
branch uses the backbone network of the Siamese network
tracker to turn the Siamese network into a Triplet network.
This method is simple in structure and can be directly embed-
ded into the Siamese network tracker.

lll. METHOD

In this section, we will introduce our Triplet network tracker
in detail. TripFC is improved on the basis of SiamFC and
TripCAR is improved on the basis of SiamCAR. The overall
frameworks is shown in the Fig.2, we introduce a new sup-
plementary template branch in the Siamese network to form
a Triplet network.

A. OBJECT TEMPLATE

Object tracking task can be regarded as a similarity matching
problem. Specifically, the Siamese network is trained offline
and evaluated online to locate the template image in a larger
search image. These two branches perform the same transfor-
mation on the same Siamese backbone to embed them in the
feature map of subsequent tasks.

Some recent Siamese network trackers all use the initial
frame as the object template, but in the tracking process,
the information contained in the initial frame template is often
insufficient to support the tracking of subsequent frames. The
object often has a series of problems such as occlusion, light
transformation, and deformation. In order to solve these prob-
lems and improve tracking performance, many trackers have
added template update methods, but these methods are often
simple linear interpolation methods, which are not enough to
cope with object changes.

The initial frame template, which depicts the most basic
information of the object, plays a dominant role in the track-
ing process, so the initial frame template cannot be aban-
doned. Through experiments, we found that the response
map of the adjacent frame object template is better than the
response map of the initial frame object template. As shown
in the Fig.3, the adjacent frame response map can better
distinguish the foreground and the background. Therefore,
on the basis of the Siamese network, we add a supple-
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FIGURE 2. Overview of our tracking framework. The left side is the Triplet network, which contains three branches: a
supplementary template branch, a search region branch, and an initial template branch. The right half is information
fusion, which fusing two response maps into one response map. In the figure, x denotes Cross Correlation Layer, and X

denotes information fusion.

mentary object template branch to form a Triplet network.
That is, use the current prediction result of the tracker as
a template to predict the search region of the next frame.
During the tracking process, the supplementary template will
continue to change with the tracker results, so that the sup-
plementary template and the search region are adjacent in
sequence.

B. TRIPLET NETWORK FOR SIAMFC

Based on SiamFC, by adding a supplementary object temp-
late branch, we proposed TripFC. In the Triplet network,
we use a fully-convolutional network without padding as the
feature extraction network. Compared with the Siamese net-
work, the Triplet network consists of three branches: an initial
object branch that takes the initial object template patch Z as
the input, a search branch that takes the search region X as the
input, and a supplementary object template branch that takes
prediction object patch P of the previous frame as the input.
The backbone model in three branches share the same CNN
architecture. Z, X, and P through the same transformation
to obtain ¢(Z), ¢(X),and ¢(P) to embed them in the feature
space of subsequent tasks.

Z is the initial object template patch, collected in the initial
frame, and Z remains unchanged during the entire tracking
process. P is the supplementary object template patch, that is,
the result of the previous frame tracker prediction, which will
be continuously updated with the tracking process. In order to
embed the information of these branches, we use the feature
map of the template patch and the feature map of the search
region to perform cross-correlation operations. Like SiamFC,
a single-channel compressed response map R is generated.
Since we have two template patch branches and a search
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region branch, our response map:

Ry = ¢(Z) * p(X)
Ry = ¢(P) » ¢(X) ey

where » denotes the cross-correlation operation. Ry and R,
have the same size. Based on the response map, each position
in R can be mapped back to the input search region. SiamFC
uses positive sample scoring to predict the object position.
In order to use the information of the two response maps,
we define Rfyg:

Rfus = Ry + ARR2 (2)

where AR denotes the weight of R;.

C. TRIPLET NETWORK FOR SIAMCAR

In order to prove the wide practicability of the Triple network,
we conducted experiments on the state-of-the-art Siamese
network trackers. Recently, state-of-the-art Siamese network
trackers all use classification branch and regression branch
to predict the bounding box of the target, such as SiamCAR.
Based on SiamCAR, by adding a supplementary object temp-
late branch, we proposed TripCAR.

Like TripFC, the backbone network of TripCAR also con-
tains three branches, which includes initial template branch
Z, search region branch X, and supplementary template
branch P. Unlike TripFC, TripCAR uses depth-wise correla-
tion to produce multi-channel response map, which can retain
more semantic information:

R1 = ¢(Z) x p(X)
Ry = ¢(P) * p(X) (3)
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FIGURE 3. (a) The cross-correlation response map of the initial frame
object template and the search region. (b) The cross-correlation response
map of the adjacent frame object template and the search region.

where x denotes the depth-wise correlation. Ry and R, have
the same size. The generated response map R has the same
number of channels as p(X).

Use classification branch to predict the location of the
object, and use regression branch to predict the size of the
object bounding box. The classification branch contains two
sub-branches: a classification sub-branch and a center-ness
sub-branch. Through experiments, we found that the appli-
cation of the regression branch will reduce the effect. So our
response map:

Ry, = ¢as(R1)
Ry = Peen(R1)
Rleg = Preg(R1)
R = pais(Ra)
R2 = Peen(R2) “)

where ¢ denotes the information extraction operation. So we
can get the final response map:

Acs = Réls + )Lclngls
Acen = Réen + )LcenRgen
Areg = Rl (5)

reg

where A5 denotes the weight of Rjs, Acen denotes the weight
of Reen-

D. TRACKING PHASE

The purpose of tracking is to find the bounding box of the
object in the current frame. In TripFC, we use multiple anchor
ratios to predict the bounding box. Crop and resize the search
region according to different anchor ratios, cat them together
and send them to the feature extraction network. Empirically,
we found that the anchor ratios adopt [-2, —0.5, —1] delivers
stable tracking results. We take the response map with the
largest response value in the response graph as the final
response map A:

j = arg max(amax(anix))

l

A=FR (6)

where i denotes the sequence number of different response
map, j denotes the sequence number of the response map with
the largest response value, amax denotes take the maximum

44430

Success plots on GOT-10k

1.0

—— TripCAR: [0.588]
~—— SiamCAR: [0.566]
—— TripFC: [0.348]
—— SiamFC: [0.346]

Success rate

0.0

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

FIGURE 4. Compared with SiamFC and SiamCAR on GOT-10K, TripCAR has
achieved better results in performance.

value in the response map. Then the position of the object is
predicted as:

g = arg max(A) %
X,y

where ¢ is the central position of the object.

TripCAR uses anchor-free method to predict the object
bounding box. Compared with anchor-based, anchor free
reduces more hyperparameter settings. Then the position of
the object is predicted as:

p = argmax(Ag)
X,y
q =D X Acenp ®)

where ¢ is the central position of the object.

IV. EXPERIMENTS

A. IMPLEMENTATION DETAILS

The proposed TripFC and TripCAR are implemented in
Python with Pytorch. For comparison, the input size of the
template patch and search region is set to be the same as
SiamFC and SiamCAR. The template patch uses 127 pixels,
and the search region uses 255 pixels.

In TripFC, we use the same Alexnet as SiamFC as the
backbone of the Triplet network. The Alexnet is pretrained on
ImageNet. We use GOT-10K [29] training set to train our net-
work. GOT-10K contains 87 movement modes of 560 kinds
of moving objects, and provides 10,000 video clips con-
taining 1,500,000 manually labeled bounding box. During
the training process, the batch size is set as 8 and totally
50 epochs are performed by using stochastic gradient descent
(SGD) with an initial learning rate 0.001. The learning rate
is adjusted according to exponential decay. For the first
20 epochs, the parameters of the backbone network are frozen
while training cross-correlation layer. In the last 30 epochs,
the entire network trains together.

In TripCAR, we use the tracking model provided by
Siam-CAR. No more training to ensure the accuracy of the
experiment.
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FIGURE 5. Compared with SiamFC on OTB2015 and OTB2013, TripFC has achieved better results in performance. The upper part is the precision plots
and success plots of 0TB2015. The lower part is the precision plots and success plots of 0TB2013.
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FIGURE 6. Compared with SiamFC on Skiing, Soccer, and Basketball. TripFC has achieved better results in performance and effectively solved the tracking
drift problem.
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FIGURE 7. Compared with SiamFC and SiamCAR on UAV123. TripFC and TripCAR have achieved remarkable results.
To ensure the validity of the experiment, we used the GOT- frame as the input of the search region branch. Use the predic-
10K test set, UAV 123 [43], OTB2013 [30], and OTB2015 [5] tion result of the previous frame as a supplementary template
for testing. patch and send it to the supplementary template branch. The

During the test, we adopted an offline tracking strategy. anchor ratios we adopt [—2, —0.5, 1].
The object in the initial frame are collected as the initial
template patch, so that the initial template branch of the B. RESULTS ON GOT-10K
Triplet network can be calculated and fixed in advance during GOT-10K training set and test set are not overlapping.
the entire tracking period. Use the search region in the current By studying the influence of video number, target category,
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TABLE 1. The effect of different A on GOT-10K. 1 means bigger is better.

TABLE 3. Comparison between the proposed trackers. 1 means bigger is
better.

Tracker A A A GOT-10K

cls ““cen “"reg AOT SRQST SROJST
SiamCAR | 0.0 0.0 0.0 0.566 | 0.667 0.410
TripCAR 0.1 0.1 0.1 0.577 | 0.676 0.421
TripCAR 02 02 0.2 0.577 | 0.673 0.416
TripCAR 04 04 04 0.561 | 0.648 0.399
TripCAR 1.0 1.0 1.0 0.542 | 0.622 0.381
TripCAR 0.3 03 0.3 0.581 | 0.676 0.423
TripCAR 0.3 03 0.0 0.588 | 0.683 0.431
TripCAR 0.3 0.0 0.0 0.579 | 0.679 0.426

TABLE 2. Comparisons on GOT-10K. 1+ means bigger is better.

Tracker GOT-10K

AO?T SRo.s57 SRo.751
SiamFC 0.346 0.353 0.098
TripFC 0.348 0.380 0.107
SiamRPN-R18 0.483 0.581 0.270
SPM 0.513 0.593 0.359
SiamRPN-++ 0.517 0.616 0.325
ATOM 0.556 0.634 0.402
SiamCAR 0.566 0.667 0.410
TripCAR 0.588 0.683 0.431

motion category and repetition time, the final test set contains
180 videos, 84 types of moving objects and 32 types of
motion. Except for the person class, all object classes between
the training video and the test video are non-overlapping.

Each tracker conducts 3 experiments and averages the
score to ensure a reliable evaluation.

We tested on the designated test set and sent the results to
the official website for evaluation. The evaluation indicators
provided include average overlap (AO: the average of over-
lap rates between tracking results and ground-truths over all
frames) and success rate (SR: success rate, the percentage of
successfully tracked frames where overlap rates are above
a threshold). The SRg s represents the rate of successfully
tracked frames whose overlap exceeds 0.5, while SRy 75 rep-
resents the rate of successfully tracked frames whose overlap
exceeds 0.75.

We evaluated TripFC and TripCAR. The comparison
proves that our TripCAR has been successfully improved
in SiamCAR. Fig. 4 shows that our tracker is better than
Siam-CAR, and Table 1 shows the comparison details of
different parameters. As shown in Table 1, for the supple-
mentary template patch, it performs best when coefficient
adopts [0.3, 0.3, 0.0]. Our TripCAR improves the scores
by 2.2%, 1.6%, and 2.1% relatively for AO, SRg5 and
SRg.75. As shown in Table 2, we compare our trackers with
state-of-the-art trackers including SiamRPN [13], SPM [44],
SiamRPN++ [16], and ATOM [45].
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Tracker — OTB2015
Precisionf Success?

LCT 0.761 0.561
CF2 0.837 0.561
HDT 0.847 0.564
Staple 0.783 0.581
CFNet 0.777 0.586
SiamFC 0.786 0.586
SINF 0.788 0.592
SRDCF 0.789 0.598
TripFC 0.808 0.597

TABLE 4. The effect of different > on OTB100. 1 means bigger is better.

OTB2015
Tracker & Precision? Success?
SiamFC 0.786 0.586
TripFC 0.15 0.800 0.591
TripFC 0.20 0.808 0.597
TripFC 0.25 0.802 0.594
TripFC 0.30 0.802 0.596

Through experiments, we found that when the weight of
the supplementary template is set to 1 or a larger number,
the tracking performance will be worse. This shows that there
is a lot of uncertainty in the predicted results of the tracker,
and the importance of the initial template to the tracker.

C. RESULTS ON OTB2015

OTB2015 contains 100 challenging video sequences. The
sequence is manually labeled with 9 attributes to represent
challenging aspects of visual tracking. It includes illumina-
tion changes, scale changes, occlusion, deformation, motion,
blur, fast motion, in-plane rotation, out-of-plane rotation, out-
of-view, background clutter, and low resolution.

We evaluated TripFC with different parameters and com-
pared with SiamFC. The success plots of OPE and precision
plots of OPE for each tracker are evaluated, as shown in
the Fig.5, the tracking performance has been significantly
improved. As shown in Table 3, we compare the proposal
trackers including LCT [32], CF2 [33], HDT [34], staple [35],
CFNet [36], SiamFC, SINF [37], and SRDCF [38] on the
OTB2015 benchmarks. Table 4 shows the comparison details
with different parameters. We can get that the addition of the
supplementary template branch improves the performance of
the tracker, the precision is increased by 2.2%, and the success
is increased by 1.1%.

D. RESULTS ON OTB2013

OTB2013 contains 50 challenging video sequences, the con-
tent of which is contained in OTB2015. The test sequences are
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TABLE 5. Comparison between the proposed trackers. 1 means bigger is
better.

Tracker — OTB2013
Precisionf Successt

KCF 0.740 0.514
DSST 0.740 0.554
MEEM 0.830 0.566
SAMF 0.785 0.579
CFNet 0.785 0.589
SiamFC 0.795 0.593
CNN-SVM 0.852 0.597
Staple 0.793 0.600
HDT 0.889 0.603
CF2 0.891 0.605
CSR-DCF 0.891 0.605
TripFC 0.837 0.615

TABLE 6. The effect of different > on OTB2013. + means bigger is better.

OTB2013
Tracker A Precisiont Success?
SiamFC 0.795 0.593
TripFC 0.1 0.808 0.595
TripFC 0.2 0.837 0.615
TripFC 0.3 0.821 0.604
TripFC 0.4 0.825 0.601

manually tagged with 9 attributes to represent the challeng-
ing aspects, including illumination variation, scale, variation,
occlusion, deformation, motion blur, fast motion, in-plane
rotation, out-of-plane rotation, out-of-view, back-ground
clutters and low resolution. We evaluated TripFC with dif-
ferent on OTB2013 and compared it with SiamFC.

As shown in the Fig. 5, the precision is increased by
4.2%, and the success is increased by 2.2%. As shown
in Table 5, we compare the proposal trackers including
KCF [21], DSST [39], MEEM [40],SAMF [41], CFNet,
CNN-SVM [31], Staple, HDT, CF2, and SCR-DCF [42].
Table 6 shows the comparison details under different param-
eters.

By comparison, we found that TripFC performed well on
the Basketball, Skiing, and Soccer test sequences. As shown
in Fig. 6, SiamFC has serious drift on these sequences, and
our TripFC can avoid this phenomenon well.

E. RESULTS ON UAV123
UAV 123 is a dataset of special scenes, which are all shot with
drones. It has 91 videos, including 123 short sequences. The
objects in the dataset mainly suffer from fast motion, large
scale variation, large illumination variation, and occlusions,
which make the tracking challenging.

We evaluated TripFC and TripCAR, as shown in the Fig. 7,
Our trackers achieved good results. Our method significantly
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TABLE 7. Comparison between the state-of-the-art trackers. 1 means
bigger is better.

Track UAV123
racker Precisiont Success?

Staple 0.614 0.450
SRDCF 0.627 0.463
SiamFC 0.690 0.482
TripFC 0.708 0.504
ECO 0.688 0.525
SiamRPN 0.710 0.577
DaSiamRPN 0.724 0.569
SiamRPN-++ 0.752 0.610
SiamCAR 0.759 0.598
TripCAR 0.786 0.616

improves SiamFC with an absolute gain of 1.8% and 2.2%,
in terms of precision and success. Compared with Siam-
CAR, TripCAR has improved precision and success by 2.7%
and 1.6%. As shown in Table 7, we compared our trackers
with 6 state-of-the-art trackers including Staple, SRDCF,
ECO [46], SiamRPN, DaSiamRPN [47], Siam-RPN++-. The
results show that our method is effective.

V. CONCLUSION

In this paper, we use a Triplet network to improve the perfor-
mance of the Siamese network tracker. We used this method
to improve SiamFC and SiamCAR. Experiments show that
our method is effective. This method does not require training
and can be directly applied to the Siamese network tracker
to improve the performance of the tracker. We only need to
add a supplementary template branch, and apply the result
of the previous frame network prediction as a supplementary
template patch to the tracker. The supplementary template
patch and the template patch go through the same process,
and the two results obtained are merged. Evaluated on GOT-
10K, UAV123, OTB2015, and OTB2013, the results show
that the proposed update method does significantly improve
the performance of the tracker. This structure is very simple
and can be easily integrated into all trackers. Since the current
framework is relatively simple, it can be easily modified for
further improvement in the future.
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