IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 11, 2021, accepted March 11, 2021, date of publication March 17, 2021, date of current version March 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066253

Self-Adaptative Troubleshooting for to Guide
Resolution of Malfunctions in Aircraft

Manufacturing

BELEN RAMOS-GUTIERREZ !, MARIA TERESA GOMEZ-LOPEZ', DIANA BORREGO "1,
RAFAEL CEBALLOS', RAFAEL M. GASCA!, AND ANTONIO BAREA?2

Departamento de Lenguajes y Sistemas Informdticos, Escuela Técnica Superior de Ingenieria Informatica, Universidad de Sevilla, 41012 Sevilla, Spain

2 Airbus Defense and Space San Pablo Sur, 41020 Sevilla, Spain

Corresponding author: Belén Ramos-Gutiérrez (brgutierrez@us.es)

This work was supported by the Project (RTI12018-094283-B-C33), funded by: FEDER/Ministry of Science and Innovation - State

Research Agency.

ABSTRACT The increasing complexity of systems and the heterogeneous origin of the possible malfunc-
tions bring about the necessity of redefining the troubleshooting processes. Troubleshooting comprises the
set of steps for the systematic analysis of the symptoms after the detection of a malfunction. The complexity
of certain systems, such as aircraft, means the origin of that malfunction can be any of several reasons, where
diagnosis techniques support engineers in determining the reason for the unexpected behaviour. However,
derived from the high number of components involved in an aircraft, the list of possible fault origins can
be extremely long, and the analysis of every element on the list, until the element responsible is found,
can be very time-consuming and error-prone. As an alternative, certain input/output signals can be read to
prevent the substitution of a correctly functioning component, by validating its behaviour in an indirect
way. In order to optimise the actions to perform, we have identified the relevant parts of the model to
propose a troubleshooting process to ascertain the signals to read and the components to substitute, while
striving to minimise the action cost in accordance with a combination of structural analysis, the probability of
malfunction associated to the components, and the cost associated to each extra signal read and component
substituted. The proposal has been validated in a system taken from a real scenario obtained in collaboration
with the Airbus Defence and Space company. A statistical analysis of the degree of improvement of the
troubleshooting process has also been included.

INDEX TERMS
troubleshooting.

Decision-making process, model-based diagnosis, multi-objective function,

I. INTRODUCTION

Fault diagnosis provides mechanisms to isolate the element
responsible for a malfunction in accordance with a set of
observations [1], [2]. However, signal values provided by
monitoring systems are not always sufficient to isolate a
suitable subset of possible components responsible for a mal-
function, since a great number of root causes can be involved.
Frequently, probability and cost are included in sorting the
list of possible causes, although the number of possibilities
can be extremely high. One option for the reduction of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Fatih Emre Boran

number of candidates involves improving the observation of
the system by developing a set of new readings of signals in
the system [3], [4]. Troubleshooting is the reasoning process
for the determination of what part of a system is causing a
malfunction in accordance with a set of actions that guide
the diagnoser to isolate the origin of misbehaviour. It is
fundamental both to decrease the time taken to solve the
problem and reduce the cost associated to reading signals of
the system and to the component substitutions. Both aspects
are especially important in contexts where there are numerous
possible combinations of malfunctions. Aeronautic organi-
sations can include a high number of components that are
interconnected, such as the distribution of sensors to monitor

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 9, 2021

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

42707

https://orcid.org/0000-0001-8815-0510
https://orcid.org/0000-0002-7471-9208
https://orcid.org/0000-0001-8404-3814

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

the assembly process [5], and the Cyber-Physical Systems
interaction with the rest of the software used in the company
[6], [7] for troubleshooting and maintenance purposes [8].

The detection, isolation, and repair of components during
aircraft assembly and in-service processes are very problem-
atic [9], derived from the complexity of the systems, for
both the number of components and the density of relations
between them. The growing complexity in the systems and
the heterogeneity of the failure nature, makes necessary to
tackle the problem isolation improving the troubleshooting
mechanisms [10]. During the aircraft assembly and in-service
maintenance processes, several malfunctions might be found,
which is the reason why a number of tests need to be applied
to prevent the propagation of faults to other phases of the
assembly. Both detection and resolution of possible malfunc-
tions during the tests are fundamental in reducing the number
of incidences before the aircraft is ready, thereby enhanc-
ing the product and process quality. Typically, the phases
involved in the methodologies used in troubleshooting in
systems such as aircraft include [11]: visual inspection, oper-
ational evaluation, problem classification, problem isolation,
problem location, problem resolution, and a final operational
evaluation to ensure the resolution of the problem. In other
more specific cases, such as in-service support, the trou-
bleshooting methodologies are complex and frequently, hand
the responsibility of decision-making to the experts, instead
of defining an ad-hoc set of steps for each case where both
probability and cost are taken into account [12]. In com-
plex contexts, such as aeronautic scenarios, for an observed
malfunction there are several possible root causes, owing to
the high connectivity between the components. This is why
the visual or manual inspections, following a set of prede-
fined steps, do not always constitute the optimal combination
of activities to isolate the malfunction. This is why, it is
considered interesting to create customised troubleshooting
for each observed malfunction that has been adapted to the
observations at each moment.

In this paper, we propose a framework to support the
troubleshooting process after the detection of a malfunc-
tion in order to isolate the component responsible from a
sorted list by automating the steps as much as possible, and
guiding the operator minimising the cost of detection and
that of the component substitutions. The method is based
on the incorporation of the fault probability, substitution
cost, the cost of the reading and the structural analysis,
thereby creating a customised solution of each malfunction
and sequence of signal. Since, for each element of the model,
both probability and substitution cost must be combined,
it is necessary to incorporate a function to optimise multiple
objectives.

In order to validate our proposal, we have developed a
solution that has been tested on the company Airbus Defence
and Space. The concept of this proposal started as part of
the context of the European project Clean Sky 2, and con-
tributes to one of the tasks aligned with the key societal
challenge for smart, green and integrated transport defined

42708

in Horizon 2020. The Clean Sky 2 project built a full-scale
in-flight demonstrator of innovative architectures and config-
urations to contribute toward advances in environmental and
economic performance and to bring crucial competitiveness
benefits to European industry. Through further initiatives,
the final proposal was released and validated by the Airbus
Defence and Space Manufacturing Engineering Transversal
Systems department. A statistical analysis has been incorpo-
rated to demonstrate how the use of our proposal can reduce
the troubleshooting effort.

The paper is organised as follows: Section II introduces
the models of problems where our proposal can be applied.
Section III presents the methodology proposed in this paper
to be applied to the defined model. Section IV shows step
by step, and in great detail, the different actions that would
be carried out and the final result that is achieved with our
proposal. Section V lays out the evaluation of our proposal
and the provided advantages in a real scenario, as is the
aircraft assembly process. Section VI shows the software
architecture of our proposal. Section VII summarises the pre-
vious proposals in the area, and the reason why our solution
implies a step forward in the literature. Finally, conclusions
are drawn and future work is outlined.

Il. TROUBLESHOOTING MODEL DESCRIPTION

The systems where troubleshooting techniques can be applied
are those formed by a set of components interconnected by
links. Both components and links can fail, but their main
difference is that the links can be read to obtain information
about the system behaviour. Those links can be automatically
readable by computers (without any extra-cost) or through
human action (implying cost and time). When an incorrect
behaviour is triggered, it is necessary to find the elements
responsible for the malfunction and to perform its substitu-
tion. In this section, the model of the systems supported by
our proposal are formalised and an example is introduced
which allows us to detail and explain the proposed method-
ology. Figure 1 shows a model, consisting of 18 compo-
nents connected through 26 links, that represents a simplified
model from a particular aircraft system. The same model
can include various operational situations or configurations,
called operational modes which perform specific operational
scenarios, thereby activating a subset of their components
depending on the mode.

Formalising these ideas, in our proposal, a system model
involved in a troubleshooting process is described as the tuple
(E, L, OM, pf), where E is a set of component elements,
L represents the link elements that connect the component
elements, OM is a set of operational modes where different
parts of the systems are involved according to the operations
executed in each case, and pf is the priority function which
describes the importance between substitution cost, reading
cost and malfunction probability of the elements to be sorted
in the troubleshooting process. Each part of the system is
detailed in the following subsections.

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

L_SWITCH_Sensor1 L_SWITCH_Sensor2 L_SWITCH_BITE

Pilot
Indication 1

SWITCH_Sensor1 SWITCH_SensorZ SWITCH_BITE }

WIRING_MU_Sensor2IN

L_MOD Sensor1

L_MOD_Sensor2

WIRING_PilotIndication1

Pilot
Command 1

L BITEON WIRING PilotCommand1

WIRING_MU_Sensor1IN WIRING_MU_CU_BUS————>
Sensor 1
WIRING_MU_Sensor1OUT- «—WIRING_CU_MU_BUS—

WIRING_MU_MNTU_BUS WIRING_CB1

_CU_PWR——WIRING

WIRING_DC_CU-
cu

WIRING_CU_DC .

PilotCommand1_SEL_SWITCH]

WIRING_PilotCommand2

Pilot
Command 2

——WIRING_CB2_MU_PWR

~—WIRING_CB1_MU_PWR

CB2_CU_PWR
L_PTT_ACTIVE:

PTT

MNTU

L_MNTU_OUT

L_CB1CLOSED

FIGURE 1. System example for troubleshooting.

A. COMPONENT ELEMENTS (E)

A system model consists of a set of component elements, each
of which is described by an identifying name. The component
elements of the example in Figure 1 are shown in Table 1.

TABLE 1. Component elements.

MU CU DC
PilotCommand1 PilotCommand2 PilotIndication]
CB1 CB2 Sensorl
MNTU Sensor2 PTT
PilotCommand1_SEL_SWITCH SWITCH_Sensor2 SWITCH_Sensorl
SWITCH_BITE SWITCH_CB1 SWITCH_CB2

B. LINK ELEMENTS (L)

The links represent elements that connect component ele-
ments, and describe the inputs and outputs of the link.
Each link is represented by the tuple (Name: String,
Origin: Component, Destination: Component, Domain: Inte-
ger/Real/Boolean, Observability: Boolean). The name repre-
sents the link in a univocal way, origin is the component that
produces the value that is assigned to a variable associated to
the input or output of the link, destination is the component
that receives the value of the variable transported by the link,
and the observability is associated to the automatic readabil-
ity of the link. The links can also fail, and therefore be substi-
tuted as a consequence of the detection of a malfunction, but
the main difference with the components is that the values that
are read in the links offer information regarding the complete
behaviour of the element, since only one output is possible in
a link.

VOLUME 9, 2021

L_PTT_PULSED
I

L_CB2CLOSED
|

According to the value of the observability (true or false)
described in the previous tuple, the input or output variables
of the links are defined as known or readable variables. In the
model, the non-observable variables (i.e., internal to compo-
nents) are not included since the components are presented as
a black box.

« Known variable. When observability is true, the value
of the variable associated to the link is known by the
automatic monitorisation of the system, and its reading
does not entail any extra effort, and the reading cost is
equal to 0. Furthermore, in a particular way, if a link
does not have an origin or destination component, then
the observability of its associated variable is mandatorily
true (it represents an input or output variable).

o Readable variables. When observability is false,
the reading of the variables requires human intervention,
thereby entailing an extra effort that requires labour
time, which involves a reading cost greater than 0.

Link elements of the example in Figure 1 are shown
in Table 2. In this example, links without origin correspond to
input variables, and links without destination represent output
signals.

C. OPERATIONAL MODE (OM)

Frequently, a single system can be utilised to support sev-
eral different behaviours. Therefore, and depending on the
specific operational mode in which the system is operating,
on detecting a malfunction, it is not necessary to analyse all
the elements of the system, but only those involved in that
mode. This is especially important in the assembly process,
where different parts of the system are involved in each test.
An operational mode represents a state of the system model

42709

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

TABLE 2. Link elements for the example.

WIRING_MU_Sensor1IN Sensorl MU Boolean False
WIRING_MU_Sensor2IN Sensor2 MU Boolean False
WIRING_CB1_MU_PWR CBI1 MU Boolean False
WIRING_CB2_MU_PWR CB2 MU Boolean False
WIRING_CB1_CU_PWR CBI1 CU Boolean False
WIRING_CB2_CU_PWR CB2 CU Boolean False
WIRING_CU_DC CU DC Boolean False
WIRING_DC_CU DC CU Boolean False
WIRING_PilotCommand?2 PitloCommand?2 DC Boolean False
L_PTT_ACTIVE PTT DC Boolean False
L_MOD_Sensorl SWITCH_Sensorl CU Boolean False
L_MOD_Sensor2 SWITCH_Sensor2 CU Boolean False
L_BITEON SWITCH_BITE CU Boolean False
WIRING_MU_CU_BUS MU CU Boolean False
WIRING_CU_MU_BUS CU MU Boolean False
WIRING_MU_MNTU_BUS MU MNTU Boolean True
WIRING_MU_Sensor1OUT MU Sensorl Boolean True
WIRING_PilotIndication] DC PilotIndication1 Boolean True
WIRING_PilotCommand PilotCommand1 DC Boolean True
L_CB1CLOSED SWITCH_CB1 Boolean True
L_CB2CLOSED SWTICH_CB2 Boolean True
L_SWITCH_Sensor2 SWITCH_Sensor2 Boolean True
L_SWITCH_Sensorl SWITCH_Sensorl Boolean True
L_SWITCH_BITE SWITCH_BITE Boolean True
L_PTT_PULSED PTT Boolean True
L_MNTU_OUT MNTU Boolean True

where the system performs a specific operational scenario,
for which the part of the model and a specific set of the
components and link elements are active in each operation.
Itis described by the tuple (name, E,,;, Loy,) which represents
the name of the operational mode, a subset of the components
E,n C E, and a subset of the links L,,, € L. Depending on
the OM, different values for the probabilities of fault, reading
cost, and substitution cost are assigned to each element (both
components and links). Moreover, since the element links
can be observed, they also have an observational cost that
depends on the OM, derived from the difficulty to access
a link according to the stage of the assembly. In summary,
the E,,, and L, are described as the tuples: E,,, = (E, prob,
sub_cost) and Ly, = (L, prob, sub_cost, obs_cost).

Figure 2 details the part of the simplified aircraft system
involved in the Operational Mode called BITE.

In order to ascertain whether the observed values of the
known variables correspond to a correct behaviour, each OM
must include a set of Observations of Correct Behaviours,
described as follows.

1) OBSERVATIONS OF CORRECT BEHAVIOURS

Detecting correct or incorrect behaviour of a system can be
carried out by observing the known variables. To this end,
it is necessary to have previously determined the tuples of
observations that represent correct behaviours. Each correct
behaviour is identified by a tuple of values assigned to the
known variables of the links in a system that does not present
incorrect behaviour. When the known variables are not equal
to any of the tuples that define correct behaviours, it is

42710

L_SWITCH_BITE
SWITCH_BITE

L_BITEON

MU cu
WIRING_CU_MU_BUS—|

WIRING_MU_MNTU_BUS WIRING_CB1_CU_PWR——WIRING CB2_CU_PWR

——WIRING_CB2_MU_PWR

—WIRING_CB1_MU_PWR;
MNTU
CcB1 CcB2

L_MNTU_OUT

L_CB1CLOSED L_CB2CLOSED
| |

FIGURE 2. Simplified aircraft system in BITE operational mode.

assumed that the observation corresponds to an incorrect
behaviour.

Table 3 describes the observations of correct behaviours
of the known variables for the BITE Operational Mode of the
example. Since the domain of the variables for the example
is Boolean, they can take value O or 1.

D. PRIORITY FUNCTION (PF)

As mentioned before, the selection of a component as being
the element that is probably responsible for a malfunc-
tion derives from: a structural analysis of the relation of

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

System
Model

Input Evaluation

System Analysis

Is the observation of

Guide the
No Create a ranking troubleshooting
process
[+]

a correct behaviour?

FIGURE 3. Steps of the methodology.

TABLE 3. Correct valuation for known variables in BITE operational mode.

WIRING_MU_MNTU_BUS
L_CB1_CLOSED
L_CB2_CLOSED
L_SWITCH_BITE
L_PTT_PULSED

L_MNTU_OUT

U [N U U (U (U

the components (described by using the component and
link elements), the probability of failure of the components
(probability), and the costs of substitution and observation
(cost). Once the involved components are determined by
structural analysis, and in order to sort them into a ranking,
a priority function is applied to each component by combin-
ing its probability and costs in a multi-objective function.
The priority value obtained is the employed for sorting the
components into order. One example of a priority function
could be:

Sln(pr()htlhlltt)) [0.5 - Esubscost + 0.5 + Eopscost]

where Epopabiliry i the probability of fault in the elements
(both links and components) for the activated OM; Egypscos:
is the substitution cost of the element for the selected OM;
and E,pscos: 18 the observation cost. Furthermore, links have
an associated observability cost (obs_cost), while, for com-
ponents, E,pscos: 1 the highest reading cost of all output links
of the component. For this function, the domain of the results
is in the range between 0 and 100. Therefore, for an element,
aresult close to 100 indicates that it can potentially be respon-
sible for the failure, while if the result is close to 0, that it
means that the element is almost definitely not responsible
for the failure. Accordingly, if two elements obtain similar
values from the priority function, it indicates that they both
share roughly the same chance of being responsible for the
failure. By applying the priority function to each element,
a sorted ranking of elements is obtained, from highest to
lowest probability. The proposed methodology explains how
this interpretation can guide the engineer (Section III).

IIl. TROUBLESHOOTING PROCESS METHODOLOGY
Since the complexity of the systems can generate a very long
list of possible root causes, it would be highly unprofitable

VOLUME 9, 2021

to verify each and every possibility. This is the scenario
where the operators must decide what is the best option,
frequently following predefined guides designed by the engi-
neers. To facilitate this process, our proposal customises the
steps of the troubleshooting process according to the obser-
vations. This is why the proposed troubleshooting guide is
needed to helping the decision making regarding on the most
appropriate components to replace/analyse or the variables to
read in order to obtain a more accurate and optimal diagnosis.

The methodology has four steps (as depicted in Figure 3):
(1) system analysis; (2) system monitoring via input values;
(3) creation of a ranking of elements according to the priority
function; and (4) the execution of the guiding process to find
the root of the fault, with a lower cost based on the highest
probability.

The process starts a system analysis in accordance with
the formalisation in Section II, which provides a structural
analysis for the relations between the elements and defines
how a malfunction affects the observations, as explained in
Subsection III-A. In accordance with the observations at run-
time, the system may be diagnosed, and a ranking is created
that considers the probabilities of failure and their costs of
substitution and observation by using the priority function (as
explained in Subsection III-B). The troubleshooting guiding
process enables the component responsible for the malfunc-
tion to be found while minimising the costs, as detailed in
Subsection III-C.

In the following subsections, these steps are laid out in
detail, and the example introduced in Section II is employed
as an illustration.

A. SYSTEM ANALYSIS

In order to ascertain those elements which are poten-
tially responsible for an observed malfunction (possible root
cause), a structural analysis of the dependencies between the
elements is necessary. The analysis process starts with the
model of the system as input, which is decomposed (1) and
analysed according to the dependencies between the compo-
nents and links (2).

1) MODEL DECOMPOSITION
According to the formalisation, a component can have
multiple inputs and outputs and therefore our proposal

42711

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

Sensor 1

N
~WIRING_MU_SensortOUT—

—WIRING_MU_Sensor1IN—>
—WIRING_MU_Sensor2IN—>
—WIRING_CB1_MU_PWR—>{
—WIRING_CB2_MU_PWR—>{

MU —WIRING_MU_MNTU_BUS——— > MNTU

—WIRING_MU_CU_BUS—

cu

disi

FIGURE 4. MIMO component MU transformed into three MISO components.

decomposes the system when necessary. Specifically, decom-
position focuses on component elements with multiple out-
puts, the so-called MIMO (Multiple Input-Multiple Output)
components. These MIMO components make exoneration
tasks more complex, since a malfunction in a MIMO com-
ponent can produce correct and incorrect outputs at the same
time. Generally, in classic diagnosis, the correct observation
of the output of a component exonerates it from the respon-
sibility of a malfunction. However, if there are MIMO com-
ponents in the model, this exemption becomes more complex
during the troubleshooting process.

In order to apply exoneration according to a correct obser-
vation, we need to transform MIMO components into MISO
(Multiple Input-Simple Output) components [13]. The trans-
formation of a MIMO component E creates as many new
MISO components as outputs of E, all of which contain the
same input link elements as E. For the example, in Figure 1,
there are 5 MIMO components: {DC, MU, CB1, CB2, CU }.
In Figure 4, the component MU is transformed into three new
components MU 1, MU?2, and MU3, one for each output of
the MU original component.

With this decomposition, a MIMO component can only be
exonerated if every single one of its MISO components are
exonerated. Thus, situations like the following could occur:
the output WIRING_MU_SensorlIN is exonerated due to
the correct reading of a variable. This leads to the MISO
component MU 1 being exonerated, but the entire MU com-
ponent cannot be exonerated, since its other two outputs could
still be incorrect. Subsequently if the MU component has to
be analysed, then the analysis begins by reading its outputs
that yet to be exonerated yet (that is, the exoneration of its
remaining MISOs are sought).

2) DEPENDENCY ANALYSIS

There are many techniques that obtain the structural depen-
dencies of a system [14]. This proposal focuses on the cre-
ation of a fault signature matrix [2], [15] that represents the
set of variables that would be affected when each specific ele-
ment fails. In the field of diagnosis, the use of fault signature
matrices facilitates the isolation of components depending on

42712

N

N
—WIRING_MU_Sensor1IN—>
~WIRING_MU_Sensor2iN— MU WIRING_MU_Sensor1OUT Sensor 1

| — nsor

—WIRING_CB1_MU_PWR—>| -MU_sensor enso
—WIRING_CB2_MU_PWR—|

-/
—WIRING_MU_Sensor1IN—>
—WIRING_MU_Sensor2IN—>{

i MU2 — MNT!
_WIRING_CB1_MU_PWR U. WIRING_MU_MNTU_BUS: U
—WIRING_CB2_MU_PWR—|

-/

—WIRING_MU_Sensor1IN—>
—WIRING_MU_Sensor2IN—>|
—WIRING_CB1_MU_PWR—>{
—WIRING_CB2_MU_PWR—>{

MU3 ——WIRING_MU_CU_BUS

the observations. For example, if the observation of a variable
(output of an element E) denotes that E works correctly, then
this implies that all the elements whose outputs are inputs
of E also work correctly. These can therefore be removed
from the list of possible root causes, thereby propagating the
exoneration to related components.

After the model decomposition phase, the fault signature
matrix is created to represent the relation between the element
link variables, which can be observed in order to ascertain
whether if the process is working correctly, and the elements
of the system that can fail. Table 4 shows a part of the
signature matrix for the system in BITE Operational Mode
presented in Figure 2, to make the proposal understandable.
The signature matrix includes only the MISO components
involved in the specific operating model under analysis. Thus,
for instance, components MU1 and MU3 do not appear,
because they do not operate in this mode. Likewise, link ele-
ments that do not have an element as their origin never appear
in the matrix, since if they were included, their column would
always be empty, which means that under no circumstances
reading them can help to exonerate any element.

In order to obtain the fault signature matrix [16], the struc-
tural relations in the system model are analysed using the
information regarding its inputs and outputs. To enable the
representation of which variables are affected when an ele-
ment fails, a signature matrix has one row per element (com-
ponent or link), and one column per known or readable
variable of the system. When an X is located in a cell which
is in the row of element E and the column of variable v,
this means that if element E fails, then the value of v is
affected by this fault. It is equivalent to the existence (in the
model) of a path between the output of element £ and the link
variable v. However, the reverse implication is not possible,
since an element E can work correctly while v is incorrect,
due to another element implication. For the variable point of
view, if v is incorrect, at least one of the elements with an
X in its column must be working incorrectly. The signature
matrix also includes the variables associated to the input value
of the link element, such as L_BITEON_(I). As described
above, a link element is an element with only one input and

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

TABLE 4. Signature matrix for BITE OM system.

WIRING_CBI | WIRING_CB2 | WIRING_CU | WIRING_CBI | WIRING_CB2 | WIRING_MU
L_BITEON | L BITEON.(D) | "oy pwg _CU_PWR _MU_BUS | _CU_PWR _MUPWR | MNTUBUS -MNTUOUT
SWITCH_BITE X X X X
L_BITEON X X X
CU X X X
WIRING_CBI1
_CU_PWR X X X
WIRING_CB2
_CU_PWR X X X
CBI11 X X X X
CBI12 X X X
CB21 X X X X
CB22 X X X
WIRING_MU
_CU_BUS X X X
MU2 X X
WIRING_CB1
_MU_PWR X X X
WIRING_CB2
_MU_PWR X X X
WIRING_MU
_MNTU_BUS X X
MNTU X
L_MNTU_OUT X
TABLE 5. Ranking of elements for an incorrect input tuple in BITE OM.
NG MU T 0 WIRING_MU_MNTU_BUS 58.337
CB1 57.896
L_CBI_CLOSED i
L_CB2_CLOSED i CB2 >7.896
CSWITCH RTTE : WIRING_CBI_MU_PWR 47.895
S = WIRING_CB2_MU_PWR 47895
L_PTT _PULSED I G oTE
L_MNTU_OUT 0 MNTU 8.603

(a) Tuple of incorrect values for known variables

one output. The column of an input link element is equal to
the column of the element link variables without an X in the
element link. These variables are not included in the model
since they are derived from the link element, and no such extra
information is necessary.

B. RANKING CREATION

During the assembly and testing processes, the system func-
tionalities are continuously monitored to verify the correct
behaviour, to make a diagnosis if needed. If certain known
variables present incorrect values, this means that the read
input tuple does not match the operational mode. It therefore
becomes necessary to formulate a hypothesis regarding the
malfunction, and if the diagnosis activity begins. Depending
on the specific known variables that are correct or incorrect,
itis possible to isolate the potential elements involved in trou-
bleshooting, since probably not all the elements that belong
to the OM can be responsible for the detected malfunction.
This will depend on the structural analysis (used to create
the signature matrix) and according to the specific incorrect
known variables. For example, Table 5(a) describes a tuple
of known variable values that does not match with the cor-
rect behaviour in the OM, and therefore a diagnosis process
should be executed. When an incorrect tuple is detected,
the elements involved in the OM must be ordered, such as
is shown in Table 5(b). The troubleshooting process starts
analysing this list and the signature matrix.

VOLUME 9, 2021

(b) Ranking of possible root cause elements

It is important to note that MISO components never appear
in the ranking, only MIMOs appear. This is because when a
component has to be replaced, it must be completely replaced,
since its division into MISOs is not physical, but logical.
In this way, the MISOs intervene in the subsequent guiding
process only to facilitate exemptions, while only the MIMO
components appear in the ranking.

Furthermore, it is important to highlight that, as mentioned
above, if two or more elements appear in the ranking with the
same value for the priority function, then this indicates that
they have the same value obtained using the priority function.
In these circumstances, the operator can decide which is to be
analysed first.

C. GUIDING THE TROUBLESHOOTING PROCESS
In classic approaches, and making use of a ranking
of potential elements to be replaced, the troubleshoot-
ing starts by replacing the first element in that ranking
(WIRING_MU_MNTU_BUS in the previous example), since
it has the greatest value according to the priority function.
Therefore, if the problem is solved, the diagnosis process is
complete. In contrast, if the malfunction persists, the diagno-
sis process follows the order established in the ranking for
the replacement of elements one by one until the origin of the
malfunction is found.

However, due to the potential complexity of the models,
the potential root causes can be very numerous and very

42713

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

1

Obtain the possible root W

causes ranking

2
Select an element &
to analyze

l

3

Present the values of costs associated
to the substitution or the variable reading

©)

Substitut X Read

Make a Decision?

Make
substitution

73{%@

Fault Operational
Mode?

No

Read output &

Is correct?

A Read input &

Exonerate 3
MISO

3

Yes Exonerate

ves <> No element &
and update
Are there ranking

more outputs?
No

X No

@ Is correct?

Yes

Exonerate elements and
update ranking

Are there more inputs?

& Human activity
Automatic activity

No.

FIGURE 5. Stages of the guiding algorithm.

expensive to fix or replace, therefore, it may not be feasible
to replace or repair the elements without being 100% certain
that they are really causing the problem. That is why in the
troubleshooting process, our proposal includes, the readings
of readable variables to isolate the problem in an optimal
way, and to prevent unnecessarily replacing correct elements
whenever possible.

During the process, the steps presented schematically
in Figure 5 are proposed as a guide, and they serve as support
to explain, in greater detail, the different stages that make up
the guiding process until the component responsible for the
malfunction is detected.

42714

According to the ranking (Step 1), such as that shown
in Table 5 (b), the operator must decide which element to
analyse (Step 2). The algorithm suggests analysing the ele-
ments in the order that they appear in the ranking; however,
if the operator decides to analyse another element instead
of that which the ranking order proposes, then the ignored
element is relocated at the end of the list for future consid-
eration. The exoneration or blame of the components can be
determined in a direct (by means of their replacement) or an
indirect way (reading readable variables) (Step 3).

The information provided for each element to make the
decision is composed of three types of costs:

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

« Element substitution cost: the cost of replacing the
component/link element.

o Cost of ascertaining whether the element is working
correctly: if the element is a component, then it might
have one or more outputs, which are readable or known
variables. In the calculation of this cost, we must dif-
ferentiate between two scenarios: (1) the outputs of the
component are correct, or (2) the component outputs are
incorrect and all its inputs are correct. Consequently, this
cost is equal to the sum of observation costs of the out-
puts plus the sum of the observation costs of the inputs.
Similarly, with link elements, if the variable associated
with the link is correct, then the cost of ascertaining that
it is correct is equal to the cost of reading its variable.
However, if the variable is incorrect, then the cost of
knowing that the link element is correct is equal to the
cost of reading its variable with an incorrect result plus
the cost of reading the input, also with an incorrect result.

o Cost of ascertaining whether the element is not work-
ing correctly: This is the cost of finding out that its
outputs are incorrect, plus the cost of reading all its
inputs to verify that they are correct.

Based on this information, the operator has to decide
(Step 4) between substituting the element or, if it is possible,
analysing the element indirectly by reading variables. If the
operator decides to substitute (Step 5), the element must be
replaced and the persistence of the fault should be checked
(Step 6). If the malfunction disappears, then the troubleshoot-
ing process ends since the responsible for the failure has been
found. On the other hand, if the fault is still present, then the
information regarding the performed substitution is recorded
and the troubleshooting process continues once the ranking is
updated accordingly.

For the example, it is decided to analyse the element by
reading variables; the process starts reading the output of
the element (Step 7) to exonerate it and the other elements
related to that variable in the signature matrix (Step 13). If the
variable is incorrect (Step 8) the inputs of the element must
be read (Step 11) to ascertain whether they are incorrect or
not (Step 12). The casuistry is as follows:

« If at least one input variable is incorrect, then the com-
ponent under study can be exonerated since its incorrect
output has been caused by another faulty component
(Step 13).

« If an input is correct (Step 15), then the components
related to it in the signature matrix can be exonerated
(i.e., those that have an X in the column of the input
variable).

« If every input is correct (Step 16), then it is implied that
the component produces an incorrect output from correct
inputs, and therefore it is possibly the component the
possible responsible for the malfunction.

« Ifan output is correct (Step 8) and the element is MIMO,
then only the MISO element can be exonerated (Step
10), unless it is the last MISO component (from that

VOLUME 9, 2021

MIMO element) that remains to be exempted, which
would then exonerate the entire MIMO component,
as well as those related to the output variable in the
signature matrix (Step 13).

However, it is important to note that although all readings
are saved during execution, if an element is replaced, then
these read variables are reset, since every time an element
changes in the system, the system also changes and, therefore,
previous readings are no longer reliable.

IV. GUIDING PROCESS FOR THE EXAMPLE
For a better understanding of the previous algorithm,
an example of the trace of the troubleshooting is detailed
below, where the element responsible for the malfunction
is MU, although this is unknown before the troubleshooting
process starts. Figure 6 shows the BITE OM diagram, which
includes costs of the substitution of components and costs
of reading variables, and has been labelled with the phases
described in the algorithm to facilitate its understanding.
Details of the development of the guiding process for a spe-
cific scenario are now given, and include decisions, readings
made, substitutions, etc.

1) Starting from the incorrect input tuple shown
in Table 5(a), the ranking shown in Table 5(b) is
obtained (Step 1). WIRING_MU_MNTU_BUS is the
first element, a link, and the first candidate to be
analysed according to the priority function results (Step
2). The system shows the three costs associated with the
analysis of that element (Step 3):

o Substitution cost: 1,000.

o Cost of ascertaining whether WIRING_MU
_MNTU_BUS is correct:

— Best-case scenario: 100. The cost of reading
the output variable is correct, implies that the
element is correct.

— Worst-case scenario: 200. The cost of read-
ing the output WIRING_MU_MNTU_BUS and
input WIRING_MU_MNTU_BUS_(I) variables,
to ascertain whether the component is working
correctly (input and output incorrect) or incor-
rectly (input correct and output incorrect).

o Cost of ascertaining whether WIRING_MU _
MNTU_BUS is incorrect: 200. This cost is equal
to ascertaining that it is correct in the worst-case
scenario.

Based on these three costs, the operator must decide
whether to choose whether the replacement of the ele-
ment or to perform the readings of a variable (Step
4). For the example, the decision is to read (Step 7),
since it costs 200 instead of the 1,000 of the substi-
tution. The algorithm then asks if the read variable is
correct (Step 8). In this case, it is not correct (Step
8) and its input must be read (Step 11). The input of
the link (WIRING_MU_MNTU_BUS (1)) is incorrect
(Step 12), and therefore, the link element is correct

42715

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

! sub_cost: 1530
i obs_cost: 150 !

MU
10,000

®

! sub_cost: 1000 @
v obs_cost: 100 i WIRING_MU_MNTU_BUS

! sub_cost: 1000 :
i obs_cost:200

——WIRING_CB2_MU_PWR

WIRING_CU_MU_|

L_SWITCH_BITE

SWITCH_BITE
2,050

i sub_cost: 350
i obs_cost: 150 !

L_BITEON

BUS:

! sub_cost: 1000 :

i obs_cost: 150 @

WIRING_CB

_CU_PWR—WIRING_¢B2_CU_PWR

——WIRING_CB1_MU_PWR

! sub_cost: 1000 :
i obs_cost:200

sub_cost: 1000
obs_cost: 100 !

L_MNTU_OUT

FIGURE 6. Troubleshooting example trace diagram.

TABLE 6. Ranking after first analysis.

CBl1 57.896
CB2 57.896
WIRING_CB1_MU_PWR 47.895
WIRING_CB2_MU_PWR 47.895
MU 8.916
MNTU 8.603

and can be exonerated (Step 13). The ranking is then
updated and the process continues (Step 1). Table 6
shows the new resulting ranking.
Following on with the example, the next element to be
analysed is CB/ (Step 2). The system shows the three
costs associated to its analysis:

« Substitution cost: 1,000.

o Cost of ascertaining whether CBI is correct:

— Best-case scenario: 350. This component is
MIMO and is divided into two MISO com-
ponents,(CBI11 and CBI12). The cost of read-
ing each output correctly (WIRING_CBI1_CU_
PWR_(I) and WIRING_CBI_MU_PWR _(I)) is
150 and 200 respectively, and the total cost their
sum.

Worst-case scenario: 350. The worst-case sce-
nario in ascertaining whether this component is
correct is equal to the sum of reading its outputs,
being incorrect, plus the reading of its input
variable (L_CBI_CLOSED), being incorrect.

2)

3)

42716

@

®

CB1
1,000

CB2
1,000

L_CB1CLOSED

L_CB2CLOSED

Since L_CBI_CLOSED is a known variable,
then its observation cost is O and the total cost is
equal to 350.

o Cost of ascertaining whether CBI is incorrect:
350. This cost is equal to the cost of ascertaining
whether it is correct in the worst-case scenario.

This time, when these costs are shown to the operator
(Step 3), the option chosen is that of analysing by
reading (Step 4), and the analysis begins by reading
the outputs of element CB/ (Step 7). These turn out
to be correct (Step 8) and, therefore, the entire MIMO
component can be exonerated, because both its MISO
components have been exonerated (Steps 10 and 13).
In addition, as result of the correct readings, two actions
are carried out: (1) Elements are sought whose outputs
are related to the correct variable (there is an X in the
column of the variables WIRING_CBI1_CU_PWR_(I)
and WIRING_CBI1_MU_PWR_(I), and in the row of
the potential components to be exonerated in the fault
signature matrix), which, in this case, there are none;
and (2) the correct reading of these variables is stored
in the system so that it is taken into account in case they
are needed in the future. However, the malfunctioning
element has yet to be identified, and hence it is nec-
essary to update the ranking and continue the search
(Step 1). Table 7 shows the new ranking.

Now, the first element in the ranking is CB2 (Step 2).
The system displays the three related costs (Step 3):

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

TABLE

TABLE

4)

7. Ranking after the second analysis.

CB2 57.896
WIRING_CB1_MU_PWR 47.895
WIRING_CB2_MU_PWR 47.895

MU 8.916

MNTU 8.603

8. Updated ranking after the third analysis.

WIRING_CB1_MU_PWR 47.895
WIRING_CB2_MU_PWR 47.895
MU 8.916

MNTU 8.603

¢ Substitution cost: 1,000.
o Cost of ascertaining whether CB2 is correct:
— Best-case scenario: 350. This component is
MIMO and is divided into two MISO compo-
nents (CB21 and CB22). The cost of reading

each output correctly(WIRING_CB2_CU_PWR_(1)

and WIRING_CB2_MU_PWR_(1)), is 150 and
200 respectively.

— Worst-case scenario: 350. The sum of read-
ing its outputs (350), whereby at least one is
incorrect, plus the reading of its input vari-
able (L_CB2_CLOSED), which is also incor-
rect. Since L_CB2_CLOSED is a known vari-
able, its observation cost is 0 and the total cost
is equal to 350.

o Cost of ascertaining whether CB2 is incorrect:
350. This cost is the same as the cost of the
worst-case scenario.

By using this information, the operator chooses to anal-
yse CB2 by readings (Step 4), and the study begins
by reading the its outputs (Step 7), which turn out to
be correct (Step 8) and, therefore, the entire MIMO
component can be exonerated, because both its MISO
components have been exonerated (Steps 10 and 13).
The two tasks that are executed after the correct read-
ings are carried out in the same way as in the previous
component. Finally, this is not the faulty component,
and therefore it becomes necessary to update the rank-
ing and continue the search (Step 1). Table 8 shows the
new ranking.

WIRING_CB1_MU_PWR is the next element of the
ranking to be analysed (Step 2). The system provides
the following costs (Step 3):

o Substitution cost: 1,000.
o Cost of ascertaining whether WIRING_CBI
_MU_PWR is correct:

— Best-case scenario: 200. The cost of reading the
output variable of the link that is correct.

— Worst-case scenario: 200. The cost of read-
ing the variable of the link that is incorrect

VOLUME 9, 2021

TABLE 9. Updated ranking after the fifth analysis.

5)

6)

MU
MNTU

8.916
8.603

plus the cost of reading its input vari-
able (WIRING_CBI_MU_PWR_(I)), also incor-
rect. However, the reading of the variable
WIRING_CBI_MU_PWR_(I)has already been
carried out with a correct result and therefore it
does not need to be read again.

o Cost of ascertaining whether WIRING_CBI_
MU_PWR is incorrect: 200. This cost is equal
to the cost of reading the variable of the link,
and ascertaining that it is incorrect, plus the cost
of reading the variable that is the input of the
link WIRING_CB1_MU_PWR_(I), that is correct,
making a total of 400. However, the reading of the
variable WIRING _CBI_MU_PWR_(I) has already
been carried out with a correct result, and there-
fore, it does not need to be read again, and no extra
cost is incurred.

Based on the information given, the operator must
decide whether to choose to replace the element or
to perform the readings of a variable (Step 4). The
decision is to read (Step 7). Following on, the algorithm
asks whether the read variable is correct (Step 8). In this
case, it is correct and since it is a link, there are no more
outputs (Step 9), and therefore the link element must
be exonerated (Step 13). In the new scenario, the fault
persists, and therefore the ranking is updated and the
process continues (Step 1).

WIRING _CB2_MU_PWR is the next element of the
ranking to be analysed (Step 2). Following the same
reasoning as in the previous element, the system shows
the following costs (Step 3):

o Substitution cost: 1,000.
o Cost of ascertaining whether WIRING_CB2
_MU_PWR is correct:

— Best-case scenario: 200.
— Worst-case scenario: 200.

o Cost of ascertaining whether WIRING_CB2_
MU_PWR is incorrect: 200.

The operator decides to analyse the link elements by
readings again (Step 7). The reading is correct (Step 8)
and since it is a link, there are no more outputs (Step 9),
therefore, and the link element must also be exonerated
(Step 13). The ranking is updated as shown in Table 9.
MU is the next item on the ranking to be tested (Step
2). The system provides the following costs (Step 3):

o Substitution cost: 10,000.
o Cost of ascertaining whether MU is correct:

— Best-case scenario: 0. This component is
MIMO, but in this mode, only one of its MISOs

42717

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

is operative: M2, whose output is the vari-
able WIRING_MU_MNTU_BUS _(I). The read-
ing cost of this variable is 100. Nevertheless it
has been read previously, making the total cost
for the MIMO element equal to 0.

— Worst-case scenario: 150. This cost is equal
to the cost of reading its output incorrectly,
which is 0, plus the sum of the observation costs
of its three inputs (WIRING_CBI_MU_PWR,
WIRING_CB2_MU_PWR, WIRING_CU_MU_
BUS), which must all be correct. Taking into
account that the first two have already been
exonerated, this cost is equal to the observation
cost of WIRING_CU_MU_BUS.

o Cost of ascertaining whether MU is incorrect:
150. The cost is the same as for the worst-case
finding that it is correct.

This time, again, the operator decides to analyse by
reading variables (Step 7). As before, the process starts
reading the output variables of the component, which,
as previously analysed, presents an incorrect result
(Step 8). This leads to reading the inputs (Step 11).
This component has three inputs, two of which have
already been read. When WIRING_CU_MU_BUS is
verified, it is correct too, implying that the component
is receiving correct information and producing erro-
neous information. Therefore, this component would
be a potential cause of the failure, and the algorithm
indicates to the operator that it should be replaced
(Step 5). After the replacement, the fault disappears
and the search process ends, since MU is responsible
for the failure.

The convenience of applying our proposal instead of the
classical proposals, where no partial readings are included,
is laid out in the following section.

V. EVALUATION OF THE PROPOSAL

The effectiveness of our algorithm depends on the location in
the ranking of the element responsible for the malfunction
for each test. If the element responsible is the first one,
then our algorithm incurs time and cost reading various vari-
ables. Otherwise, if the element responsible is deep within
the list, our algorithm reduces the diagnosis cost drastically.
To measure this effectiveness while taking into account the
probability that an element appears in the different positions
of the ranking, the troubleshooting guiding algorithm has
been validated using a simplified aircraft system model of a
real environment in Airbus Defence and Space factories. In
order to verify the validity of the proposal, Subsection V-A
shows how the algorithm has been tested in three differ-
ent Operational Modes by simulating the possible element
responsible for the malfunction for each mode and examining
how the guidance of our algorithm could affect the decisions.
This verification has been carried out to compare the benefits
and disadvantages of our methodology versus the traditional

42718

methodology. Subsection V-B lists the conclusions drawn in
the validation, the advantages of our approach, and those
cases where its use can introduce major benefits.

A. VALIDATION OF THE PROPOSAL

In this section, our approach is tested on three different OMs
from the same simplified aircraft system. This implies that,
in each OM, certain elements are involved, while others are
not, and therefore the lists of possible root causes change
with each test. For illustrative reasons, and to be able to go
into greater detail, give a full description of the tests for one
OM, although the obtained results of the other two are also
included in the paper. The details of the results of the other
two tests are shown on the web. !

For every test, results are presented in accordance with two
approaches: (1) classic, replacing elements in the order of the
cost-probability relationship given in the ranking; and (2) our
proposal, based on the reading of variables.

The tests are carried out, by using a defined ranking to
determine the costs of discovering of the faulty element.
These costs depend on the type of approach used and the
location in the ranking of the element responsible. To gather
every cost, both approaches and the positions of the element
are studied for a later analysis. Table 10 contains the informa-
tion regarding the results achieved for the OM BITE2. First,
the ELEMENT column represents the ranking of possible
root causes identified during the troubleshooting process,
sorted in the order from highest to lowest according to the pri-
ority function. The column CLASSIC APPROACH contains
the results of costs incurred in ascertaining whether an ele-
ment is responsible for the failure or not, following the classic
methodology of substituting elements according to the rank-
ing order. In the classic approach, the cost of substituting the
i-th component includes the cost of substituting every (i-1)-th
previous element that turned out to be correct (the best-case
or the worst-case scenario, depending on the case) and the
element involved in each tuple. Regarding our approach,
the set of columns PROPOSED APPROACH contains the
same information with the exception that, in our proposal,
the costs differ depending on whether a scanned element is
working properly and its outputs are correct (lowest cost to
ascertain whether it is correct) or reading every inputs and
outputs, that must be performed when the output is incorrect
and it is necessary to ascertain if the inputs are correct. When
an incorrect element is detected, it is necessary to include
the replacing cost to the cost of the column to determine the
culprit. Moreover, both for correct and incorrect elements,
the cost of analysing the element of the i-th row includes the
cost of ascertaining that the (i-1)-th previous elements are also
correct. Finally, the column SAVINGS contains the percent-
ages of cost reduction of our proposal compared to the classic
proposal in the analysis of each element (the percentage
includes the substitution cost of each element plus the cost

l1’1ttp://www.idea.us.es/tsZOZO/.

VOLUME 9, 2021

http://www.idea.us.es/ts2020/

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

TABLE 10. Comparison of costs and steps of traditional and proposed solutions in BITE2 mode.

CLASSIC APPROACH PROPOSED APPROACH
ELEMENTS SUBSgg;%TION | SAVINGS (%)

CB2 1,000 1,000 350 350 ~35%

CBI 1,000 2,000 700 700 15%
WIRING_CB2_CU_PWR 1,000 3,000 850 850 38.33%
WIRING CBI_CU_PWR 1,000 2,000 1,000 1,000 350%
WIRING_CU_MU BUS 1530 5,530 1.150 1150 51.53%

cU 30,500 36,030 1300 1750 10.49%

MU 10,000 36030 1,400 1.950 74.03%

TABLE 11. Costs per probability of failure and savings in BITE2 mode.

ELEMENTS | PROBABILITY | PROBABILITY in 100 tests = CLASSIC APPR. COST | PROPOSED APPR. COST |
CB2 30 19.23 19,230.76 25,960.50
CB1 30 19.23 38,461.53 32,691
WIRING_CB2_CU_PWR 30 19.23 57,692.30 35,575.50
WIRING_CB1_CU_PWR 30 19.23 76,923.07 38,460
WIRING_CU_MU_BUS 20 12.85 70,897.43 34,438
CU 8 5.12 184,769.23 165,120
MU 8 5.12 236,051.28 61,184
to determine that this element is responsible, represented in
the column with the highest costs in the proposed approach).
. X o | FLIGHT_OPERATION_Sensor1_TX
In the first test, we found a small ranking, in which]
only a few elements of the system intervene, as illustrated
in Table 10. It can be observed that the costs are drastically
. FLIGHT _Sensor2
reduced when the elements analysed are not responsible for [
the failure. When the defective element is at the top of the
ranking, our proposal entails higher costs than the classic
approach. However, the cost decreases significantly when the o [

position of the defective item is lower in the ranking, and costs
can be halved or reduced even more in certain cases.

If we focus on the column of Table 10 that shows the cost of
determining whether the element is incorrect, the cost when
each component fails can be ascertained. However, the anal-
ysis must include the number of times that the each element
is actually the responsible for the malfunction. To evaluate
our proposal, the probability information associated to each
component is used. In the example, the probability is assessed
in the range [0..100], where O represents the least probability
of being responsible for the malfunction. In order to gain a
more general idea of the advantages of applying our proposal,
100 tests are simulated, which take into account the different
probabilities associated to each element. Table 11 includes
the probability of each element where the summatory of the
probability is an impossible 156 in this case. In order to
obtain the column (Probability in 100 tests), a proportional
adjustment is carried out. Based on the column probability
in 100 test, we multiplied this value by the cost to solve the
problem for each element, comparing the two approaches
(columns Classic appr. cost and Proposed appr. cost). For
the 100 elements, the total cost for the classic approach
is Zleelmems probabilityIn100Tests;*ClassicAppr.Cost; =
684, 025.64, and Y"Ements probabilityln100Tests;*

ProposedAppr.Cost; = 393,717.94, thereby saving
290, 307.69 €, which implies saving of 42.44% in the
100 tests.

VOLUME 9, 2021

0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Proposed Approach Cost m Classic Approach Cost

FIGURE 7. Total costs obtained for 100 tests with the two approaches.

B. CONCLUSIONS OF THE VALIDATION
Based on the observations collected in the previous subsec-
tion, four general behaviours can be concluded:

1) For elements in the first positions of the ranking, there
are no major differences between the traditional solu-
tions and our algorithm. In fact, costs remain the same
or even increase using our approach, as well as the
number of steps needed to reach the solution.

2) Inthe average cases, that is, those in which the elements
are in the central positions of the ranking, the use of our
proposal compared to the traditional approach enables
costs to be reduced, and attains a greater reduction in
the lower ranking positions.

3) For the last elements of the ranking, all costs are
reduced by at least 50%. Those cases in which cer-
tain elements are extraordinarily expensive, should be
borne in mind, since the costs of our proposal are also
lower than the costs of the traditional methodology.

4) By carrying out a statistical analysis of the results,
we have reached the conclusion that, assuming that
each failure was repeated 100 times, and taking into

42719

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

rd

Guided Troubleshooting N

. =2 J
@neoy - @ python
Graph database
- Model description N Signature Matrix N Ranking N
F = - e s
'l - V‘W - B CB2 57.896
g WIRING.CB1LMU_PWR A7.805
WIRING OB WU PWR s
o s
l s \ MNTU 8603)
_ — & python \= —/
' f Y
Diagnosis
Module §
~—

FIGURE 8. System architecture for guided troubleshooting.

account the probability of failure of each element,
our proposal produces significant savings: 42.44%,
57.26%, and 40.54%. Figure 7 shows the large differ-
ences between the total costs for the approaches for
each of the three tests.

VI. IMPLEMENTATION DETAILS

Since the solution is oriented towards guiding troubleshoot-
ing during the assembly processes, it is crucial that the imple-
mentation can be executed not only on computers, but also
on tablets or other mobile devices. For this reason, the set of
combined technologies is oriented towards the optimisation
of time and resources, since the main aim is to achieve an effi-
cient and fast response system, with a suitable performance
and minimum resource consumption.

As shown in Figure 8, based on the description of the
system model and the structural relationships between ele-
ments, the troubleshooting system needs a mechanism to
describe the dependencies for the later isolation process.
Hence, we propose the use of labelled graphs for modelling
the problem representation, whereby it is possible to use a
graph database to store and query these graphs, as well as
storing the signature matrix that is used during the execution
of the guided algorithm. On the other hand, the diagnosis
module provides the ranking of possible root causes of fail-
ure, and, by using these possible causes, our system allows
the operator to execute the guiding process to ascertain the
real element responsible for the malfunction.

In order to achieve the aforementioned objectives, our
graph database has been designed as follows:

o Nodes. We have used four different types of nodes:
elements, link variables, operational modes, and sig-
nature matrices. For each node, the graph database only
stores its name.

o Edges. Three types of edges are included:

42720

— Operational-mode structural relationships: These
represent the structural relations that are established
between the elements and variables of the system
in the different operational modes. Thus, if, in a
particular operational mode, a set of elements and
variables must necessarily be connected and either
active or inactive, then the edges linking them will
appear in the graph. To represent this relationship,
each edge that links an element and a variable has
the name of an operational mode and contains addi-
tional information in the way of attributes, such as:
(1) the type of relationship between the element and
the variable (input, output, bidirectional); and (2) a
value that represents the state in which the interface
of the element must necessarily be (0: inactive; 1:
active).

— Operational-mode costs and probabilities: Each
element has an edge to each operational mode.
These edges specify their substitution cost and fail-
ure probability as an attribute. Similarly, each vari-
able also has an edge to each operational mode,
which contains the cost of observation of the vari-
able as an attribute.

— Correspondence between the operational mode and
its signature matrix: These are edges that link the
operational-mode nodes with the signature-matrix
nodes. In this respect, it is possible to determine
which operational mode is associated with which
signature-matrix failure.

Figure 9 shows an example of a graph database of the BITE
mode.

Our proposal is developed by using Python to create
the logic of the algorithm described in Section III and by
employing Neo4j as a graph database. Neodj is a No-SQL
graph-oriented database that is employed to store information

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

® BITe —> WIRING.)

WIRING BITE WIRING..,

WIRING..

swiTc... © H

L_BITE.

WIRING.., [—

FIGURE 9. Example of a BITE mode graph.

related to the data model. Thanks to the structural relation-
ships established between the elements of the studied sub-
system, it can be modelled using a graph topology. For this
type of information structuring, this type of database gives us
significant advantages over an SQL solution, since the queries
made on the data model imply adjacency relationships, which
are as important as the data itself. In addition, due to the
features of the algorithm, most of the queries require the
navigation through different levels of depth, and this is always
more efficient if graphs are used instead of SQL “join”
operations. Moreover, it should be taken into account that
for this small simplified problem, our database supports more
than 100 nodes and 1, 600 edges.

On the other hand, the query language used by this database
favours simplicity, which is an important fact to take into
account, since the lighter the logic used by the system,
the greater the chances of using it on different platforms and
devices. Details of the implementation, more tests, and an
example of the applicability of our proposal is available in
the web.”

VII. RELATED WORK
In previous work, automated troubleshooting has brought
significant benefits for quality assurance in manufacturing or
network systems [17]. On these systems, failures can occur
and various attempts could be made to repair them in the
best way possible. Furthermore, on the aircraft manufacturing
or similar complex systems, faults could propagate or affect
numerous other systems, which leads to a great quantity of
work to solve the fault. Our work has been motivated by the
limitation of available information to perform the best fault
troubleshooting process during the manufacturing. In these
cases, many hypotheses have be to considered and the trou-
bleshooting process could require a high number of steps to
solve a determined failure. The selection of previous studies
that are more closely related to our paper includes topics such
as sequential fault diagnosis [18], interactive troubleshooting
and troubleshooting using Artificial Intelligence techniques.
The MyAID application in [19] provide workers with
interactive troubleshooting of industrial machines. It relies
on hypermedia information systems, and shows step-by-step

2http://www.idea.us.es/ts2020/.

VOLUME 9, 2021

instructions using multimedia material. However, this study
fails to specify how the application minimises the time and
cost in the search for causes of failure.

Another set of studies related to fault diagnosis and trou-
bleshooting for aircraft systems use Artificial Intelligence
techniques. Reference [20] uses a system based on the com-
bination of case-based reasoning and fault tree analysis, and
provides a more precise fault diagnosis and obtains technical
support for maintenance. The troubleshooting process uses
the specific symptoms as input, and the output is a trou-
bleshooting guide tree of similar cases identified. Another
paper [21], presents an intelligent decision system for fault
diagnosis of aircraft. The C4.5 Algorithm is employed to
obtain the best decision trees from the training data available
and Principal Component Analysis (PCA) to decrease the
dimension of the input data. The results show high correct
fault detection rates, low missed detection, and also obtains
the false alarm rates. In this case it is necessary to make
available a complete and proper dataset regarding the faults
for the construction of a model for troubleshooting problems.
However, this is not always possible. Other previous work
proposes to optimising fault troubleshooting processes that
obtain the highest efficacy. The efficacy could depend on vari-
ous criteria, such as fault probability, cost, and time. The input
of this work is a list of suspected components that have been
identified as possible causes of failure, and the output is the
optimal ordering of troubleshooting tasks to solve the fault in
the system. For example, Liu [22] proposes a utility function
based on the probability of components suspected of failing
and the time required to verify each component in order to
obtain the optimal ordering. Furthermore, a mathematical
proof is given such that the ordering obtained minimises the
mean troubleshooting time, cost, or a combination of the
two. This work only takes into account the list of suspected
components, while our work is richer because the variables
associated with these components are also considered in order
to optimise the troubleshooting process.

In reference [23], another approach towards effective
troubleshooting decisions is proposed. It is based on
Bayesian Networks and the Multi-criteria Decision Approach
(MCDA). The efficacy of the troubleshooting process
depends on fault probability, cost, time, and risk of repair
action. The approach ensures a cost-saving, highly efficient,
and low-risk troubleshooting selection in each step, where
different alternatives are considered with regard to the pre-
vious criteria. An automobile engine startup failure is used
as a case study, but fails to show any validation of the results
obtained. In [24], the authors propose a framework to detect
anomalies in aircraft systems during flight. However, it does
not provide a systematic methodology for the resolution of
the identified failures.

Recently, a set of new topics have appeared related to auto-
mated fault troubleshooting, such as Self-Healing [25], Smart
Troubleshooting [10], and Smart Maintenance [26], [27].
These concepts include frameworks, methodologies and
related tools. Furthermore, the modelling analysis, and

42721

http://www.idea.us.es/ts2020/

IEEE Access

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

recovery of information from failures is proposed in an auto-
matic or (semi)automatic way. These could provide very
interesting alternatives to addressing the problem of the effec-
tive fault troubleshooting process.

Finally, some other proposals have been developed to
support both monitoring and troubleshooting using machine
learning [28], [29], but they did not take into account the
change of the observation in the model to reduce time and
cost. However, to the best of our knowledge, our solution is
the first to automatically create and adapt the troubleshooting
problem according to observations, by optimising its solution
taking into account the cost of signal reads and component
substitutions.

VIIl. CONCLUSION AND FUTURE WORK

A proper troubleshooting process, which minimises the time
and cost of analysis in the search for causes of failure,
is crucial for the daily operation of manufacturing companies.
This is especially relevant with troubleshooting processes
that work with systems whose components are expensive and
whose complexity requires a very tricky analysis that can be
extended widely in time, and can cause significant losses and
delays. In this paper, we focus on the usefulness of reading
variables and the interactivity of the troubleshooting guiding
the process to improve its performance. Our solution is based
on a graph-oriented approach that provides the user with
the necessary information to help improve decision-making
in the search for the element responsible for the failure.
To this end, we have assumed the existence of 5 essential
aspects: (1) a model that contains all the structural relation-
ships between the different elements of the system, which
can be interpreted as a graph; (2) the cost and probability
associated with the failure of components, which will be
used for ranking the causes ordered; (3) the ability to read
values in intermediate elements (links); (4) the possibility
of transforming a model with MIMO elements into MISOs;
and, (5) the capability of being able to exonerate elements
through observations. With all this information, it is possible
to generate an algorithm capable of following a certain order,
indicating the application of actions that can be carried out
on each element of the ranking, and the costs that his/her
decision entails, as well as acting accordingly, exonerating,
blaming or isolating the different elements and variables that
explain the malfunctioning of the system. The algorithm has
been tested in a real scenario, and the degree of cost reduction
that can be achieved is analysed.

Although, in some cases, our solution may seem more
tedious than the traditional methodology, our validation and
the fact that the experts participate in the project demonstrate
that costs are reduced and that the unnecessary substitution
of very expensive elements may easily disappear.

As an extension to this paper, we continue to work on
improving the ranking order to ensure the optimal way to
analyse the system. Furthermore, we are investigating how
to include 3 types of multiple failure: more than one single
simultaneous failure; failures where there is more than one

42722

element responsible for the fault; and failures that produce
multiple variables with incorrect states. Consequently, we are
also analysing the best way to include information from this
multiplicity in the ranking prioritisation function. Finally,
we are working on the analysis of decision-making and results
obtained in each execution, using machine learning, in an
effort to improve the weights given for probability in an
automated way and based on real data.

REFERENCES

[1] M. Cordier, P. Dague, M. Dumas, F. Lévy, J. Montmain, M. Staroswiecki,
and L. Travé-Massuyes, “A comparative analysis of Al and control theory
approaches to model-based diagnosis,” in ECAI 2000, W. Horn, Ed. Berlin,
Germany: 10S Press, Aug. 2000, pp. 136-140.

R. Ceballos, M. T. Gémez-Lopez, R. M. Gasca, and C. D. Valle,

“A compiled model for faults diagnosis based on different techniques,”

AI Commun., vol. 20, no. 1, pp. 7-16, 2007.

D. Borrego, M. T. Gémez-Lépez, and R. M. Gasca, “Minimizing test-point

allocation to improve diagnosability in business process models,” J. Syst.

Softw., vol. 86, no. 11, pp. 2725-2741, Nov. 2013.

L. Travé-Massuyes, T. Escobet, and R. Milne, “Model-based diagnosabil-

ity and sensor placement application to a frame 6 gas turbine subsystem,”

in Proc. 17th Int. Joint Conf. Artif. Intell. (IJCAI), B. Nebel, Ed. Seattle,

WA, USA: Morgan Kaufmann, 2001, pp. 551-556.

[5] S. Du and L. Xi, “Fault diagnosis in assembly processes based on
engineering-driven rules and PSOSAEN algorithm,” Comput. Ind. Eng.,
vol. 60, no. 1, pp. 77-88, Feb. 2011.

[6] E. Frontoni, J. Loncarski, R. Pierdicca, M. Bernardini, and M. Sasso,
“Cyber physical systems for industry 4.0: Towards real time virtual reality
in smart manufacturing,” in Augmented Reality, Virtual Reality, and Com-
puter Graphics, L. T. D. Paolis and P. Bourdot, Eds. Cham, Switzerland:
Springer, 2018, pp. 422-434.

[7]1 A. Tedesco, M. Gallo, and A. Tufano, “A preliminary discussion of
measurement and networking issues in cyber physical systems for indus-
trial manufacturing,” in Proc. IEEE Int. Workshop Meas. Netw. (M N),
Sep. 2017, pp. 1-6.

[8] U. Wetzker, I. Splitt, M. Zimmerling, C. A. Boano, and K. Romer, “Trou-
bleshooting wireless coexistence problems in the industrial Internet of
Things,” in Proc. IEEE Int. Conf. Comput. Sci. Eng. IEEE Int. Conf.
Embedded Ubiquitous Comput., 15th Int. Symp. Distrib. Comput. Appl.
Bus. Eng., Paris, France: IEEE Computer Society, Aug. 2016, p. 98.

[9]1 H. Warnquist, J. Kvarnstrom, and P. Doherty, “A modeling framework for
troubleshooting automotive systems,” Appl. Artif. Intell., vol. 30, no. 3,
pp. 257-296, Mar. 2016.

[10] M. Caporuscio, F. Flammini, J. Thornadtsson, N. Khakpour, and P. Singh,
“Smart-troubleshooting connected devices: Concept, challenges and
opportunities,” Future Gener. Comput. Syst., vol. 111, pp. 681-697,
Oct. 2020.

[11] N. Papakostas, P. Papachatzakis, V. Xanthakis, D. Mourtzis, and
G. Chryssolouris, “An approach to operational aircraft maintenance plan-
ning,” Decis. Support Syst., vol. 48, no. 4, pp. 604—612, Mar. 2010.

[12] R. Kannan, S. S. Manohar, and M. S. Kumaran, ‘“Nominal features-based
class specific learning model for fault diagnosis in industrial applications,”
Comput. Ind. Eng., vol. 116, pp. 163-177, Feb. 2018.

[13] Y.Jiang, B. An, M. Huo, and S. Yin, “Design approach to MIMO diagnos-
tic observer and its application to fault detection,” in Proc. IECON-44th
Annu. Conf. IEEE Ind. Electron. Soc., Washington, DC, USA, Oct. 2018,
pp. 5377-5382.

[14] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schrder, Diag-
nosis and Fault-Tolerant Control, 2nd ed. Berlin, Germany: Springer, 2010.

[15] J.C.ChanandJ. A. Abraham, “A study of faulty signatures using a matrix
formulation,” in Proc. Int. Test Conf., Sep. 1990, pp. 553-561.

[16] D.Jung, “A generalized fault isolability matrix for improved fault diagnos-
ability analysis,” in Proc. 3rd Conf. Control Fault-Tolerant Syst. (SysTol),
Barcelona, Spain, Sep. 2016, pp. 519-524.

[17] T.Ogata, A. Takeuchi, S. Fukuda, T. Yamada, T. Ochi, K. Inoue, and J. Ota,
““Characteristics of skilled and unskilled system engineers in troubleshoot-
ing for network systems,” IEEE Access, vol. 8, pp. 80779-80791, 2020.

[18] M. Vomlelové and J. Vomlel, ‘“Troubleshooting: NP-hardness and solution
methods,” Soft Comput.—Fusion Found., Methodologies Appl., vol. 7,
no. 5, pp. 357-368, Apr. 2003.

2

—

3

[l

[4

=

VOLUME 9, 2021

B. Ramos-Gutiérrez et al.: Self-Adaptative Troubleshooting for to Guide Resolution of Malfunctions in Aircraft Manufacturing

IEEE Access

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

V. Villani, N. Battilani, G. Lotti, and C. Fantuzzi, “Myaid: A troubleshoot-
ing application for supporting human operators in industrial environment,”
IFAC-PapersOnLine, vol. 49, no. 19, pp. 391-396, 2016.

X. P. Yu, Q. Li, and X. Hu, ‘““Aircraft fault diagnosis system research based
on the combination of CBR and FTA,” in Proc. Ist Int. Conf. Rel. Syst.
Eng. (ICRSE), Oct. 2015, pp. 1-6.

S. A. Z. Wang, J.-L. Zarader, and K. Youssef, “A decision system for air-
craft faults diagnosis based on classification trees and PCA,” in Intelligent
Autonomous Systems 12. Berlin, Germany: Springer, 2013, pp. 411-422.
J. Liu, “Optimal task ordering for troubleshooting systems faults,” in Proc.
IEEE Aerosp. Conf., Mar. 2005, pp. 3709-3714.

Y. Huang, Y. Wang, and R. Zhang, “‘Fault troubleshooting using Bayesian
network and multicriteria decision analysis,” Adv. Mech. Eng., vol. 6,
Jan. 2014, Art. no. 282013.

H. Lee, G. Li, A. Rai, and A. Chattopadhyay, ‘‘Real-time anomaly detec-
tion framework using a support vector regression for the safety moni-
toring of commercial aircraft,” Adv. Eng. Informat., vol. 44, Apr. 2020,
Art. no. 101071.

A. Asghar, H. Farooq, and A. Imran, “Self-healing in emerging cellular
networks: Review, challenges, and research directions,” IEEE Commun.
Surveys Tuts., vol. 20, no. 3, pp. 1682-1709, 3rd Quart., 2018.

Y. Liu, Y. Wu, and Z. Kalbarczyk, ‘“‘Smart maintenance via dynamic fault
tree analysis: A case study on Singapore MRT system,” in Proc. 47th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2017,
pp. 511-518.

M. Ashjaei and M. Bengtsson, “Enhancing smart maintenance manage-
ment using fog computing technology,” in Proc. IEEE Int. Conf. Ind. Eng.
Eng. Manage. (IEEM), Dec. 2017, pp. 1561-1565.

A. D’Alconzo, P. Barlet-Ros, K. Fukuda, and D. Choffnes, ‘“Machine
learning, data mining and big data frameworks for network monitoring and
troubleshooting,” Comput. Netw., vol. 107, pp. 1-4, Oct. 2016.

C. Zhang, Y. He, B. Du, L. Yuan, B. Li, and S. Jiang, “Transformer
fault diagnosis method using IoT based monitoring system and ensemble
machine learning,” Future Gener. Comput. Syst., vol. 108, pp. 533-545,
Jul. 2020.

BELEN RAMOS-GUTIERREZ is currently a Soft-
ware Engineering and Technology Ph.D. Stu-
dent with the University of Seville. Her research
interests include process mining, data extraction,
and optimisation for process mining techniques;
and troubleshooting and decision support systems
in industrial environments. She is also working
as a Predoctoral Researcher with the University
of Seville and collaborate on projects involving
industrial aspects related to logistics-port and aero-

nautical environments. Her goal is to improve and automate the extraction
and processing of heterogeneous data from industrial environments for
exploitation with process mining techniques.

MARIA TERESA GOMEZ-LOPEZ is currently
pursuing the Ph.D. degree in computer science.
She is also a Lecturer with the University of Seville
and the Head of the IDEA Research Group. Her
research interests include model-based diagnosis
in business processes and data management in big
data environment. She has led several private and
public research projects and has published more
than 20 impact articles (DSS, IS, DKE, IST, and
so on). She was nominated as a member of several

Program Committees (BPM, ER, EDOC, CAISE Doctoral Consortium, and
so on). She has been reviewing for several international journals. She has
been invited speaker at various conferences and summer schools.

VOLUME 9, 2021

DIANA BORREGO received the Ph.D. degree
in computer science. She is currently a Lecturer
with the University of Seville and a member of
the IDEA Research Group. Her research interests
include the verification and diagnosis of business
processes through automatic reasoning for their
quality improvement. Her works have appeared
in international conferences and journals, includ-
ing Information and Software Technology, Data &
Knowledge Engineering, the Journal of Systems

and Software, and Computers in Industry.

RAFAEL CEBALLOS received the M.Sc. and
Ph.D. degrees from the Department Computer
Languages and Systems, University of Sevilla,
in 2002 and 2011, respectively. He is currently
working as an Assistant Professor with the Uni-
versity of Sevilla. He is the author and coauthor
of many book chapters, conference papers, and
impact journals articles (Applied Sciences, Infor-
mation and Software Technology, and Data &
Knowledge Engineering). He has been awarded in

CAEPIA-05 Doctoral Consortium. He was an Invited Speaker with the Inter-
national Summer School on Fault Diagnosis of Complex Systems in 2019.
His research interests include business processes and data management,
model-based diagnosis, software testing, and cybersecurity.

cle Simulator for Testing (PROST), Flight Recorder Industrial & Integral
Data Analyzer (FRIIDA), and the latest, the Automatic Troubleshooting
System (ATS).

RAFAEL M. GASCA received the Ph.D. degree in
computer science, in 1998. He is currently a Pro-
fessor with the University of Seville, Spain, where
he has been responsible for the Quivir Research
Group since 1999. His research interests include
fault diagnosis, cybersecurity technologies, and
business process management systems. He has
been involved in European and Spanish research
projects and has published numerous articles
in Computer Science journals and international
conferences.

ANTONIO BAREA has been working with Air-
bus since 2007. He is currently the responsible
for the Avionics & Mission Systems Technologies
Industrialization as a part of the Manufacturing
Engineering. He has led many industrial innova-
tions to improve the quality and reduction of costs
for system testing process in the aerospace indus-
trial facilities, which are being published or under
patent review, such as the Mini Multi Interface
Box Simulator (MMIBS), the Prow Radar Obsta-

42723

