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ABSTRACT Accuracy and stability of the myoelectric prosthetic arm digital proportional control strongly
depends on shape of the rectifiedmotor unit action potential (MUAP) envelope. Tomitigate effects caused by
the envelope-induced torque ripples, mechanical vibrations (TRMV), and electromechanical delays (EMD),
in this article we develop in discrete-time state-space the unbiased finite impulse response (UFIR) filter,
Kalman filter (KF), and game theory recursive H∞ filter. The filters developed are called the cUFIR filter,
cKF, and cH∞ filter and applied to extract a smooth near Gaussian MUAP envelope by viewing ripples as
colored measurement noise (CMN). Additional UFIR and Rauch-Tung-Striebel (RTS) smoothers are also
used to improve the performance when the EMD is acceptable. Based on experimental examples of prosthetic
arm control, it is shown that the advanced cUFIR filter, cKF, and cH∞ filter improve the performance of the
original filters by the factor of about 10 and essentially reduce the TRMV and EMD.

INDEX TERMS Electromyography, MUAP envelope, filtering, smoothing, prosthetic arm control.

I. INTRODUCTION
The electromyography (EMG) technology has been devel-
oped several decades ago [1]–[3] to evaluate and record
the electrical activity produced by skeletal muscles [4], [5].
It implies using information extracted along nerves and trans-
mitting informative signals generated by nerves as a series of
electrical discharges [6], [7]. In bioengineering, the EMG sig-
nals are mostly used to provide efficient control of prostheses,
such as artificial arms and feet. To acquire an EMG signal,
a needle electrode is inserted through the skin into the muscle
and there are recognized several electrical activities. The
insertional activity is referred to the electrical activity when
a muscle stays at rest. The abnormal spontaneous activity is
any neural activity that may occur, for example, due to nerve
or muscle damage. Acquired the nerve-generated electrical
signals, a motor unit action potential (MUAP) is formed as a
sum of all the electrical activities and the MUAP waveform
is evaluated to extract useful information about somebody’s
motion with a sufficient accuracy.

In the standard proportional myoelectric control, a raw
MUAP signal goes through a matching amplifier and
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high-pass filter to a rectifier, which low-pass filter extracts
the MUAP envelope. The MUAP envelope is then smoothed,
normalized, and converted to a pulse that drives a servo
motor or some other device. After normalized, the MUAP
envelope can also be digitized using an analog-to-digital con-
verter (ADC) and used as a control signal. In multiple degree
of freedom (DOF) control, this scheme is repeated for each
DOF and a digitized vector signal is related to a vector control
signal via a nonnegative synergy matrix [8]. Although this
basic scheme has gained wide currency with various modi-
fications, it has two drawbacks. Smoothing typically causes
a biological phenomenon known as the electromechanical
delay (EMD), which disrupts a synchronicity between a mus-
cle and a prothesis. Also ‘‘ripples’’ in the MUAP envelope
cause the torque ripples and mechanical vibrations (TRMV).
In some algorithms the EMG data undergo preprocessing to
remove the raw EMG data external noise, sensor noise, elec-
trocardiographic interference, spurious background spikes,
motion artifacts, and power line interference [7], [9]. As has
been shown in [10], [11], extra efforts to clean EMG signals
before extracting the envelope generally result in a higher
accuracy and stability.

A better and more stable control performance can be
achieved in EMG-based digital proportional control. Here,
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a raw MUAP signal goes through a matching amplifier to an
ADC. Then theMUAP bursts are rectified to become positive
and the MUAP envelope is extracted using digital signal
processing (DSP) methods [4], [6], [7], [12]–[14]. The most
widely used standard techniques developed for the MUAP
envelope extraction employ the mean square value (MSV)
criterion [4], waveform produced by the rectified signal [15],
[16], and the Hilbert transform [17]. Since these methods
do not completely remove artifacts and ripples, the output is
sometimes smoothed that, however, may yield unacceptably
large bias errors and does not prevent spikes [18], [19]. The
envelope can be improved using the Savitsky-Golay smoother
combined with a low-pass filter [20], but only if the time-
delay-lag causing EMG is not an issue.

Having a digital EMG signal envelope sequence, more
sophisticated methods of optimal and robust filtering are
also applied to yield generally a more smooth envelope.
The Kalman filter (KF) has been used as an optimal EMG
signal envelope extractor in [21]–[26]. Although the KF
allows for some improvement with respect to the stan-
dard filters, it also incur a significant loss in performance,
because ripples in MUAP bursts in no way can be treated as
white Gaussian. The performance can be improved using the
H∞ filter, which requires all errors to be just norm bounded.
Since ripples in the MUAP burst are bounded by saturation,
the game theory H∞ filter significantly reduces errors by a
properly set scalar correction factor θ [27]. However, this
filter is highly sensitive to θ and prone to divergence [28].
The unbiased finite impulse response (UFIR) filter [29] is
another opportunity to extract a smooth envelope. This filter
does not require any information about zero mean noise,
is blind on given averaging horizons, and is thusmore suitable
for EMG signals. Nevertheless, recent investigations have
shown [30] that neither of the standard optimal and robust
filters is able to make the MUAP envelope near Gaussian.
It was suggested in [30] to view ripples in theMUAP envelope
as Markov-Gauss colored measurement noise (CMN) and
modify the filters [31]–[33]. Even so, the approach still has
not been extended to myoelectric control that motivates our
present work.

In this article, we design a structure of a digital myo-
electric control system for arm proportional control, develop
the UFIR, Kalman, and game theory H∞ filter by viewing
ripples in the rectified MUAP signals as CMN, apply these
filters along with additional UFIR and Rauch-Tung-Striebel
(RTS) smoothers to make the envelope near Gaussian, and
test the solutions by experimental examples of myoelectric
arm control. The main contributions are the following:
• Structure of a digital myoelectric system for prosthetic
arm proportional control.

• Developments of the UFIR, Kalman, and game theory
H∞ filters under CMN for MUAP envelope extraction.

• About tenfold improvement of the myoelectric control
performance using the filters developed.

The rest of the article is organized as follows. In Section II,
we consider the myoelectric prosthetic arm proportional

control problem and formulated the investigation problem.
A digital myoelectric proportional control scheme is dis-
cussed in Section III. The UFIR, Kalman, and game theory
H∞ filters are developed in Section IV to remove MUAP
ripples considered as CMN. Experimental testing of the filters
developed is provided in SectionV.Applications to prosthetic
arm control are given in Section VI and concluding remarks
can be found in Section VII.

II. MYOELECTRIC PROSTHETIC ARM PROPORTIONAL
CONTROL AND PROBLEM FORMULATION
A sensor array along an arm is used in biotechnology to
acquire the EMG signal and nerve studies. It is conducted into
sensory action potentials and the compound muscle action
potentials. Thereby, an actual arm is used to make control of a
prosthetic arm as an intuitive controlling mechanism by using
the EMG signal picked up by electrodes. A generative model
exploiting surface EMG signals in the context of myoelectric
control was proposed in [8], [34]. It assumes that there exists
control information at the spinal level, which quantifies the
control information as a vector of L force functions

F(t) =
[
f (1)(t) f (2)(t) . . . f (L)(t)

]T
, (1)

where f (j)(t), j ∈ [1,L], is a force function representing the
intended activation level of the jth DOF and L is the number
of the DOFs. It is also assumed that the activation function
vector ofM muscles involved in the control is

Z (t) =
[
z(1)(t) z(2)(t) . . . z(M )(t)

]T (2)

where z(i)(t), i ∈ [1,M ], is the ith activation function. Vec-
tors (1) and (2) are coupled with a constant matrix S ∈ RM×L

as Z (t) = SF(t), where matrix S indicates that the ith muscle
MUAP participates in the activation of the jth prosthesis DOF.
Since the jth force function f (j)(t) is a function of a set Z (t) of
the activation functions, the ith EMG signal u(i)(t) is linked
to the jth force function f (j)(t) by the convolution and it has
been emphasized that, due to the dependence f (j)[t,Z (t)],
the convolution is a very complex nonlinear transformation.
Further substitution of the EMG signal vector

U (t) =
[
u(1)(t) u(2)(t) . . . u(M )(t)

]T (3)

with rectified values provided in the means square
value (MSV) sense as

Û2(t) =
[
û(1)

2
(t) û(2)

2
(t) . . . û(M )2 (t)

]T
(4)

allows approximating the interaction between Û2(t) and Z (t)
with a linear matrix form Û2(t) = HZ (t), where H is said
to be a diagonal matrix H = diag(h1 h2 . . . hM ) of the gain
coefficients hi, i ∈ [1,M ]. That finally results in a relation

Û2(t) = W̃F(t) , (5)

where W̃ = HS couples the force vector F(t) with the
EMG vector rectified in the MSV sense as Û2(t), and sev-
eral approaches were developed to implement (5) practically.
For example, provided the squared EMG envelope Û2(t) for
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M > L, the force vector F(t) can be found by solving the
inverse linear problem (5) as

F(t) = (W̃ T W̃ )−1W̃ T Û2(t) . (6)

The following drawback of the above approach has be
mentioned in [35]. If a user is unable to provide a DOF-wise
calibration, then an inadequately determined muscle synergy
matrix may result in poor control outcome. An improvement
was made in [35] by representing the root MSVs (RMSVs) of
an ith MUAP with the T -length signal Û (t;T ) ∈ RM×T and
the T -length forced signal vector F(t;T ) ∈ R2L×T , which
are coupled with a latent nonnegative matrixW ∈ RM×2L as

Û (t;T ) = WF(t;T ) . (7)

Referring to the sparseness of the solution, the objective
function subject toW > 0 and F > 0 was then chosen as

min
W ,F

1
2
‖Û−WF‖2F + λ

T∑
τ=1

‖F(t; τ )‖21 , (8)

where ‖x‖F is the Frobenius norm, ‖x‖1 is the 1-norm
(or Manhattan norm), and λ > 0 is a regularization scalar to
be optimized. For this classical optimization problem, it was
shown that both F and W can be updated iteratively and so
that the problem (7) is feasible. Solved (8), the desired force
vector F can finally be represented via the myoelectric signal
vector similarly to (6).

The approach developed in [35] improves the performance
of the approach suggested in [8] by involving signals of
length T and solving the optimization problem (8). Never-
theless, it still may be inefficient due to the envelope ripples,
which highly affect the control performance. If to reduce
ripples by smoothing, then the forced function will experi-
ence the EMD, which may disrupt the control synchronicity.
The effects can be mitigated if we take into account that
the left-hand side in (8) results in the unbiased or maximum
likelihood (ML) estimate and the right-hand side can largely
be avoided by viewing rippels in the EMG envelope as the
coloredmeasurement noise (CMN) that motivates our present
work.

The problem now formulates as follows. To improve the
myoelectric control performance, we would like to con-
sider and modify a digital myoelectric proportional control
scheme, treat ripples in the MUAP signal envelope as CMN,
develop the UFIR filter, KF, and game theory H∞ filter
to remove ripples from the MUAP envelope considered as
Markov-Gauss CMN, test the solutions by different EMG
data, and evaluate the effectiveness for the myoelectric pros-
thetic arm control.

III. DIGITAL MYOELECTRIC PROPORTIONAL CONTROL
SCHEME
A generalized structure of the myoelectric prosthetic arm
proportional digital control system considered in this article is
shown in Fig. 1. The MUAP signals acquired fromM sensors
go to the matching amplifier due to low-level amplitudes and

the amplified signals are converted by ADCs to digital wave-
forms. All other operations are provided in digital formats
using DSP methods. Namely, digitized data undergo rectifi-
cation, envelope optimal extraction, and possibly smoothing.
The M MUAP envelopes are coupled with L force signals
to provide finally control of a prosthesis arm having L DOFs
via a constant matrixG determined using the above described
approaches [8], [35].

After rectified,M signals y(i)k , i ∈ [1,M ] go to the optimal
filter and the envelope of the ith MUAP appears as s(i)k , i ∈
[1,M ]. Each MUAP is related to all L or several DOFs and
signals s(i)k , i ∈ [1,M ], are coupled with L force signals. The
digital vectors of the MUAP envelopes and force functions,
respectively,

Sk =
[
s(1)k s(2)k . . . s(M )

k

]T
, (9)

Fk =
[
f (1)k f (2)k . . . f (L)k

]T
, (10)

are coupled via a synergy conversion matrix G ∈ RL×M as

Fk = GSk , (11)

where matrix G indicates that the ith muscle MUAP partici-
pates in the activation of the jth prosthesis DOF.MatrixG can
be determined using the techniques developed in [8], [34],
[35] and is represented with the relevant matrix in (6). This
matrix is commonly supposed to be time-invariant but with
an option to be slightly adjusted by a user.

Since the extracted MUAP envelope is typically far from
ideal, it can be represents as Sk = S̄k + 1Sk , where S̄k is
a desired shape and 1Sk is a deviation from S̄k . It follows
from (11) that in the proportional control, vector Fk will
experience an error 1Fk = G1Sk . To reduce 1Sk causing
TRMV, the Gaussian shape of S̄k is desirable for two reasons:
1) it does not produce side lobes in the frequency domain and
2) it has smooth edges. Finding a compromise between the
MUAP envelope smoothness and EMD is always an issue in
myoelectric control as illustrated in Fig. 2, where filtering of
the rectified MUAP data is provided by applying an UFIR
filter [36] on different averaging horizons of N points, also
called time windows. As can be seen, N = 46 allows for
a well-smoothed first burst, while the more intensive second
one is not well shaped. By N = 180, the second burst acquire
an acceptable shape and the first one becomes more smooth.
However, latency in both envelopes may cause an unac-
ceptable EMD and errors in the force function calculation.
In what follows, we will show that improving the force
function shape, thereby avoiding essential TRMV and EMD,
can be provided by viewing ripples in the MUAP envelope
as CMN.

A. STATE-SPACE MODEL OF MUAP ENVELOPE
Looking into signals in Fig. 1, one can resume that y(i)k is
highly noisy and thus cannot be involved directly to myo-
electric control. Furthermore, noise is not white Gaussian
and hence optimal estimators such as the KF will not serve
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FIGURE 1. A generalized structure of the myoelectric prosthetic arm direct proportional digital control system.

FIGURE 2. Extracting the envelope from a rectified MUAP signal by
applying an UFIR filter on different horizons.

properly. On the other hand, variations in the rectified MUAP
(Fig. 2) are reminiscent of a strongly colored Markov-Gauss
noise [33], although having another physical meaning. Since
a desirable envelope is Gaussian, we approximate it between
two discrete points with a degree polynomial, introduce a
state x(i)k ∈ RK , whereK is the number of theMUAP envelope
states, and represent with the following state space model

x(i)k = Ax(i)k−1 + Bw
(i)
k , (12)

y(i)k = Hx(i)k + v
(i)
k , (13)

where y(i)k is a scalar observation of the ith MUAP envelope.
For polynomial approximation, entries of matrix A ∈ RK×K

are defined by the Taylor series [37],

A =



1 τ
τ 2

2
. . .

τK−1

(K − 1)!

0 1 τ . . .
τK−2

(K − 2)!

0 0 1 . . .
τK−3

(K − 3)!
...

...
...

. . .
...

0 0 0 . . . 1


. (14)

The envelope zero mean noise w(i)
k ∈ RP is still a subject for

deep investigations along with a proper matrix B ∈ RK×P

and the observation matrix is H = [ 1 0 . . . 0 ] ∈ R1×K .
In the first order approximation, w(i)

k can be supposed to be
white Gaussian, w(i)

k ∼ N (0,Q(i)), with the covariance Q(i).
But most realistically it can be viewed as colored or even
as a bounded disturbance. Finally, the scalar measurement
error v(i)k representing variations and artifacts in the MUAP
envelope in no way can be treated as white Gaussian. Looking
into Fig. 2, v(i)k can be thought of as CMN and, as suggested
in [30], we represent it with the Markov-Gauss model

v(i)k = ψ
(i)v(i)k−1 + ξ

(i)
k , (15)

where 0 < ψ (i) < 1 is a coloredness factor associated with
the ith MUAP. A scalar zero mean driving noise ξ (i)k is still
also a subject for investigations. In this article, we will sup-
pose that this noise is white Gaussian, ξ (i)k ∼ N (0, σ (i)2

ξ ), with

the standard deviation σ (i)
ξ , although it can also be thought of

as having a uniform or even heavy-tailed distribution.
Estimated the rectified MUAP envelope state vector

by (28) as x̂(i)k , the envelope signal s(i)k can be calculated as
s(i)k = x̂(i)1k , where x̂

(i)
1k is the first state in vector x̂(i)k , and

vectors (9) and (10) coupled with one another by Fk = GSk
(11) as

f (1)k
f (2)k
...

f (l)k

 =

g11 g12 . . . g1M
g21 g22 . . . g2M
...

...
. . .

...

gL1 gL2 . . . gLM



s(1)k
s(2)k
...

s(M )
k

 , (16)

where the components of matrix G can be specified by (6) or
solving (8) using the approaches developed in [8], [35].

IV. ALGORITHM FOR MUAP ENVELOPE EXTRACTION
UNDER CMN
To apply filtering algorithm for model (12) and (13) with
CMN (15), we use the approach originally proposed in [31]
and developed in [30], [33]. To this end, we first transform the
observation model to another one with white Gaussian noise
and then modify the filtering algorithms.
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A. STATE SPACE MODEL TRANSFORMATION
To avoid the CMN v(i)k in (13), consider a new observation ζ (i)k
as measurement differences and write

ζ
(i)
k = y(i)k − ψ

(i)y(i)k−1 ,

= Hx(i)k + v
(i)
k − ψ

(i)Hx(i)k−1 − ψ
(i)v(i)k−1 . (17)

Then represent (16) in the standard form as

ζ
(i)
k = D(i)x(i)k + v̄

(i)
k , (18)

whereD(i)
= H−0(i), 0(i)

= ψ (i)HF−1, and the scalar white
Gaussian noise v̄(i)k ∼ N (0, σ (i)2

v̄ ) is

v̄(i)k = 0
(i)Bw(i)

k + ξ
(i)
k (19)

with the properties

σ
(i)2

v̄ = E{v̄(i)
2

k } = 0
(i)8(i)

+ σ
(i)2
ξ , (20)

L(i) = E{v̄(i)k w
(i)T

k } = 0
(i)BQ(i) , (21)

where matrix 8(i) is defined by

8(i)
= BQ(i)BT0(i)T . (22)

We can now work with a new state-space model (12)
and (18), in which w(i)

k and v̄(i)k are white Gaussian, but
time-correlated with the covariance L(i) given by (20).
Provided (12) and (18), the UFIR filter, KF, and H∞ filter
can be modified as will be shown next.

B. UFIR FILTERING ALGORITHM
The iterative UFIR filtering algorithm [37], [38] employs
most recent data from a horizon [m, k] of N points, where
m = k − N + 1, and does not require any information about
zero mean noise and initial values. This filter is thus most
suitable for the MUAP envelope extraction, provided that
the horizon is set optimally in the MSE sense as Nopt. Now
observe thatw(i)

k and v̄(i)k are bothwhite and zeromean and that
their time-correlation does not yield any bias. Thus, the UFIR
filter can be applied directly to (12) and (17) as shown in [36]
if we modify matrices. To recognize the difference, we will
call the UFIR filter modified for CMN the cUFIR filter.

The cUFIR filter can be designed for the ith MUAP enve-
lope as follows. Given the horizon length N , rectified MUAP
data y(i)k , and proper ψ (i), the initial state can be computed in
a short batch form as [36]

x̄(i)s = G(i)
s C

(i)T
m,s Y

(i)
m,s (23)

using the extended data vector

Y (i)
m,s =

[
y(i)m y(i)m+1 . . . y

(i)
k

]T
(24)

and the generalized noise power gain (GNPG) G(i)
s =

(C (i)T
m,s C

(i)
m,s)−1, where a short batch matrix C (i)

m,s is composed

of matrices A and D(i) as

C (i)
m,s =


D(i)A−(K−1)

...

D(i)A−1

D(i)

 . (25)

Then both x̄(i)s and G(i)
s can be updated iteratively using an

auxiliary time index l starting with l = s + 1 and using the
recursions

ζ
(i)
l = y(i)l − ψ

(i)y(i)l−1 , (26)

D(i)
= H − ψ (i)HA−1 , (27)

G(i)
l = [D(i)TD(i)

+ (AG(i)
l−1A

T )−1]−1 , (28)

K (i)
l = G(i)

l D
(i)T , (29)

x̄(i)l = Ax̄(i)l−1 + K
(i)
l (ζ (i)l − D

(i)Ax̄(i)l−1) , (30)

and the output estimate is taken when l = k as x̂(i)k = x̄(i)k .
It can easily be shown that ψ (i)

= 0 makes the cUFIR filter
the standard UFIR filter.

The error covariance P(i)k of the UFIR filter can be com-
puted approximately by the KF error covariance if to replace
the Kalman gain Kk with GkD(i)T as

P(i)k = (I − G(i)
k D

(i)TD(i))P(i)−k (I − GnD(i)TD(i))T

+G(i)
k D

(i)T (0(i)8(i)
+ R)D(i)G(i)

k

−2(I − G(i)
k D

(i)TD(i))8(i)D(i)G(i)
k

= P(i)−k − 2(P(i)−k D(i)T
+8(i))D(i)G(i)

k

+G(i)
k D

(i)T S(i)
n D

(i)G(i)
k

= P(i)−k − (2P(i)−k D(i)T
+ 28(i)

+G(i)
k D

(i)T S(i)
k )D(i)G(i)

k , (31)

where the prior error covariance P(i)k and innovation covari-
ance S(i)

k are given by

P(i)−k = AP(i)k−1A
T
+ BQ(i)BT , (32)

S(i)
k = D(i)P(i)−k D(i)T

+ R

+H8(i)
+8(i)TD(i)T . (33)

Although the cUFIR algorithm does not require the error
covariance, unlike the KF, matrix P(i)k may be needed to
evaluate filtering errors.

C. KALMAN FILTERING ALGORITHM
The KF can be developed as cKF to extract the ith MUAP
envelope under CMN as follows. Given the initial x̂(i)0 and P(i)0
and the coloredness factor ψ (i), the prior error covariance is
computed by

P(i)−k = AP(i)k−1A
T
+ Q(i) . (34)

The estimate and error covariance can then be updated by
developing the alternative KF recursions originally derived
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in [27] and modified in [28]. Accordingly, we have

ζ
(i)
k = y(i)k − ψ

(i)y(i)k−1 , (35)

D(i)
= H − ψ (i)HA−1 , (36)

0(i)
= ψ (i)HA−1 , (37)

R̄(i) = σ (i)2

v̄ = 0(i)BQ(i)BT0(i)T
+ σ

(i)2
ξ , (38)

P(i)k = P(i)−k (I + D(i)T R̄(i)
−1
D̄(i)P(i)−k )−1 , (39)

K (i)K
k = P(i)k D

(i)T R̄(i)
−1
, (40)

x̂(i)k = Ax̂(i)k−1 + K
(i)K
k (ζ (i)k − D

(i)Ax̂(i)k−1) , (41)

P(i)−k+1 = AP(i)k A
T
+ Q(i) . (42)

As can be seen, the coloredness factor ψ (i) has a more strong
effect on the KF estimate (41) via matricesD(i) and R̄(i), while
the UFIR estimate is affected by ψ (i) only via D(i).

D. RECURSIVE H∞ FILTERING ALGORITHM
The game theory recursiveH∞ filter originally derived in [27]
can be developed for the ith MUAP envelope under CMN as
cH∞ similarly to the KF. Given the initial x̂(i)0 and P(i)0 and the
coloredness factorψ (i), the prior error covariance P̌(i)− can be
computed by (34) and the vectors and matrices updated using
the following recursive forms,

ζ
(i)
k = y(i)k − ψ

(i)y(i)k−1 , (43)

D(i)
= H − ψ (i)HA−1 , (44)

0(i)
= ψ (i)HA−1 , (45)

ˇ̄R(i) = 0(i)BQ(i)BT0(i)T
+ Ř(i) , (46)

P̌(i)k = P̌(i)−k (I − θ (i)S(i)P̌−n

+D(i)T ˇ̄R(i)
−1
D̄(i)P̌(i)−k )−1 , (47)

K (i)∞
k = P̌(i)k D

(i)T ˇ̄R(i)
−1
, (48)

x̂(i)k = Ax̂(i)k−1 + K
(i)∞
k (ζ (i)k − D

(i)Ax̂(i)k−1) , (49)

P̌(i)−k+1 = AP̌(i)k A
T
+ Q̌(i) , (50)

where Ř(i) is the measurement error variance corresponding
to σ (i)2

ξ in the KF. Note that the user-chosen symmetric pos-

itive definite error matrices P̌(i)0 , Q̌(i), and Ř(i) have another
meaning than in the KF. To guarantee the H∞ filter stability,
a positive definite matrix S(i) is subjected to the constraint

(P̌(i)−k )−1 − θ (i)S(i) + D(i)T Ř(i)
−1
D(i) > 0 . (51)

If all errors are required to be weighted equally, then matrix
S(i) can be assigned to be identity, S(i) = I , and we notice that
a better performance is obtained by a small enough positive
scalar θ (i) > 0. It worth noting that, by θ (i) = 0, the H∞
filter becomes the KF. However, care must be taken to set θ (i)

properly to avoid the divergence [28], [29].

V. EXPERIMENTAL TESTING
In this section we apply the cUFIR, cKF, and cH∞ algorithms
designed to extract smooth envelopes from various biosignals

acquired from muscles as caused by user motions. As bench-
marks, all along we will employ the standard UFIR, KF, and
H∞ algorithms. First, we will analyse the EMG signals to
infer if they have any indications, signs, symptoms, diagnosis
or treatment of any disease, disorder, or abnormality, for
which the Hilbert transform is required to shape the envelope.
Next, we will identify the EMG signal features. For the ith
rectified MUAP, we will specify model (12)–(13) with two
states, K = 2, and matrices

A =
[
1 τ
0 1

]
, B =

 τ 22
τ

 , H =
[
1 0

]
.

We suppose that the envelope noise w(i)
k ∼ N (0, σ (i)2

w ) acts
in the third state and is projected to state x(i)k by matrix B.
Noise v(i)k is supposed to be Markov-Gauss (15) with the col-
oredness factor ψ (i), which will be measured experimentally
to provide themost smooth envelopewith aminimum latency.

The filters will be applied to EMG signal databases
‘‘S1_A1_E1’’, ‘‘S1_A1_E2’’, and ‘‘S1_A1_E3’’ publicly
available from [39]–[41]. These signals are generated by
male’s right hand, 31 years old and stood 1.70 meters tall:
‘‘S1_A1_E1’’ represents a basic movements of the fingers,
‘‘S1_A1_E2’’ isometric, isotonic hand configurations, and
basic wrist movements, and ‘‘S1_A1_E3’’ grasping and func-
tional movements. We start with the NinaPro database [41],
which contains kinematic and EMGdata taken from the upper
limbs of 27 intact subjects while performing 52 finger, hand,
and wrist movements of interest.

A. MOTION RECOGNITION IN EMG DATA
The enrolled database includes 27 intact subjects of 20 men
and 7 women aged between 22–40 years (28.6 ± 4.2 years
as the mean age) with three different exercises previously
diagnosed by a professional. All data are collected using the
Cyberglove 2 data glove and the 10x Otto Bock MyoBock
(electrodes). Each subject performs three exercises:
• Basic movements of fingers.
• Isometric, isotonic hand configurations in basic wrist
movements.

• Grasping and functional movements.

1) FIRST MOTION
The EMG signals described in [40], [42] are acquired using
10 Otto Bock MyoBock 13E200 electrodes, while kinematic
data are acquired using a Cyberglove 2 data. The database
includes 52 different movements, each of which was repeated
10 times by each subject.

We begin with a surface EMG signal collected from
the basic movements of the fingers made by a 28-year-old
man [41]. In Fig. 3a we shows the rectified raw EMG signal
shaped using the Hilbert transform. In Fig. 3a we give the
envelopes extracted using the standard UFIR, Kalman, and
H∞ filters and Fig. 2c sketches the envelopes obtained by
the cUFIR filter, cKF, and cH∞ filter modified for CMN.
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FIGURE 3. EMG signal (1.75. . . 5.25)ms available from [41]: (a) rectified EMG signal obtained using the Hilbert transform,
(b) envelopes extracted using standard UFIR filter, KF, and H∞ filter, and (c) envelopes extracted using cUFIR filter, cKF, and cH∞

filter.

The results were obtained inder the ideal conditions when all
estimators are tuned properly with Nopt = 140, σξ = 50µV,
σw = 0.1V/s2, Sn = I , ψ = 0.65, and θ = 10−6.
What can be seen is that the envelopes extracted by the

modified filters are more smooth than by the standard filters
and that there is non visible latency in the estimates. The
filters produce consistent estimates, although the UFIR and
cUFIR filters perform better.

2) SECOND MOTION
We next consider an EMG signal generated by grasping and
functional movements of a 31 year old man [41]. The selected
part of the rectified MUAP is shown in Fig. 4a and the
relevant envelopes extracted by the standard and modified
filters in Fig. 4b and Fig. 4c, respectively, for ψopt = 0.65.
Again we see that ripples are much lesser intensive in the
envelopes extracted using the modified filters and that the
UFIR filter performs better than others.

3) THIRD MOTION
Quite another MUAP bursts having sharp edges can be
observed in the third motion shown in Fig.5a. The Hilbert
transform inherently erodes sharp edges as shown in Fig.5b
and Fig.5c that allows for extracting more smooth envelopes.
Again we see that the modified filters are more successful
in smoothing the envelope and that the standard UFIR filter
performs better than the KF and H∞ filter.

What can be concludes now is that the Gauss-Markov
interpretation of variations in the MUAP envelope makes it
possible to extract acceptably smooth envelopes. It should
also be pointed out that the colorodness factor ψ 1) must
be optimized to provide the best envelope shaping and
2) should not exceed 1.0 to satisfy the requirements of the
CMN stationarity.

B. FURTHER SMOOTHING MUAP ENVELOPE
We now conduct additional investigations aimed at further
smoothing of the MUAP envelopes and their dips and peaks.
For this purpose, we apply two smoothers to the previously
extracted envelopes shown in Fig. 3–Fig. 5: the p-shift batch
UFIR filter operating in the smoother mode with a lag
q = −p [36] and depicted as UFIRs and the RTS
smoother [43]. The results of the additional smoothing
sketched in Fig. 6 for Nopt = 140 and q = 10 allow arriving
at the following inferences. Setting a short lag q of several
discrete points allows for a better smoothing of the envelope
ripples while not introducing an essential time delay. It is also
seen that the UFIR smoother fulfils this job better.

C. THE GAUSSIAN TEST
The MUAP Gaussian envelope is most desirable for myo-
electric control due to the following important features: 1)
smooth edges in the time domain and 2) no side lobes in
the frequency domain. This requirement is supported by the
observation that the power spectrum of a single motor unit
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FIGURE 4. EMG signal (6.2. . . 8.6)s available from [41]: a) Rectified MUAP obtained using the Hilbert transform, b) envelopes
extracted by the UFIR filter, KF, and H∞ filter, and c) envelopes extracted by the cUFIR filter, cKF, and cH∞ filter.

FIGURE 5. EMG signal (4.5. . . 6.7)s available from [41]: a) rectified MUAP shaped using the Hilbert transform, b) envelopes extracted
by the UFIR filter, KF, and H∞ filter, and c) envelopes extracted by the cUFIR filter, cKF, and cH∞ filter.
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FIGURE 6. Additionally smoothed MUAP envelopes (1.4. . . 1.6)s available from [41] and zoomed peaks.

FIGURE 7. Testing by the Gaussian pulse in the MSE sense the MUAP envelopes extracted using the following smoothers: (a)
cUFIR, (b) UFIR, (c) cH∞, d) H∞, (e) RTS, and (f) cRTS.
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FIGURE 8. Testing MUAP rippled envelopes extracted by the estimators for Gaussianity in the MSE sense: (a) cUFIR, (b) UFIR,
(c) cH∞, (d) H∞, (e) cKF, and (f) KF.

TABLE 1. Testing extracted MUAP envelopes for Gaussianity.

firing with a mean rate of 15 spikes per second has a Gaussian
envelope [44]–[46]. One may thus suppose that the Gaus-
sian shape is inherent to the MUAP envelope, where the
parameters of interest are time, duration, and amplitude
of the activity phases. Even so, the Gaussian shape is
not the only one associated with the MUAP envelope
applications [47], [48].

In Fig. 7, the Gaussian pulse is positioned to provide
the best approximation in the MSE sense of the extracted
MUAP envelope in the ‘‘S1_A1_E1’’ signal and table 1 lists
the root MSEs (RMSEs) produced by different estimators
for the Gaussian pulse. What can be concluded is that the
modified filters (cKF, cH∞, and cUFIR) are more successful
in approaching the Gaussian pulse than the original filters
(KF, H∞, and UFIR).

TABLE 2. Testing extracted MUAP envelopes with ripples for Gaussianity.

Another test for Gaussianity has been applied to the
extracted MUAP envelopes, which demonstrate ripples as
shown in Fig.8. The envelopes were obtained using filters
and additional smoothers as described above and we notice
that Nopt has appeared to be a bit larger than in the previous
case. Table 2 supports the results with numerically com-
puted RMSEs obtained with respect to the Gaussian pulse.
As can be seen, an additional smoothing improves the enve-
lope shape and makes it such that all outputs become quite
acceptable for myoelectric control.

VI. APPLICATIONS TO PROSTHETIC ARM CONTROL
We finally consider an example of applications to prosthetic
arm control. We use muscular contractions of the wrist and
basic movements of the fingers to provide the system control.
The initial conditions are forced to zero in order to implement

42854 VOLUME 9, 2021



S. Marquez-Figueroa et al.: Improving Myoelectric Prosthetic Arm Proportional Control

the positions of the joints given by the trajectories obtained
from the EMG envelope. Since such an organization admits
sudden speed changes, the joint angle variations can be high
between two neighboring time instances. As a benchmark,
we used the PD control with values kv > 0 andKp > 0, where
kv is the differential constant and Kp is the proportionality
constant. The PD controller was implemented for the speci-
fied time to find the RMSE and thus obtain a cost function to
provide a better fit.

In Table 3, we list the minimum wrist joint angular
RMSEs accumulated in a specific time from an initial posi-
tion to the desired position for each estimate. The estimates
are provided by filters (Filter) and filters with additional
smoothers (Filter/UFIRs and Filter/RTS). The original rec-
tified MUAP (no filtering is applied) produces an angular
error of 0.0012 rad. The application of the original UFIR,
Kalman, and H∞ filters improves the performance by the
factor of about 10-15 and further improvement by the factor
of about 10 is achieved using the developed cUFIR filter,
cKF, and cH∞ filters. This example neatly demonstrates that
treating the MUAP envelope ripples as CMN allows getting a
much bigger progress in the design of prosthetic arm control
systems.

TABLE 3. Error of the motor in a specific time.

VII. CONCLUSIONS
The cUFIR filter, cKF, and game theory recursive cH∞ filter-
ing algorithms developed in this article for rectified MUAP
signals assuming CMN in the envelope have demonstrated a
dramatic improvement by the factor of about 10 in theMUAP
smooth envelope extraction. The effect has been achieved by
suppressing the colored noise-like ripples and other variations
in the MUAP envelope with no essential time delays. It was
also demonstrated that the Gaussian-like smooth envelope
can be extracted from the rectifiedMUAP signal avoiding fast
variations and EMD in the force function.

Using the filters developed in the digital myoelectric pros-
thetic arm proportional control systems allows getting a more
reliable and stable effect. Based upon extensive investiga-
tions, we suggest using the cKF if proper tuning is feasible
under ripples in the rectified MUAP signal. The cH∞ filter
may improve the cKF performance, but it may also diverge
if the tuning factor is set incorrectly. Otherwise, the cUFIR
filter, which ignores zero mean noise and is thus more robust,
can be a better choice. Additional smoothing by the UFIR and
RTS smoothers improves the MUAP envelope Gaussianity.
However, it also increases the bias errors and so that a care
must be taken to avoid large EMD in practical designs.
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