
Received March 6, 2021, accepted March 10, 2021, date of publication March 17, 2021, date of current version March 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066133

Efficient Pooling and Collaborative Cache
Management for NDN/IoT Networks
BASHAER ALAHMRI, SAAD AL-AHMADI , (Member, IEEE),
AND ABDELFETTAH BELGHITH , (Senior Member, IEEE)
Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Saad Al-Ahmadi (salahmadi@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research, King Saud University, through the Research Group,
under Grant RG-1439-023.

ABSTRACT Named Data Networking (NDN) has been recognized as a lever to the Internet of Things (IoT).
One of the most founding features of NDN is in-network caching to improve data availability and reduce
retrieval delays and network load. Despite the existence of several caching decision algorithms, the fetching
and distribution of contents with minimum resource utilization remains a great challenge. In this article,
we propose an efficient caching technique named PoolCache that augments the effective caching capacity
of some defined conglomerates of nodes. This is accomplished by pooling the various caches and manage
them in a way to insure zero content redundancy within any defined node conglomerate. The resulting high
diversity of cached contents throughout the network tacitly amounts to much better overall performances.We
conducted extensive simulations using the CCNsim simulator to evaluate the performance of PoolCache and
compare it to that of some well known caching strategies. Simulations using a large Transit Stub topology
show that PoolCache clearly outperforms the other caching strategies in terms of a much greater content
diversity and consequently a limited number of content evictions, a much better cache hit ratio, and a much
lower content retrieval delay. Simulations also showed that PoolCache benefits from any eventual content
popularity.

INDEX TERMS Information-centric network (ICN), named data network (NDN), Internet of Things (IoT),
in-network caching, transit-stub topology, clustering, hashing.

I. INTRODUCTION
The Internet of Things (IoT) is a revolutionizing and chal-
lenging ecosystem that is drastically changing our work
styles, our ways to interact, behave, and reason about our
surrounding. IoT is becoming a strong driver in our intercon-
nected world through ubiquitous advanced connectivity of
smart devices, services and even data contents all of them are
simply called objects or things. IoT is providing an advanced
platform using a wide variety of networking protocols, where
smart objects communicate, learn, anticipate and perceive
in a much more effective way to respond to issues, and
challenges. Several IoT-enabled applications already exist,
including smart cities, e-healthcare, and e-education [1]. Bil-
lions of smart objects are already connected; Cisco forecasts
a global mobile data traffic growing at a rate of 46% per

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonino Orsino .

year and will total nearly 77.5 exabytes of traffic per month
in 2022 [2].

Embedding a regular TCP/IP protocol stack on constrained
IoT devices and smart objects is quite problematic and
raises several issues. The seminal Internet host-centric
model is no more appropriate as IoT traffic, and also that
of the current Internet, consists in its majority in con-
tent dissemination and retrieval. To this end, Van Jacob-
son proposed a new vision of the Internet centered on
the information or the content called Information Centric
Networking (ICN) [3]. Several ICN architectures have been
proposed, including DONA, Content Centric Networking
(CCN), Named Data Networking (NDN), PURSUIT, NetInf,
Convergence, CONET, MobilityFirst, and Green ICN [4].
Many studies have already pointed out that Named Data
Networking (NDN) has the potential to become the key
technology for data dissemination in IoT [5]–[7]. NDN pro-
motes IoT networking and data dissemination, and reduces

43228 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-9406-6809
https://orcid.org/0000-0002-4937-7453
https://orcid.org/0000-0003-3183-1467


B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

the protocol stack complexity by eliminating the need
of the CoAP/RPL/6LowPan/802.15.4 stack. NDN proposes
a pull-based, receiver-driven, robust connection-less com-
munication model which fulfills the basic requirements
of IoT traffic and systems in terms of easy and scal-
able data access, security, energy efficiency, and mobility
support [8], [9].

In-network caching is a fundamental feature of the NDN
architecture to reduce traffic load and increase data avail-
ability by satisfying client requests from close cache nodes
rather than from a remote producer. A plethora of caching
schemes have been proposed [10], [11]. A caching strategy
determines where to cache and which content to replace when
the cache is full. As the content travels through the Interest
reverse path in NDN, the caching strategy has then to decide
at each traversed node whether to cache the arriving content
or not [6], [10].

Caching in the NDN/IoT framework should take into con-
sideration the nature of IoT devices and objects which are
heavily constrained in terms of memory, battery and compu-
tation power. As such, the caching strategy should require
limited resources, yet delivers and maintains good system
performances. Caching allows to temporarily cache contents
at nodes on the reverse path from content providers (or
producers) to consumers. Systematically caching at every
node on this path amounts to a huge redundancy which
degrades the performance. In addition, the caching capac-
ity of routers is usually relatively small compared to the
catalogue of contents. Controlling the redundancy level of
caching with minimum collaboration and communication
efforts is then a fundamental and challenging issue. In this
article, we aim to efficiently use and share the different
caching resources available at nodes within a given router
conglomerate (we here interchangeably use the words con-
glomerate or neighborhood) by caching just one copy and
therefore limiting the redundancy at best within the given
network node conglomerate. We propose to efficiently pool,
manage, assign and control the available caching storage
at each router conglomerate as a distributed pooled storage
resource. To this end, we may perform a clustering of the
network nodes, or designate the nodes within the different
conglomerate/clusters or simply rely on the underlying net-
work topology. In any case, no cache redundancy happens
within the cluster and a higher number of different contents
could be cached within the network, hence achieving a higher
caching diversity. The question naturally arises as to how to
manage and control the distributed caching at each router
conglomerate. We shall propose a simple hashing technique
that maps the requested content name to a node within the
router conglomerate. As a result, both content retrieval and
bandwidth consumption are reduced. The Forwarding Infor-
mation Base (FIB) entries should be updated accordingly as
in the basic NDN architecture. We shall propose a simple
way to perform this updating of the various FIBs. In addition,
a certain path stretch would result depending on the degree of
connectivity of the nodes within the conglomerate. Note that

the proposed caching strategy employs the caching only at the
edge of the network and completely avoids caching contents
in routers of the core of the network which is then left as
a named data packet switching fabric. In addition, the pro-
posed caching strategy implicitly takes into account and
freely takes advantage of any content popularity without any
effort.

Few solutions have been proposed in the literature that
focused on managing and controlling the caches of local
nodes in a distributed manner to reduce caching redundancy
and increase content diversity within the entire network.
However, almost all of them rely on the potentially large
sharing of information between neighboring nodes, for an
orchestrated caching decision. This work advances the state
of the art by offering a distributed simple and efficient caching
policy that simultaneously accounts for the content popu-
larity, higher content diversity, caching at the edge of the
network, greater efficiency and fully compliant with NDN
pillars.

The main contributions of this article can be summarized
as follows:

1) the design of PoolCache a novel and fully NDN com-
pliant caching policy for IoT contents. The proposed
PoolCahe solution treats local caches at the network
edge as a pooled, fully shareable and distributed storage
resource. Caching decisions are taken autonomously
by nodes within the same network edge neighborhood
according to a simple hashing function.

2) The updating of the FIB entries in a very simplemanner
to enforce the NDN name based routing within the edge
neighborhood as well as toward producers.

3) The use of a large Transit Stub topology and a
large number of consumers and producers to properly
account for different IoT workload setups.

4) the evaluation of the performance of the proposed
policy and comparison against other representative
caching schemes using the CCN simulator [12].
In addition to the common valuable metrics (i.e., cache
hit ratio, content retrieval latency, hop distance, evic-
tion ratio), we investigated the ability of HachCache
to reduce content caching redundancy, to alleviate the
core network from any caching burden, and to implic-
itly profit from any potential content popularity.

The remainder of the paper is organized as follows:
section 2 introduces the necessary background and reviews
the related work. Section 3 describes the proposed Pool-
ing and Cache management technique termed Pool-
Cache, and provides illustrative examples of its operation.
Section 4 presents the performance evaluation of PoolCache.
It details the various caching evaluation metrics, the used
topology and the simulation scenarios. A detailed comparison
with some well known caching strategies highlights the
efficiency of the proposed PoolCache. Section 5 presents
the gain in the efficiency of PoolCache when increas-
ing the popularity index. Finally, Section 6 concludes the
paper.

VOLUME 9, 2021 43229



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

II. BACKGROUND AND RELATED WORK
A. NDN STRUCTURE AND OPERATION
NDN is a receiver-driven communication architecture that
includes just two types of packets: Interest and Data packets
as shown on Figure 1. Each packet has a unique content name.
Routers use the content name to forward Interest packets
toward the producers. Data packets are transmitted along the
reverse path towards the requesting consumers. NDN routers
use three fundamental data structures; namely the Pending
Interest Tables (PIT), the forwarding information base (FIB),
and the Content Store (CS). Users (i.e., consumers) issue
Interest packets to request contents. An Interest is routed
by name from router to the next according to the FIB until
either reaching a router having a cached copy of the requested
content in its CS or ultimately reaching the provider (i.e.,
producer) of the requested content. Upon the arrival of an
Interest, a router first performs a lookup of its CS. In case
the requested content is not within the cache (i.e., a cache
miss), the Interest packet is forwarded to the next hop router
according to the FIB, and the interface of this incoming
Interest is appended into the PIT. In case of a cache hit,
the targeted content is sent back to each of the recorded
interfaces stored in the PIT that have requested the content.
Then the corresponding entries in the PIT are deleted.

FIGURE 1. NDN packet types.

B. SUITABILITY OF NDN FOR IoT
Current IoT systems and platforms on the Internet rely essen-
tially on the cumbersome CoAP/RPL/6LowPan/802.15 pro-
tocol stack. Information Centric Networking (ICN) replaces
this stack in a very easy way. ICN in general and NDN
in particular provides by design the necessary ingredients
and capabilities to be a very suitable and efficient network-
ing platform for IoT traffic and applications. These capa-
bilities concern essentially: location-independent naming,
in-network caching, name-based routing, multicast, anycast,
consumer mobility and self-secured contents. The authors
in [6] conducted a qualitative comparative study of most of
the proposed ICN architectures, and showed that NamedData
Networking stands out as the most suitable ICN proposal
for IoT. Several other work already proposed NDN for IoT.
In [13], the authors proposed the design of a high-level NDN
architecture that meets IoT challenges. They discussed the
benefits of NDN and the way NDN architecture may easily
support IoTmain requirements. The authors in [14] suggested

NDN architecture to be a very effective architecture for IoT
scenarios. They also showed that NDN satisfies IoT require-
ments. Other studies focused rather on IoT requirements that
ICN architectures can inherently support without discussing
which one is the more suitable for IoT scenarios. The authors
in [15] discussed the major requirements for IoT and chal-
lenges of ICN architecture to realize a unified framework.
The authors in [5] presented IoT requirements and discussed
several possible motivations for the introduction of ICN in the
context of IoT.

C. RELATED WORK AND IN-NETWORK CACHING
POLICIES
In Named Data Networking, each router has a cache (a.k.a.
the CS Store) to store and provide frequently requested con-
tents. An efficient cache management scheme is essential
for efficient content distribution, high cache utilization, and
permitting a high diversity level. Many caching policies have
been proposed for ICN [4], [16]. Leave Copy Everywhere
(LCE) [17] is an approach that leaves a copy of the requested
data content in each router along the path towards the con-
sumer. This tacitly amounts to a huge redundancy which
reduces the caching hit rate and increases the eviction rate
to accommodate newly arriving contents. On the contrary,
our proposed PoolCache technique caches the new content at
just one router, and consequently will necessarily amount to
a much better content diversity and availability, much lower
redundancy and eviction rate, and a superior cache hit rate
and efficiency.

Authors in [18] proposed the Leave Copy Down (LCD)
strategy which keeps storing a copy of the requested data
content in a node placed one level down in the reverse path.
For popular contents, LCD tends to behave as LCE; namely
all nodes on the reverse path towards the consumer would
eventually cache identical copies. LCD may then have the
same shortcomings of LCE especially when requested con-
tents are very popular.

Authors in [19] introduced Probabilistic cache (ProCache)
which privileges caching close to consumers. The caching
process is executed with a varying probability inversely
proportional to the distance between the consumer and the
producer. ProCache presents an unequal resource allocation
among nodes, a high computational overhead, and requires
fine tuning of its parameters.

The Betweenness-Centrality (Btw) strategy was proposed
in [20], where data contents are cached just once on the
reverse path at the node having the highest betweeness-
centrality. The Betweenness Centrality (Btw) strategy is
based on measuring the number of times a node belongs to
a path between all pairs of nodes in a network topology.
As such, identifying the value of a router’s betweenness cen-
trality is a challenging task not viable for resource constrained
nodes.

The authors in [21] introduced edge caching, a graph-based
caching strategy. Edge-caching strategy is proposed for tree
topology and caches contents at the topology leaves. In this

43230 VOLUME 9, 2021



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

respect, it may result in a high degree of duplication among
neighboring leaves. However, like our proposed PoolCache
technique it alleviates the core network from any caching
burden and overhead.

Some or all of these aforementioned schemes are the stan-
dard commonly used benchmark for virtually all Information
Centric Caching proposals. They played an important role
to ascertain the efficiency and judge the relevance of any
proposed more advanced caching scheme.

In [11], [22], the authors proposed the Consumer caching
strategy which caches data contents on routers directly con-
nected to the consumers. Consumer cache behaves then just
like the edge caching technique for networks having a tree
topology. However, it behaves like LCE in the other extreme
case where there are consumers connected to each router
on the reverse path. The Consumer caching strategy perfor-
mances depend on the network topology, the distribution of
the consumers within the network, and the popularity of the
different contents.

In [23], [24], the authors proposed a collaborative
in-network caching scheme with Content-space Partition-
ing and Hash-Routing named CPHR. They partitioned the
content space and then assigned partitions to caches. They
formulated the problem of assigning partitions to caches as
an optimization problem that maximizes the overall hit ratio
and proposed a heuristic to solve it. They also formulated
the partitioning as a min-max linear optimization problem
that balances the cache loads. Using the general purpose
simulator ns3 and adopting the Least Recently Used LRU
technique for content replacement, they showed that CPHR
can double the overall hit ratio but at the same time increases
the average propagation latency. It is worth to note that the
paper does not contain any comparison with other known
caching schemes, and that their collective caching requires
extra content tables to maintain caching states and costly
mechanisms to maintain table consistency. The complexity of
partitioning the content space and the periodic maintenance
of the various data structures put a large burden to be viable
for IoT traffic. Furthermore, the implicit assumption of a
fixed content space and stationary network is hardly viable
for IoT scenarios and setups.

In [25], the authors also proposed a cluster-based
in-networking caching mechanism to reduce caching redun-
dancy for Content Centric Networking. They partitioned the
complete network into a certain number of clusters using an
improved K-medoids cluster algorithm. They used a Virtual
Distributed Hash Table (VDHT) to efficiently control and
manage the resources stored in each cluster. In addition, they
proposed different policies for intra and inter cluster routing
to forward the requests. They showed by simulation using
the specialized ccnsim simulator that their proposed caching
technique outperforms both LCE and ProCache in terms of
cahe hit ratio and link load as a function of the content
popularity index (skewness). It is worth noting that in addi-
tion to the overhead of the k-Medoid clustering algorithm,
the caching overhead significantly increases as clusters grow

in size. Their technique does not differentiate between edge
nodes and core routers, all behaves and performs the same
tasks. The performance comparison is restricted to only LCE
and ProCache using just two performance metrics.

In [26], the authors proposed an efficient hash-based cache
distribution and search schemes in CCN. The updating of the
FIBs is done by flooding which induces a huge overhead. The
performance evaluation is performed by simulation using ns3,
and they used a very simple grid network topology. Besides
no comparison is conducted with any other caching scheme.

The authors in [27] proposed the hierarchical cluster-based
caching (HCC) strategy; a two-layer hierarchical cluster
based caching solution. The clustering of the whole network
is done using the known Weighted-based Clustering Algo-
rithm (WCA). A centralized cluster head selection is used for
each cluster to make caching decisions based on a central-
ized probability matrix. The proposed solution generates a
high communication overhead, as it periodically exchanges
information related to content caching. The unavailability
of a clusterhead breaks down the operation of the complete
cluster. HCC still restricts content request forwarding and
reduces cache utilization. The implicit assumption of a sta-
tionary network may not be viable for IoT scenarios.

In [28], the authors proposed the sharing of cache sum-
maries among neighboring routers to increase the diversity of
cached contents in NDN. They proposed a scheme to define
a summary packet using a bloom filter and a method to share
the summary. At the arrival of a Data packet, a router decides
whether or not to save it depending on the cache summaries of
neighboring routers. Upon the arrival of an Interest, a router
can forward the Interest to a neighboring router that has
the requested content. Unlike our proposed PoolCahe, their
proposed technique necessitates an involved cooperation and
requires persistent querying and the maintenance of sum-
maries.

In [29], the authors proposedDANTE a diversity-improved
caching scheme for vehicular Named Data Networking. They
leveraged the broadcast wireless support for nearby nodes
to cache different content and thus improve caching diver-
sity. The objective is to give a higher caching probability
to more popular contents with a longer lifetime, which are
not already cached by a nearby node within the wireless
neighborhood. the intrinsic broadcast nature of the wire-
less medium allows each vehicle to infer what contents are
available in its neighborhood. Diversifying the caching of
different contents among nearby vehicles limits the caching
redundancy in the wireless neighborhood, and translates into
better network performance. DANTE necessitates a wireless
network and is devoted to vehicular NDN. PoolCache, on the
opposite, may be applied to any NDN regardless the nature
of the underlying medium communication technology.

In all preceding work, both the clustering of the network
or the partitioning of the content space induce a high com-
plexity and add a non negligible computing and communi-
cation overhead. Besides, the tacit assumption of stationary
producers and consumers is far from being the practical case

VOLUME 9, 2021 43231



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

of IoT environments. Most of these research work performs
the clustering of the whole network and therefore require a
non-negligible computing and communication overhead, yet
they tacitly do not alleviate the core routers from the caching
burden. In addition, they keep track of heavy data structures
that may require periodic heavy maintenance. Most of these
work used simplistic network topology, and provided a rather
limited performance comparison with other known caching
techniques.

D. TRANSIT-STUB TOPOLOGY
In simulations, the used network topology plays an active
role to be able to appropriately represent real-world situ-
ations and scenarios. Research in [30] showed that Inter-
net domain structures have four to five hierarchical tiers.
The tiers are logical routing domains. The top tier has
massive Autonomous Systems (AS) connectivity, and ASs
in the lower tiers have lower edge degrees. Additionally,
the bottom-tier ASs depend on the top tier to route desti-
nation packets. Stub domains comprise the bottom tier, and
transit domains the top tier. As mentioned in [31], every
domain in the real Internet is either considered a transit or
a stub domain. Transit domains provide transit connectivity
to different domains and send packets to external sources.
Stub domains send packets that are within a domain. Most
traffic comes from stub domains, which typically represent
Internet endpoints. Previous work show no particular topol-
ogy that can evaluate all NDN aspects. However, we take the
direction followed by most researchers that the TS topology
reflects the current Internet hierarchical structure and rep-
resents the wide area IoT. As such, We shall consider, for
the performance evaluation of PoolCache, a large three level
transit-stub topology.

III. PoolCache: POOLING AND COLLABORATIVE CACHE
MANAGEMENT TECHNIQUE FOR NDN/IoT NETWORKS
PoolCache is a collaborative caching technique that considers
the various storage resources for caching within a given
neighborhood (a given subset of nodes) to be managed as
one global caching storage. Namely, PoolCache controls one
global Content Store which is partitioned among the different
nodes of the given neighborhood or cluster. Essentially, Pool-
Cache acts at the edge of the network and never considers
caching contents in core routers. Within a cluster of nodes,
PoolCache caches a content in just one node and conse-
quently a zero redundancy is achieved within any cluster.
The caching node is designated according to a hashing func-
tion on the content name. The hash function should evenly
distribute/cache contents among the different nodes of the
cluster. Our hash function maps content names to nodeIDs.
Neighborhoods or node clusters could be defined in different
ways. We may repose on the underlying topology of the
network to compose the different clusters. Wemay also resort
to a clustering or partitioning algorithm to decide the clusters
or the partitions [26], [27], [32]. Though doing so is not only
time consuming but also do not preclude network core routers

from serving as caching nodes. ISPs can also designate the
different neighborhoods in an ad hoc manner according to
their needs and the requirements of different applications
and working environments (e.g.; Enterprise, video streaming,
schools, . . . ). The designation of nodes within the same clus-
ter may not depend on the topology being flat or hierarchical
as long as these nodes are interconnected and within the same
geographical neighborhood. It is worth noting that no need
for a complete clustering or partitioning of the whole net-
work. In fact, we may just designate some clusters and many
nodes may remain unclustered. For the simulation purpose
in this article, we shall rely on the underlying topology of
the network which is considered to be a hierarchical Tran-
sit Stub (TS) topology. Consequently, the stubs may tacitly
define the different clusters. Such a TS topology represents
adequately the current Internet topology [33]–[35].

In NDN, the size of the capacity of the Content Store at
each node is very limited relatively to the huge number of
contents. In [36], the authors showed that the ratio of the
cache size over the catalogue size (the number of named con-
tents) should be within the interval

[
10−5; 10−1

]
. PoolCache

by treating the CSs of the nodes within the cluster as a unique
storage is then a novel way to have a much large CS. This will
tacitly amounts to better performances as will be investigated
in the next section.

The system design of PoolCache requires the addition of
just one additional name within the packet format (for both
the Interest and the Data packets) of NDN.We shall hereafter
refer to Packet.name1 and Packet.name2 for the two names
within the Packet being either Ineterest or Data. No addi-
tional field is required in the FIB; namely the forwarding is
done exactly the way it is specified by the NDN Network
Forwarding Deamon (NFD). The underlying name routing is
that of the NDN (a.k.a. the Named Data Link State Routing
Protocol NLSR). The packet now carries two names: the
content name and the caching node name. The forwarding is
always done using the name prescribed first in the packet;
namely Packet.name1. As illustrated on Figures 2 and 3,
we consider a cluster formed by nodes n1, n2, n3, n4, n5
and n6. When a request (Interest) comes from a consumer
as indicated by the red arrow (1), edge router n1 hashes the
requested content name (/Home/Room1/Tmp) to one of the
nodes in its cluster. This indicates n3 as the caching node,
that is the unique node that could have a cached copy of
the requested content within the cluster. Edge router n1 first
takes the requested content name prescribed in the received
Interest.name1 and puts it in Interest.name2. Then it places
n3 in Interest.name1. This way and as indicated by the FIB
of node n1 on both Figures 2 and 3, the Interest is now to
be forwarded to node n2. This is also indicated by the red
arrow (2) on both figures. In turn, n2 forwards this coming
Interest to n3 as indicated by the red arrow (3) and according
to its FIB as shown in both figures. The designated caching
node n3 upon receiving the Interest packet, inspects its CS to
see whether there is a cached copy of the requested content.
We distinguish here the two following cases.

43232 VOLUME 9, 2021



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

FIGURE 2. PoolCache: Case of existence of a cached copy within the defined neighborhood.

FIGURE 3. PoolCache: Case of non-existence of a cached copy within the defined neighborhood.

The first case is when there is indeed a cached copy of the
requested content in the caching node CS. This is illustrated
on Figure 2: the requested content /Home/Room1/Tmp is
indicated in red in the CS of n3. Node n3 responds with its

cached copy which contains the content name in Data.name1.
The Data packet follows the reverse path as indicated by the
PITs of n3, n2, and n1. This is illustrated on Figure 2 by green
arrows (4), (5) and (6) successively.

VOLUME 9, 2021 43233



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

The second case is when there is no cached copy of the
requested content in the CS of the caching node n3. This is
illustrated on Figure 3. n3 first prescribes the content name
in Interest.name1 and its own name n3 in Interest.name2 and
then forwards normally the Interest according to its FIB. The
prescription of the caching node in Interest.name2 is meant
to avoid the caching of the content on its way back from
the producer to the consumer. The only node permitted to
cache the content is the caching node n3. As indicated by the
FIB of n3, the Interest is then forwarded to node n4 (the red
arrow (4)). Node n4, in its turn, forwards the incoming interest
to n7 as indicated by its FIB and illustrated by red arrow (5).
The Interest will be forwarded until it reaches the producer
which responds with the requested content. The producer first
puts the content name in Data.name1 and the caching node
name n3, which is received in Interest.name2, in Data.name2.
The Data packet will follow the reverse path as prescribed
by the PITs until it reaches the consumer. Along this route,
no intermediate node but n3 performs the caching of the
content.

Algorithm 1 illustrates the PoolCache strategy at a given
node. It is the algorithm to be executed at the arrival of an
Interest packet. The node receiving an Interest packet, first
checks whether the Interest comes directly from an attached
consumer. In the affirmative, it uses the hashing function
H to map the content name (Interest.name1) to its Caching
Node. Then it inserts the received content name in Inter-
est.name2 and the Caching node in Interest.name1. Then it
forwards the Interest normally according to its FIB. Since
Interest.name1 contains the Caching node name, the Interest
will then be forwarded toward the Caching node. Otherwise,
that is if the incoming Interest is not from an attached con-
sumer, we need to check whether the receiving node is the
Caching node to execute either of the above described cases.
Note that the last else in Algorithm 1 represents the case
of a node that is neither attached to a consumer nor the
Caching node. This type of node just forwards the Interest
according to its FIB. This insures that all nodes forward
Interest packets exactly according to the specification of the
Network Forwarding Daemon of the NDN.

Algorithm 2 is the Data forwarding and cache decision
algorithm of PoolCache that is executed by a node when it
receives a Data packet. The Data packet contains the two
names: Content name in Data.name1 and Caching node in
Data.name2. These two names should have been inserted by
the producer before sending the Data packet. The producer
gets the Caching node from Interest.name2 of the Interest it
had received. The Data packet travels following the reverse
path until reaching the Caching node where it is going to
be cached and then travels towards the consumer. It is here
worthy to note that all nodes but the Caching node just
forward the Data packet according to their PITs. The unique
node that caches the Data packet is the Caching node that
is prescribed in Data.name2 of the received Data packet.
This Firstly insures a zero redundancy within the designated
neighborhood as well as a high diversity within the network,

Algorithm 1 Interest Forwarding Algorithm
H : Used hashing function
FIB: Forwarding Information Base
PIT : Pending Interest Table
CS: Content Store
Input: Interest Packet
Output: Interest Forward Decision
1: if Received from consumer then
2: Caching node := H(Interest.name1)

Interest.name2 := Interest.name1
Interest.name1 := Caching node
Forward the Interest packet according to FIB

3: else if Receiving Node Id = Interest.name1 then
4: if Cached copy in CS then
5: Return data packet to consumer according to PIT
6: else
7: Itemp := Interest.name1

Interest.name1 := Interest.name2
Interest.name2 := Itemp
Forward the interest packet according to FIB

8: end if
9: else
10: Forward the Interest packet according to FIB
11: end if

Algorithm 2 Data Forwarding and Caching Decision Algo-
rithm
PIT : Pending Interest Table
CS: Content Store
Input: Data packet with Data.name1 = content name and

Data.name2 = Caching node
Output: Forwarding and Caching decision
1: if Receiving Node Id = Data.name2 then
2: Cache the incoming Data packet in CS

Forward Data packet according to PIT
3: else
4: Forward Data packet according to PIT
5: end if

and secondly caching is only performed at the edge of the
network and never at nodes of the internal levels which are
left for the sole purpose of named packet switching.

IV. PERFORMANCE EVALUATION
In this section, we detail the performance evaluation of our
proposed caching technique PoolCache, and we perform
an extensive comparison with known caching approaches
such as Leave Copy Everywhere LCE [17], Leave Copy
Down LCD [18], Probability Caching ProbCache [19],
Betweenness-Centrality Btw [20], Edge-caching [21], and
the Consumer-cache [22].The performance evaluation of the
proposed work as well as the aforementioned schemes is con-
ducted by simulation using the ccnSim simulator [12] which

43234 VOLUME 9, 2021



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

FIGURE 4. Transit-Stub topology used in the simulation.

is a C++ framework under the OMNeT++ to simulate NDN
architectures.

A. SIMULATION SCENARIO
For our simulation, we opted for the Transit-Stub (TS) topol-
ogy whose properties closely imitate the wide area IoT
topology. The TS is a 3-level hierarchical topology com-
posed of interconnected stubs and transit domains. While
stubs only carry either originating or terminating traffic,
transit domains are intended to efficiently interconnect stub
domains. As such, it will be judicious to preserve nodes of
the transit domains from any caching burden. This is exactly
the way our proposed caching technique behaves.

Figure 4 illustrates our TS topology that is generated using
the GT-ITM 1 (Georgia Tech Internetwork Topology Mod-
els). GT-ITM is a collection of software tools for generating
and analyzing graph models of network topologies using the
NED language in OMNET++.

The TS topology used is a 3-level hierarchy composed of a
core domain containing 2 level 0 backbone routers, 2 transit
domains each containing 15 level 1 backbone routers, and
30 stubs per transit domain each containing on the average
6 routers. The total number of routers in our TS topology is
then 392 nodes (we interchangeably use routers or nodes).
Producers and consumers can only connect to stub nodes.
Producers and consumers are connected to nodes in different
transit domains. 59 producers are spread randomly across
30 stubs in the left transit domain of the network on Figure 4
(blue color nodes), and 48 consumers are attached to nodes

1http://www.cc.gatech.edu/projects/gtitm/

in 8 out of the 30 stubs on the right side transit domain of
Figure 4 (green color nodes). Transmission delays are set by
GT-ITM so that transmissions in the inner level 0 are much
faster than those in transit level which in turn are much faster
than those in the stub level. Values are set in the range of
[2; 78]ms.

We suppose that Interests are generated at each consumer
following the Independent Request Model (IRM). However,
the content requested in each generated Interest follows the
Zipf probability distribution with parameter α = 1.2. All
nodes have the same constant cache size that takes into
consideration the storage interval designated by Rossi and
Rossini in [36] as described earlier. The replacement strat-
egy used for all considered caching techniques is the Least
Recently Used (LRU). We could have easily used other
replacement techniques [37], but here we are solely concen-
trating on the design of an efficient caching technique. Table 1
summarizes the system parameters used in our simulations.

B. EVALUATION METRICS
In order to conduct the performance evaluation of our pro-
posed strategy and the comparison with the described caching
schemes, we consider the cache hit ratio, the server hit ratio,
the average retrieval latency, the hop reduction ratio, and the
number of eviction metrics.

A cache hit occurs when an Interest is answered by an
intermediate router along the path to the server. The cache hit
ratio measures the reduction of the rate of access to the server;
namely the server load reduction rate. Equation (1) gives this
metric, where N is the number of consumers, serverHiti is

VOLUME 9, 2021 43235



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

TABLE 1. The key simulation parameters.

the number of requests sent by consumer i and satisfied by
the server (a.k.a. producer) and localHiti is the number of
requests sent by consumer i and satisfied by a cache of a
router along the path to the producer. The cache hit ratio
is probably the most fundamental metric for evaluating the
performance of caching in NDN.

CacheHitRatio =

∑N
i=1 localHiti∑N

i=1(localHiti + serverHiti)
(1)

Conversely, an Interest that travels through all the nodes
until reaching the server is counted as a server hit. The server
hit ratio, given by Equation (2), is just the one complement of
the cache hit ratio.

ServerHitRatio =

∑N
i=1 serverHiti∑N

i=1(localHiti + serverHiti)
(2)

The Content retrieval latency is the average time spent to
receive the requested content. The content may be sent by an
intermediate node or ultimately by its producer. The content
retrieval time is calculated by Equation (3) where Ri denotes
the number of Interests generated by node i, Tir represents
the retrieval latency taken by Interest number r generated by
consumer i, and N is the number of consumers

AverageRetrievalLatency =

∑N
i=1

∑Ri
r=1 Tir
Ri

N
(3)

The hop reduction ratio is another important performance
metric that measures the reduction of the number of hops
traversed to satisfy a request compared to the number of
hops needed to retrieve the content from its server. The Hop
reduction ratio is calculated using Equation (4), where hir
denotes the number of hops traversed by Interest number r
generated from Consumer i until being answered either by a
cache or its producer, Hir denotes the number of hops to be
traversed by Interest r from consumer i to the producer of
the requested content, and Ri denotes the number of Interests
generated by node i.

HopReductionRatio = 1−

∑N
i=1

∑Ri
r=1

hir
Hir

Ri

N
(4)

The cache eviction represents the total number of evicted
contents from all network nodes. A content eviction happens
when the content of an arriving Data packet has to be cached
and the cache is full. In this case, a given content has to be
evicted from the cache for the newly arriving to be cached.

C. SIMULATION RESULTS
We here present the simulation results of the defined net-
work scenario to show the performance of the proposed
caching technique and how it compares to those of six of
the well-known in-network caching strategies; namely LCE,
LCD, ProCache, Btw, Edge and consumer-cache. All simu-
lations are replicated 12 times; the 95% confidence intervals
are shown on all plots.

1) CACHE HIT RATIO
Cache hits occur when contents are served by intermedi-
ate caches rather than the content servers (the producers).
Figure 5 illustrates the cache hit ratio for our proposed
PoolCache as well as for the 6 different defined caching
policies. PoolCache clearly outperforms all the other caching
strategies. This accomplishment is essentially due to the
zero redundancy insured by PoolCache and the pooling of
all caching storage in a unique distributed managed storage
space. This allows to have more storage for caching within
each defined neighborhood. Consumer-cache performs the
worst as it considers only caching at the node directly con-
nected to the consumer. It is worthy to note that a cache hit
is accounted for when the Interest is answered by any node
along the path toward the producer. As a result, we observe
that all the other caching techniques perform better than
the consumer-cache. LCE fills the network caches faster,
roughly increasing content replacement and reducing cache
efficiency. LCD and ProbCache shows roughly the same
cache performance. In the same manner as consumer-cache,
edge-cache caches contents at the leaves of the topology

FIGURE 5. Cache hit ratio.

43236 VOLUME 9, 2021



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

and consequently amounts to a lot of caching replacements,
resulting in low cache hits. In the Btw caching strategy, cache
nodes are positioned halfway along the request path and
possibly closer to the cluster. The Btw strategy has a value
that is always centered around the network, which yields a
low cache hit ratio.

2) SERVER HIT RATIO
A Server (producer) hit occurs when an Interest could not be
satisfied by any intermediate node along the path to the pro-
ducer. That is when no intermediate node has a cached copy of
the requested content. Figure 6 portrays the server hit ratios of
PoolCache and the different considered caching techniques.
Note that the server hit ratio is just the one complement of the
cache hit ratio. Clearly, PoolCache has the lowest server ratio.
It is also worth noting that PoolCache alleviates the internal
nodes (a.k.a. the level 0 and level 1 routers) from the burden
of caching all together. This is not the case of the LCE, LCD
and betweeness strategies.

FIGURE 6. Server hit ratio.

3) RETRIEVAL LATENCY
Figure 7 represents the content retrieval latency for Pool-
Cache and the other considered caching schemes. Clearly,
PoolCache yields the lowest average response time to retrieve
a content as it has a big chance to have been cached within
the local cluster. Recall that PoolCache has a high cache hit
ratio; meaning that a copy of the requested content has a prob-
ability equal to the cache hit ratio of being available locally
from the pooled store. On the other hand, we observe that
consumer-cache (and also the same for edge-cache) yields the
highest retrieval time as its cache hit ratio is the lowest which
in turn necessitates most of the time to bring contents from
their corresponding producers. The other caching strategies
have rather high retrieval times as the caching is usually done
at remote nodes and not close to the consumers.

FIGURE 7. Response latency.

4) NUMBER OF EVICTION
A content eviction from the Content Store occurs when a
new content is to be cached and the cache is full. This new
content will replace the Least Recently Used (LRU) content.
The LRU replacement strategy is here used for PoolCache
and all the considered caching techniques. Figure 8 portrays
the number of evictions encountered during the simulations of
each caching technique. PoolCache yields the lowest number
of eviction as it uses a pooled store. LCE yields the highest
eviction rate since the same contents are cached everywhere.
Consumer-cache and Edge-cache show high eviction rate
since they cache at the consumers which yields high cache
misses. The other techniques show rather low eviction rate
but still much higher than that of PoolCache.

FIGURE 8. Number of eviction.

VOLUME 9, 2021 43237



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

FIGURE 9. Hop reduction ratio.

5) HOP REDUCTION RATIO
The hop reduction ratio is inversely proportional to the server
hit ratio. For a larger server hit ratio, we normally obtain a
larger hop count and therefore a smaller hop reduction ratio.
The hop reduction ratios for the different caching techniques
are represented on Figure 9. PoolCache outperforms all the
considered techniques; as a matter of fact its server hit ratio is
the smallest (see Figure 6). Consumer-cache yields the high-
est hop reduction ratio since generated Interest are mostly

answered by their corresponding producers amounting to the
highest server hit ratio as shown on Figure 6. ProbCache and
LCD roughly perform the same, however better than Btw and
Edge for the same reason.

V. IMPACT OF CONTENT POPULARITY ON PoolCache
The conducted simulations assumed that Interests are
generated at each consumer following the Independent
Request Model (IRM), and the contents requested in these
Interests follow the Zipf probability distribution model with
a skewness or popularity parameter α = 1.2. This parameter
plays a major role as it determines the shape of the cumu-
lative probability function and regulates the deterioration in
requests frequencies. Virtually all previous studies on web
caching in the Internet considered a value less or equal to 1.
Recently however, new research work and evidence showed
that popularity has become more important than before, and
values of α > 1 are becoming more common due to the pro-
liferation of the Internet of Things and the pervasive spread
of social networking [38]–[40]. The popularity is then more
concentrated than before, and as a result caching becomes
a more profitable approach. In [38], the authors analyzed
14 websites and showed that all of them provided a value of
α > 1.

Figure 10 illustrates the impact of an increasing popu-
larity on the different performance metrics of PoolCache.
We clearly observe that the cache hit ratio and the hop
reduction ratio increases as the popularity index increases.
Conversely, the server hit ratio, the number of evictions and

FIGURE 10. The impact of content popularity on PoolCache.

43238 VOLUME 9, 2021



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

the content average retrieval delay decrease as the popularity
index increases.

Indeed when the popularity index increases, requests for
the most popular contents become very frequent. PoolCache
allows then to cache virtually all popular contents in its local
pooled store. This tacitly yields much better performances.
Unpopular contents are rarely requested and are quickly
evicted and replaced by more popular contents.

VI. CONCLUSION
NDN-IoT provides an enabling technology and a current net-
working architecture for the proliferation of IoT applications.
Despite the many proposed caching techniques, efficient
in-network caching with limited resources remains a real
challenge. The storage capacity reserved for caching arriving
contents at each node is rather very limited relatively to the
colossal number of contents. The question naturally arises as
to how to increase this storage capacity with no additional
storage resource. This is mainly the rationale behind the
proposed PoolCache.

Poolcache pools the dedicated caching storage of collec-
tions of designated nodes. PoolCache manages the storage
pool of each collection in a collaborative manner and insures
zero content redundancy with each pooled storage. As such,
PoolCache increases the content diversity and content avail-
ability within the network as it allows much more different
contents to be cached. The nodes belonging to each collec-
tions should be geographically within the same neighborhood
such as the same stub. There is, however, no necessity or
obligation to include or involve all and every node within the
same neighborhood. In the very extreme case, each collection
or neighborhood contains just a single node. In this latter case,
PoolCache behaves as the Edge-Cache strategy. Conducted
simulations using the ccnSim show that PoolCache clearly
outperforms many know caching decision algorithms. Sim-
ulations results also show that PoolCache profits from any
eventual content popularity and provides sustained perfor-
mance.

REFERENCES
[1] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, ‘‘Recent

advances in information-centric networking based Internet of
Things (ICN-IoT),’’ 2017, arXiv:1710.03473. [Online]. Available:
http://arxiv.org/abs/1710.03473

[2] G. M. D. T. Forecast, ‘‘Cisco visual networking index: Global mobile data
traffic forecast update, 2017–2022,’’ Cisco, San Jose, CA, USA, White
Paper, Feb. 2019, p. 2022.

[3] V. Jacobson, J. Burke, D. Estrin, L. Zhang, B. Zhang, G. Tsudik, K. Claffy,
D. Krioukov, D. Massey, C. Papadopoulos, and P. Ohm, ‘‘Named data
networking (NDN) project 2012–2013 annual report,’’ Named Data Netw.
(NDN), Shanghai, China, Tech. Rep., 2013.

[4] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, ‘‘Recent advances
in information-centric networking-based Internet of Things (ICN-IoT),’’
IEEE Internet Things J., vol. 6, no. 2, pp. 2128–2158, Apr. 2019.

[5] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera,
R. L. Aguiar, and A. V. Vasilakos, ‘‘Information-centric networking for the
Internet of Things: Challenges and opportunities,’’ IEEE Netw., vol. 30,
no. 2, pp. 92–100, Mar. 2016.

[6] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and
S. Al-Ahmadi, ‘‘Named data networking: A promising architecture for the
Internet of Things (IoT),’’ Int. J. Semantic Web Inf. Syst., vol. 14, no. 2,
pp. 86–112, 2018.

[7] A. Aboodi, T.-C. Wan, and G.-C. Sodhy, ‘‘Survey on the incorporation of
NDN/CCN in IoT,’’ IEEE Access, vol. 7, pp. 71827–71858, 2019.

[8] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira, ‘‘Producer
mobility support in named data Internet of Things network,’’ Procedia
Comput. Sci., vol. 109, pp. 1067–1073, Jan. 2017.

[9] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and
S. Gannouni, ‘‘AFIRM: Adaptive forwarding based link recovery for
mobility support in NDN/IoT networks,’’ Future Gener. Comput. Syst.,
vol. 87, pp. 351–363, Oct. 2018.

[10] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira, ‘‘How to
cache in ICN-based IoT environments?’’ inProc. IEEE/ACS 14th Int. Conf.
Comput. Syst. Appl. (AICCSA), Oct. 2017, pp. 1117–1124.

[11] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and
S. Alahmadi, ‘‘Cache freshness in named data networking for the Internet
of Things,’’ Comput. J., vol. 61, no. 10, pp. 1496–1511, Oct. 2018.

[12] R. Chiocchetti, D. Rossi, and G. Rossini, ‘‘CcnSim: An highly scalable
CCN simulator,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2013,
pp. 2309–2314.

[13] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, ‘‘Named data net-
working for IoT: An architectural perspective,’’ in Proc. Eur. Conf. Netw.
Commun. (EuCNC), Jun. 2014, pp. 1–5.

[14] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch, ‘‘Infor-
mation centric networking in the IoT: Experiments with NDN in the wild,’’
in Proc. 1st Int. Conf. Inf.-Centric Netw. INC, 2014, pp. 77–86.

[15] Y. Zhang, D. Raychadhuri, L. Grieco, E. Baccelli, J. Burke, R. Ravindran,
and G. Wang, ‘‘ICN based architecture for IoT—Requirements and chal-
lenges,’’ IETF: Internet Draft, draft-zhang-iot-icn-challenges-02, Fremont,
CA, USA, Tech. Rep., 2016.

[16] I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A. Habbal,
‘‘Caching in information-centric networking: Strategies, challenges, and
future research directions,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2,
pp. 1443–1474, 2nd Quart., 2018.

[17] N. Laoutaiis, S. Syntila, and L. Stavrakakis, ‘‘Meta algorithms for hierar-
chicalWeb caches,’’ inProc. IEEE Int. Conf. Perform., Comput., Commun.,
Apr. 2004, pp. 445–452.

[18] N. Laoutaris, H. Che, and I. Stavrakakis, ‘‘The LCD interconnection of
LRU caches and its analysis,’’ Perform. Eval., vol. 63, no. 7, pp. 609–634,
Jul. 2006.

[19] I. Psaras, W. K. Chai, and G. Pavlou, ‘‘Probabilistic in-network caching
for information-centric networks,’’ in Proc. 2nd Ed. ICN Workshop Inf.-
Centric Netw. - ICN, 2012, pp. 55–60.

[20] W. K. Chai, D. He, H. Psaras, and G. Pavlou, ‘‘Cache ‘less for more’ in
information-centric networks,’’ inNetworking (Lecture Notes in Computer
Science), vol. 7289. Berlin, Germany: Springer, 2012, pp. 27–40.

[21] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. C. Ng, V. Sekar, and S. Shenker, ‘‘Less pain, most of the
gain: Incrementally deployable ICN,’’ in Proc. ACM SIGCOMM Conf.
SIGCOMM, Aug. 2013, pp. 147–158.

[22] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, and K. Drira, ‘‘Cache
coherence in Machine-to-Machine information centric networks,’’ in Proc.
IEEE 40th Conf. Local Comput. Netw. (LCN), Oct. 2015, pp. 430–433.

[23] J. W. Wang Sen, J. Bi, and A. V. Vasilakos, ‘‘CPHR: In-network caching
for information-centric networking with partitioning and hash-routing,’’
IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2742–2755, Oct. 2016.

[24] S. Wang, J. Bi, and J. Wu, ‘‘Collaborative caching based on hash-routing
for information-centric networking,’’ in Proc. ACM SIGCOMM Conf.
SIGCOMM, Aug. 2013, pp. 535–536.

[25] C. Li and K. Okamura, ‘‘Cluster-based in-networking caching for content-
centric networking,’’ Int. J. Comput. Sci. Netw. Secur., vol. 14, no. 11, p. 1,
2014.

[26] Y. Sato, Y. Ito, and H. Koga, ‘‘Hash-based cache distribution and
search schemes in content-centric networking,’’ IEICE Trans. Inf. Syst.,
vol. E102.D, no. 5, pp. 998–1001, 2019.

[27] H. Yan, D. Gao,W. Su, C. H. Foh, H. Zhang, andA. V. Vasilakos, ‘‘Caching
strategy based on hierarchical cluster for named data networking,’’ IEEE
Access, vol. 5, pp. 8433–8443, 2017.

[28] J. H. Mun and H. Lim, ‘‘Cache sharing using Bloom filters in named data
networking,’’ J. Netw. Comput. Appl., vol. 90, pp. 74–82, Jul. 2017.

[29] M. Amadeo, G. Ruggeri, C. Campolo, and A. Molinaro, ‘‘Diversity-
improved caching of popular transient contents in vehicular named data
networking,’’ Comput. Netw., vol. 184, pp. 92–100, Oct. 2021.

[30] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, ‘‘Characterizing
the Internet hierarchy from multiple vantage points,’’ in Proc. 21st Annu.
Joint Conf. IEEE Comput. Commun. Societies, Jun. 2001, pp. 618–627.

VOLUME 9, 2021 43239



B. Alahmri et al.: Efficient Pooling and Collaborative Cache Management for NDN/IoT Networks

[31] K. Pentikousis, B. Ohlman, E. Davies, S. Spirou, and G. Boggia,
Information-Centric Networking: Evaluation and Security Considerations,
document IETF: RFC 7945, Tech. Rep., 2016.

[32] P. V. Rani and S. M. Shalinie, ‘‘Efficient cache distribution using hash-
routing schemes and nodal clustering for information centric network,’’ in
Proc. 4th Int. Conf. Signal Process., Commun. Netw. (ICSCN), Mar. 2017,
pp. 1–6.

[33] B. Donnet and T. Friedman, ‘‘Internet topology discovery: A survey,’’ IEEE
Commun. Surveys Tuts., vol. 9, no. 4, pp. 2–15, 4th Quart., 2007.

[34] H. Haddadi, S. Uhlig, and A. Moore, ‘‘Modeling Internet topology dynam-
ics,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 65–68,
2008.

[35] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, ‘‘The
Internet topology zoo,’’ IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[36] D. Rossi and G. Rossini, ‘‘Caching performance of content centric
networks under multi-path routing,’’ Telecom ParisTech, Paris, France,
Tech. Rep., 2011.

[37] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and
H. Mathkour, ‘‘Least fresh first cache replacement policy for NDN-based
IoT networks,’’ Pervas. Mobile Comput., vol. 52, pp. 60–70, Jan. 2019.

[38] M. G. Zotano, J. G. Sanz, and J. Pavón, ‘‘Analysis of Web objects distri-
bution,’’ in Proc. 12th Int. Conf. Distrib. Comput. Artif. Intell., vol. 373.
Salamanca, Spain: Springer, Jun. 2015, pp. 105–112.

[39] Naeem, Nor, Hassan, and Kim, ‘‘Compound popular content caching
strategy in named data networking,’’ Electronics, vol. 8, no. 7, p. 771,
Jul. 2019.

[40] J. Zhi, J. Li, H. Wu, and Y. Ren, ‘‘GAC: Gain-aware 2-round cooperative
caching approach in information-centric networking,’’ in Proc. IEEE 37th
Int. Perform. Comput. Commun. Conf. (IPCCC), Nov. 2018, pp. 1–8.

BASHAER ALAHMRI received the B.Sc. degree in computer science
from Princess Nourah Bint Abdulrahman University and the M.Sc. degree
from the Department of Computer Science, King Saud University, Riyadh,
Saudi Arabia. Her research interests include information-centric networks,
next-generation network architecture, and the Internet of Things.

SAAD AL-AHMADI (Member, IEEE) is currently
an Assistant Professor with the Department of
Computer Science, King Saud University, Saudi
Arabia. He has published many articles in highly
cited journals and worked as a part-time Consul-
tant in several government organizations as well
as the private sector. His current research inter-
ests include the IoT security, machine learning for
healthcare, and future generation networks.

ABDELFETTAH BELGHITH (Senior Member, IEEE) received the Master
of Science and Ph.D. degrees in computer science from the University of
California at Los Angeles (UCLA), in 1982 and 1987, respectively. Since
1992, he has been a Full Professor with the National School of Computer
Sciences (ENSI), University of Manouba, Tunisia. He is currently on a
sabbatical leave at King Saud University, Saudi Arabia. His research inter-
ests include computer networks, wireless networks, multimedia Internet,
mobile computing, distributed algorithms, systems and information security,
simulation, and performance evaluation. He runs several research projects
in cooperation with other universities, research laboratories, and research
institutions. He has publishedmore than 350 research papers in highly ranked
journals and conference proceedings. He is the Past Chair of the IEEETunisia
Section, the Chair of the IEEE ComSoc and VTS Tunisia Chapters, and the
Director of the HANA Research Laboratory, National School of Computer
Sciences.

43240 VOLUME 9, 2021


