
Received March 4, 2021, accepted March 6, 2021, date of publication March 17, 2021, date of current version March 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066537

Flexible Spare Core Placement in Torus Topology
Based NoCs and Its Validation on an FPGA
P. VEDA BHANU 1, RAHUL GOVINDAN1, PLAVA KATTAMURI1, J. SOUMYA1,
AND LINGA REDDY CENKERAMADDI 2, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad 500078, India
2Department of Information and Communication Technology, University of Agder (UiA), 4879 Grimstad, Norway

Corresponding author: Linga Reddy Cenkeramaddi (linga.cenkeramaddi@uia.no)

This work was supported in part by the Science Engineering Research Board (SERB), Government of India, Research Project, under
Grant ECR/2016/001389, Dt. 06/03/2017, and in part by the Indo-Norwegian Collaboration in Autonomous Cyber-Physical
Systems (INCAPS) of the INTPART Program from the Research Council of Norway, under Project 287918.

ABSTRACT In the nano-scale era, Network-on-Chip (NoC) interconnection paradigm has gained impor-
tance to abide by the communication challenges in Chip Multi-Processors (CMPs). With increased inte-
gration density on CMPs, NoC components namely cores, routers, and links are susceptible to failures.
Therefore, to improve system reliability, there is a need for efficient fault-tolerant techniques that mitigate
permanent faults in NoC based CMPs. There exists several fault-tolerant techniques that address the
permanent faults in application cores while placing the spare cores onto NoC topologies. However, these
techniques are limited to Mesh topology based NoCs. There are few approaches that have realized the
fault-tolerant solutions on an FPGA, but the study on architectural aspects of NoC is limited. This paper
presents the flexible placement of spare core onto Torus topology-based NoC design by considering core
faults and validating it on an FPGA. In the first phase, a mathematical formulation based on Integer Linear
Programming (ILP) andmeta-heuristic based Particle SwarmOptimization (PSO) have been proposed for the
placement of spare core. In the second phase, we have implemented NoC router addressing scheme, routing
algorithm, run-time fault injection model, and fault-tolerant placement of spare core onto Torus topology
using an FPGA. Experiments have been done by taking different multimedia and synthetic application
benchmarks. This has been done in both static and dynamic simulation environments followed by hardware
implementation. In the static simulation environment, the experimentations are carried out by scaling the
network size and router faults in the network. The results obtained from our approach outperform the
methods such as Fault-tolerant Spare Core Mapping (FSCM), Simulated Annealing (SA), and Genetic
Algorithm (GA) proposed in the literature. For the experiments carried out by scaling the network size,
our proposed methodology shows an average improvement of 18.83%, 4.55%, 12.12% in communication
cost over the approaches FSCM, SA, and GA, respectively. For the experiments carried out by scaling the
router faults in the network, our approach shows an improvement of 34.27%, 26.26%, and 30.41% over the
approaches FSCM, SA, and GA, respectively. For the dynamic simulations, our approach shows an average
improvement of 5.67%, 0.44%, and 3.69%, over the approaches FSCM, SA, and GA, respectively. In the
hardware implementation, our approach shows an average improvement of 5.38%, 7.45%, 27.10% in terms
of application runtime over the approaches SA, GA, and FSCM, respectively. This shows the superiority of
the proposed approach over the approaches presented in the literature.

INDEX TERMS Network-on-chip, application mapping, torus topology, fault-tolerance, spare core, com-
munication cost, FPGA.

I. INTRODUCTION
In the multi-processor era, processing elements are inter-
connected onto a single chip commonly known as

The associate editor coordinating the review of this manuscript and
approving it for publication was Jagdish Chand Bansal.

System-on-Chip (SoC). The underlying communication plat-
form used for SoCs design is bus-based architecture. With
the increased integration density of processing elements on
SoC, the bus-based architectures do not scale well [1]. Hence,
there is a need for a suitable communication platform to meet
the current application challenges. Network-on-Chip (NoC)

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 45935

https://orcid.org/0000-0001-5663-8407
https://orcid.org/0000-0002-1023-2118


P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 1. MPEG-4 application core graph.

interconnection paradigm has been proposed as a promising
solution to address the current application challenges in the
field of High Performance Computing (HPC) [2]. NoCs play
a major role in the transmission of data from the source
node to the destination node in the multi-processor SoCs
(MPSoCs). The communication between the cores in NoC is
achieved using packet-switching techniques through routers
or switches, and interconnection links [3].

A. BACKGROUND
As per Moore’s law, the number of transistors integrated
onto MPSoCs double every two years [4]. The advent scaling
down of the technology, and the validity of Moore’s law to
the MPSoCs design has led to a focus on reliability. This
necessitates the need for fault-tolerant strategies that can
improve system reliability. NoC components are susceptible
to faults that may occur during the run-time of an application.
Transient, Intermittent, and Permanent are three different
types of faults that may occur in the components of NoC [5].
Among the three different types of faults, permanent faults
are inevitable and vitiates the system performance. Hence,
it is highly important to address the permanent faults that may
occur in cores of an application.

Application mapping and core placement are traditional
problems that have been addressed by several researchers [6].
However, most of the application mapping and core place-
ment techniques that have considered core faults which are
limited toMesh topology only. Torus topology is an improved
version of Mesh and has advantages over it in terms of
hop count, communication latency, and throughput [7]. Core
placement in any topology is depended on the application
mapping techniques. Therefore, it is essential to address the
problem of fault-tolerant application mapping onto Torus
topology by considering the permanent faults in the cores.
This can be illustrated with an example of multimedia bench-
mark Moving Pictures Expert Group (MPEG) - 4, which is
one of the most frequently used applications in hand-held
devices.

Fig. 1 shows the MPEG-4 application core graph that has
twelve cores communicating with each other in terms of
Mega bits per second (Mbps). We assume that each task in
MPEG-4 is assigned to one core and the size of each core

is uniform. As mentioned earlier, the NoC communication
platform for any benchmark applications can be designed
using any one of the regular topologies namely Mesh and
Torus. From the literature [6], [8], it has been noticed that
for an MPEG-4 application, Mesh topology based NoC com-
munication platform has been provided as a primary solution.
This is due to ease of implementation ofMesh topology based
NoCs. However, a little importance is given to Torus topology
while designing a NoC communication platform forMPEG-4
application. The wraparound links in Torus topology help
to minimize the communication cost, network latency, and
average network power consumption of an application. For
multimedia benchmarks, the Torus topology adds an advan-
tage in terms of performance metrics namely communication
cost, network latency, and power consumption. The MPEG-4
application is most widely used in the domain of video pro-
cessing units. The permanent faults in any one of the cores
of an MPEG-4 application might lead to undesired response,
which in turn halt or suspend the system. To mitigate this
issue, there is a need for communication efficient and reliable
fault-tolerant technique that improves the reliability. There-
fore, the reliable Torus topology based NoC communication
platform can be consideredwhile designing a system. Further,
detailed comparison between the Mesh and Torus topologies
in terms of number of hops and communication cost is dis-
cussed in Motivation section.

To date, there are several software remedies that have
been proposed in the literature [8] to address the problem
of fault-tolerant application mapping onto NoCs. These tech-
niques provide an abstract or static view of system perfor-
mance and reliability. However, there is limited focus on the
realization of the fault-tolerant solutions on hardware. The
authors in [9] have realized the fault-tolerant applicationmap-
ping on an FPGA by considering the core faults. However,
they have not disclosed the architectural aspects and estima-
tion of the FPGA resources required for the implementation
of the proposed model [9]. In addition to it, there is also a
need to know about the time taken by the proposed model
in [9] to deliver the data packets. Moreover, a detailed study
of system dynamics on an FPGA is helpful for understanding
its behaviour in real world scenario. Therefore, it is highly
important to investigate these factors that may be helpful
for the realization of fault-tolerant application-mapping onto
an FPGA.

B. KEY CONTRIBUTIONS AND ORGANIZATION
OF THE PAPER
In this paper, we present a fault-tolerant application map-
ping onto Torus topology based NoC design. To address the
problem of fault-tolerant application mapping, a mathemat-
ical formulation based solution namely Integer Linear Pro-
gramming (ILP) andmeta-heuristic algorithmParticle Swarm
Optimization (PSO) based solution have been proposed. For
the FPGA implementation of the proposed fault-tolerant
application mapping solutions, a Virtual Channel (VC) based

45936 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

NoC router architecture for Torus topology has been imple-
mented. The key contributions of this paper are as follows.
• ILP and PSO based solutions have been proposed for
the fault-tolerant application (multimedia and synthetic)
mapping onto Torus topology.

• Router addressing scheme has been proposed for the
implementation of Torus topology on an FPGA.

• Routing algorithm and run time fault-injection model
have been proposed for the FPGA implementation of
Torus topology.

• FPGA implementation of fault-tolerant applicationmap-
ping onto Torus topology.

For the experimentation, we have taken multimedia [6],
synthetic application benchmarks [11] that have been evalu-
ated using static and dynamic simulations based environment.
These benchmarks are most widely used in the literature to
evaluate the effectiveness of the applicationmappingmethod-
ologies. The fault-tolerant solution obtained using static sim-
ulations has been implemented on an FPGA. For prototyping
fault-tolerant applicationmapping solutions onto FPGA, ded-
icated router addressing scheme, run time fault-injection
model, and routing algorithm for Torus topology have been
implemented. The rest of the paper is organised as follows.
Section II briefs the literature survey. Section III describes the
problem formulation. Section IV details proposed method-
ology. Section V presents experimental results. Section VI
presents the limitations of this work and Section VII
concludes the paper.

C. MOTIVATION
From the literature [6], [8], it has been noticed that
the exact method ILP and meta-heuristic algorithm PSO
are successful in finding the fault-tolerant mapping solu-
tions for different application benchmarks. This has moti-
vated us to consider the ILP and PSO methodologies for
fault-tolerant mapping of applications onto Torus topol-
ogy. The fault-tolerant application-mapping ontoMesh-based
NoC has been addressed in the literature [10], [12]–[15].
Among these one of our previous works [15] has shown
significant improvements in the performance parameters in
terms of communication cost. However, the formulations
(ILP and PSO) proposed in one of our previous works [15] is
limited to Mesh topology only. Due to the structural changes
in the Torus topology, the formulations proposed for Mesh
will not be applicable to it. The wraparound links in Torus
topology connects the corner routers with a single hop such
that the average hop count is less compared to Mesh topol-
ogy. Therefore, there is a significant difference between the
Mesh and Torus topologies. The major difference is in the
formulation of objective function and fitness function using
our previously proposed methodologies ILP and PSO [15].
The experimentation has been carried out to see the difference
between the mapping information obtained for Mesh and
Torus topologies using our approaches (ILP and PSO).

As mentioned above, with the change in the intercon-
nection pattern between the routers in the topology, the

performance of an application is varied from one topol-
ogy to other. The primary goal of this work is to analyse
the efficiency of the fault-tolerant application mapping onto
Torus topology using our approaches (ILP, PSO) [15] and
the approaches [10], [16]–[18]. The fault-tolerant spare core
mapping (FSCM) techniques proposed by the same group
of authors in [10], [16]–[18] considered the node average
distance (NAD) region and map the spare core in the cen-
ter of the NAD region. This technique has shown improve-
ments over the traditional approaches presented in [12]–
[14], [19]. Therefore, the FSCM technique is considered
for the experimental evaluation. In addition to the FSCM
technique, we have also considered the Simulated Anneal-
ing (SA) algorithm [20] and the Genetic Algorithm (GA) [21]
for the comparison of results. Though, we modify the SA
algorithm [20] and the GA [21] that can be suitable to Torus
topology, we limit the comparison between the Mesh and
Torus topologies to FSCM [10] technique only. However,
a detailed analysis of the SA algorithm and the GA in the
context of fault-tolerant application mapping can be seen
in experimental section. We have modified the formulations
(ILP/PSO) of our previously published work [15] by con-
sidering the wraparound links in the Torus topology. This
is an attempt to analyse the applicability of our approaches
(ILP/PSO) [15] to Torus topology by providing the flexibility
to map the spare cores along with the application cores onto
the routers. The cost function i.e., communication cost is the
figure-of-merit for the application mapping problem. It is
defined as the product of bandwidth and number of hops
required for the cores to get communicated in the topology.
Since the performance of an application is relied on the
efficiency of the application mapping technique, therefore,
it is highly necessary to analyse the fault-tolerant application
mapping solutions in NoC.

Communication cost =
∑
∀edges

(bandwidth ∗ hops) (1)

Table 1 shows the comparison of communication cost
(calculated using equation (1)) between our approaches
(ILP/PSO) [15] and FSCM [10] for an MPEG-4 application
mapped onto 4 × 4 Mesh and Torus topologies, respec-
tively. For a fair comparison between our approaches [15]
and FSCM [10], the most communicating core (C4) in the
MPEG-4 application (shown in Fig. 1) is assumed as failure
in the application. In the event of failure, the spare core (CS)
is used to provide fault-tolerance to an application. From
Table 1 it can be observed that the total communication cost
obtained using our approach for Mesh and Torus topology is
3652 and 3587, respectively. Similarly, the communication
cost obtained using FSCM [10] for Mesh and Torus topolo-
gies is 5290 and 7283, respectively.

The communication cost obtained using FSCM [10] is
high because they have used the NAD region policy to map
the application cores along with the spare core. Since the
selected NAD region has restrictions in terms of the hop
count between the cores, this has resulted in high number

VOLUME 9, 2021 45937



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 1. Communication cost comparison between our approaches (ILP/PSO) and FSCM [10] for Mesh and Torus topologies, respectively.

of hops between the routers in the topology. On contrary,
our approaches (ILP/PSO) have provided flexibility to select
the routers to map the application cores along with spare
one. This has led to achieve less number of hops between
the cores resulting in less communication cost. The per-
centage improvements in communication cost using our
approaches (ILP/PSO) for Mesh [15] and Torus topologies
over FSCM [10] is 30.96% and 50.74%, respectively. The
average hop count for Mesh and Torus topologies using our
approaches (ILP/PSO) are 1.61 and 1.30, respectively. Sim-
ilarly, for FSCM [10] the average hop count for Mesh and
Torus topologies are 1.61 and 1.69, respectively. With the
flexible spare core placement in the Torus topology, there
is an improvement of 19.25% and 1.78% over the Mesh
topology in terms of the average hop count and communi-
cation cost, respectively. Compared to Mesh topology, with
the use of modified ILP and PSO formulations for Torus
topology, the percentage of improvement in communication
cost over FSCM [10] is high. This is due to the advantage
of the wraparound links available in the Torus topology and
the policy of the placement of spare cores as per the com-
munication requirement of an application. Since there is a
significant improvement in terms of average hop count in
Torus topology, this has motivated us to apply the modified
ILP and PSO formulations to the benchmark applications and
synthetic applications generated using the TGFF tool [11].

II. RELATED WORKS
Fault-tolerant application mapping is becoming an impor-
tant problem that needs to be addressed during the design
time of an application. Table 2 presents the comparison of
application-mapping techniques that have been presented in
the literature. The authors in [8] have presented the sum-
mary on fault-tolerant application mapping techniques that
have optimized the parameters such as communication cost,
latency, area, and energy consumption. This survey highlights
several methodologies that are proposed to address the core
faults in an application. The authors in [12] have presented

the fault-aware resource management (FARM) technique to
improve system reliability by performing run-time mapping.
The FARM technique suggests that the mapping of spare
core onto the router (randomly selected from the topology)
has shown significant performance improvement over the
selection of routers specific to edges and center. The authors
in [13], [14], [19] have presented a fault-tolerant spare core
allocation (FASA) approach by providing the locations for the
spare core to be placed in the Mesh topology. The technique
FASA has mapped the spare core near to the most commu-
nicating core of an application. The techniques FARM and
FASA have fixed the position of spare cores to be placed
in the Mesh network. Since, FARM and FASA have per-
formed mapping of healthy cores in an application first and
then selected the spare core to be placed in the network.
This has resulted in a high communication cost and network
latency. To improve system reliability, an energy efficient
fault-tolerant application mapping technique has been pre-
sented in [10], [16]–[18]. They have selected a region that
satisfies the constraint of less number of hops between the
routers. Within the region selected, the spare core has been
placed in the center of the region. This has resulted in signif-
icant improvements over the techniques FARM and FASA,
in terms of communication cost and energy consumption
while providing reliability to system. The major advantage
is that the authors [10], [16]–[18] have considered the spare
core while mapping an application onto Mesh topology. The
authors in [15] have presented flexible spare core place-
ment while performing application mapping onto the Mesh
topology. It has shown significant improvements over the
approaches [10], [16]–[18] in terms of communication cost
and dynamic performance parameters.

From Table 2, it can be noticed that most of the approaches
have focused on 2D Mesh topology. Though, the Torus
topology has many advantages in terms of communica-
tion cost, power consumption, and network latency, there
are very few approaches that have considered it for the
fault-tolerant application-mapping. One of our previous

45938 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 2. Comparison of the recent works in the context of application-mapping onto NoCs and its FPGA implementation.

works presented in [22], has targeted Torus topology
and performed fault-tolerant application-mapping. We have
extended the work proposed in [10], [16]–[18] and com-
pared the results in terms of communication cost. However,
the work addressed in [22] has limited to static simula-
tions. Recently, the authors in [20], [21], [23], [24] have
addressed the problem of application mapping onto NoC
topologies without considering any core faults in the appli-
cation. In [23], a self-adaptive mapping approach has been
presented to address the problem of application-mapping
onto Mesh-based NoC design. Their approach focuses on
fault-free mapping of application cores onto Mesh topol-
ogy using self-adaptive chicken swarm optimization (SCSO)
algorithm. However, the applicability of the SCSO algorithm
to map the application cores onto the Torus-topology is to
be known. In [24], a comparative analysis on different appli-
cation mapping techniques onto NoC design and categoriza-
tion of the trends in implementation of NoCs have been
detailed. An area aware cost function has been proposed by
the authors in [20]. They have used a variant of the Simulated
Annealing (SA) algorithm and proposed a solution to map the
cores onto the routers in Mesh topology. However, the SA
algorithm based solution is limited to Mesh topology and
the applicability of the SA to the problem of fault-tolerant
application mapping has to be known. A dual-population
based Genetic Algorithm (GA) has been proposed in [21] to
address the problem of application-mapping in NoCs. They
have fine-tuned the initial population to achieve best quality
of mapping solution. Though, the GA algorithm has shown
improvements for Mesh topology, the applicability of GA
algorithm to the Torus topology has to be known. From
Table 2 and the survey [8], it can also be noted that the
realization of fault-tolerant mapping solutions on an FPGA
is achieved by very few approaches. The authors in [9]
have presented the FPGA implementation of fault-tolerant
application mapping onto Mesh topology. They have shown
the significance of spare core while performing the FPGA
implementation. The FPGA implementation presented in [9]
has focused on the demonstration of fault-tolerance pro-
vided to an application. The details on the router archi-
tecture and resource utilization on an FPGA is missing in

the approach [9]. Overall, it can be summarized that there
exists many approaches that have addressed the problem
of fault-tolerant application-mapping onto 2D Mesh topol-
ogy [8]. These approaches have not focused on the applicabil-
ity of themethodology to Torus topology. Therefore, there is a
need for the investigation of applicability of the fault-tolerant
application mapping techniques and evaluations of perfor-
mance parameters for Torus based NoCs. Also, there is a
room for exploring the realization of the fault-tolerant appli-
cation mapping solutions on an FPGA to understand and
analyse the practical behavior of NoCs. According to recent
survey [8], this work can be classified as a hardware redun-
dancy based mapping solution that has been proposed to
address the core faults while performing application mapping
onto Torus topology.

III. PROBLEM FORMULATION
Application mapping in NoC is similar to Quadratic Assign-
ment Problem and it is observed to be an NP-Hard [6], [25].
In the DSM level, system reliability can be improved by
performing mapping of application cores along with spare
core onto NoC topology. The communication characteristics
of an application can be represented in the form of a graph
known as Application Core Graph (ACG). The connections
between the routers using links in the topology is known as
Topology Graph (TG). If ‘C’ is the set of cores in an ACG,
‘E’ is the set of edges annotated with bandwidth (in Mega
bits per second), ‘R’ is the set of routers in the TG, then
connecting each core in {C} to a router in {R} to minimize
the cost function is known as application mapping problem.
The application-mapping problem complexity can be defined
as, if there are ‘n’ cores to be mapped onto ‘n’ routers, then
the possible combinations of solution is ‘n!’. If the number
of cores and the routers are increased then the complexity of
the problem may increase further. Similarly, the problem of
fault-tolerant application mapping is defined as connecting
each core that includes spare core in {C} of an ACG to the
routers in TG such that cost function is minimized. To address
the problem of fault-tolerant application mapping, we have
also considered the spare core while performing application
mapping onto Torus topology.

VOLUME 9, 2021 45939



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 2. Fault-tolerant MPEG-4 application mapped onto 4 × 4 Torus
topology.

IV. METHODOLOGY
In this section we present the exact method ILP,
meta-heuristic PSO formulations, NoC router architecture,
addressing scheme, routing algorithm, and run time fault
injection model for software and FPGA based simulations.
Since, Torus topology is a modified version of the Mesh
with wrap around links, there will be limited modifications
in the ILP and PSO formulations proposed by the authors
in [15]. The key modifications in ILP and PSO are finding a
path between the source core and destination cores that are
mapped onto the routers in the Torus topology. Fig. 1 shows
the MPEG application core graph having twelve cores (C0-
C11), among these cores, core C4 is the highest communi-
cating one. Fig. 2(a) and 2(b) show the fault-tolerant MPEG
applicationmapped onto 4×4 Torus topology (having sixteen
routers numbered from R1 to R16) using FSCM [10] and our
approach, respectively. Among these sixteen router positions,
thirteen are occupied by the application and three of them are
left idle.

As it can be observed from Fig. 2, unlike Mesh topology,
the connection pattern between the corner and edge routers
in the Torus topology are using wrap around links. Therefore,
the ILP and PSO formulations proposed by the authors in [15]
may not be applied directly for Torus topology. Hence, there
is a need for the modifications in ILP and PSO formulations
that consider the path using wrap around links in the Torus
topology.

A. ILP FORMULATIONS
ILP aims to minimize the objective function i.e., communica-
tion cost for the problem of fault-tolerant applicationmapping
onto Torus topology based NoC. For the problem defined
in Section IV, the ILP can be formulated as follows. For
an edge eab ε E in the ACG, the cores ca, cb ε C have a
communication requirement with a bandwidth Bwab. If cores
ca, cb are mapped to the routers ri, rj ε R, then there exists
a path P

rirj
cacb having Drirj number of hops between them. The

equations (2) to (10) represent the description of variables,
parameters, objective function, mapping constraints, and path
constraints, respectively used for the formulation of an ILP.
Please note that the equations (2-3) and (5-8) are similar to the

formulations of Mesh topology presented in [15]. However,
to understand the ILP process flow the equations (modified
from [15]) are necessary to be mentioned.

1) VARIABLES AND PARAMETERS
• The mapping variable Mri

ca is of binary type. If Mri
ca is

one, then core ca is connected to router ri, otherwise it
is zero.

M ri
ca =

{
1, Connection exists
0, No connection

(2)

• The path variable P
rirj
cacb is of binary type. If P

rirj
cacb is one,

then there exists a path between the cores ca, cb via
routers ri, rj, otherwise it is zero.

P
rirj
cacb =

{
1, Path exists
0, No path

(3)

• The distance variable Drirj is of integer type. If ri 6= rj,
then the lower and upper limits of distance variable in
mxn Torus topology is 1 and 2(m - 1). If ri is equal to rj,
then the distance between the routers is zero.

Drirj = Z+, 1 ≤ Drirj ≤ 2(m− 1) (4)

2) OBJECTIVE FUNCTION

Minimize [
∑
∀eabεE

Bwab ∗ (
∑
∀rirjεR

Drirj ∗ P
rirj
cacb )] (5)

3) MAPPING CONSTRAINTS
For fault-tolerant application mapping we have considered
the spare core and performed mapping onto routers in the
Torus topology.
• Each core ca ε C including spare core cs is mapped onto
routers ri ε R in the topology.

∀ caεC;
∑
riεR

M ri
ca = 1 (6)

• Each router ri ε R can have atmost one core ca ε C
connected to it.

∀ riεR;
∑
caεC

M ri
ca ≤ 1 (7)

From equations (6) and (7), the application cores (including
spare core) are mapped onto the routers in the topology.
Next, the communication path has to be established using the
routing algorithm.

4) PATH CONSTRAINTS
The communication path has to be established for the cores
in the ACG. In the event of core failure, the tasks have to
be migrated from the failed core to spare core. Unlike ILP
formulations presented for Mesh topology in [15], the path
constraints for Torus topology are different. We consider
the path and distance variables to calculate the number of
hops required for the communication. For a given source

45940 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

and destination core pair, we have used modified XY routing
algorithm to find out the routing path and corresponding
distance between the routers.
• The pre-calculated distance is stored in the distance
array shown below.

Drirj =


Dr1r1 Dr1r2 · · · Dr1rj
Dr2r1 Dr2r2 · · · Dr2rj
...

...
. . .

...

Drir1 Drir2 · · · Drirj

 (8)

• As we have already mentioned in equation (4), that the
distance between the routers of same index will be zero.

Drirj =


0 Dr1r2 · · · Dr1rj

Dr2r1 0 · · · Dr2rj
...

...
. . .

...

Drir1 Drir2 · · · 0


• If the cores are mapped onto routers, then there exists
a path between the cores via routers (represented in
equation (9)). However, there should not be any path in
the topology between the failed core cf and other healthy
cores ca ε C of an ACG. This can be represented by
equation (10).

∀eabεE, a 6= b 6= f ; M ri
ca +M

rj
cb − P

rirj
cacb ≤ 1 (9)

∀eabεE, a == f ; b 6= f M rk
cs +M

rj
cb − P

rk rj
cscb≤1 (10)

The equations (2) to (10) are given to the ILP solver tool
CPLEX [26]. The solution obtained is the fault-tolerant appli-
cation mapping onto Torus topology based NoC design. This
completes the exact method formulations. As the problem
complexity is increased, the number of variables used for the
ILP formulation increases which results in the out of memory
status. Therefore, for the higher network sizes meta-heuristic
PSO is proposed.

B. PSO FORMULATION
PSO was proposed by Eberhart and Kennedy in 1995 [27].
It is inspired by the nature of birds swarm and fish schooling
to address the problems that involve global and local opti-
mization. Most of the researchers have been successful in
applying the discrete version of PSO (DPSO) to address the
problem of application mapping in NoC. With this motiva-
tion, the authors [15], [22] have applied the DPSO to solve
the problem of fault-tolerant application mapping onto Mesh
and Torus topology, respectively. The detailed description of
PSO can be known from [22]. Since, PSO is one of the contri-
butions in this paper; therefore, authors feel it is necessary to
discuss in brief about PSO for the fault-tolerant application
mapping onto Torus topology. The step by step procedure
required for the formulation of PSO are as follows.

1) INITIALIZATION OF PARTICLES
The first step is to initialize the particles randomly in the prob-
lem space to find the optimum solution. Prior to initialization,

FIGURE 3. Particle Structure for MPEG ACG shown in Fig. 1.

particle structure has to be formulated. Therefore, particle
structure can be represented as an array of elements whose
entries are cores (including spare core) and indices are routers
in the Torus topology. Fig. 3 shows the particle structure of
MPEG ACG shown in Fig. 1. Since, Torus topology differs
from Mesh in terms of wrap around links only, therefore
the particle structure formulated for Mesh [15] and Torus
are same. However, the solution differs in the formulation of
fitness function in terms of hop array.

2) FITNESS FUNCTION
In PSO, the solution’s quality depends on the fitness function,
i.e., communication cost defined in equation (1). For better
fitness values, the communication cost has to be minimized
for each edge in the ACG while providing fault-tolerance to
the system. From equation (1), it is evident that the commu-
nication cost is dependent on the number of hops between
the routers. As mentioned in Section IV.A, the number of
hops between the routers in Torus topology is calculated using
the modified XY routing algorithm. Therefore, the hop array
obtained for Mesh topology might not be useful to Torus
topology. Since the router connection pattern and the routing
algorithm used for Torus are different from those of Mesh
topology, there is a need to formulate PSO for Torus topology.
The hop array for Torus topology is shown in equation (8),
which differentiates from Mesh topology in terms of the
distance between the corner and edge routers.

3) CREATION OF NEW GENERATION
The initial generation of particles is created randomly. The
evolution of particles is partially guided by local best and
global best. The local best is the minimum communication
cost, the particle has seen so far in the process of evolution.
The global best is the minimum communication cost for a
particular generation. The new generation is created by apply-
ing the swap sequences on a particle. For detailed explanation
regarding local best, global best, swap sequences, please refer
to the PSO section in [15].

4) TERMINATION CRITERIA
PSO can be terminated in two different ways. The first and
frequently used terminating condition is to check the gener-
ation count. If the generation count for an independent run
of PSO is expired, then the PSO is terminated. Secondly,
for a certain number of generations if the fitness value is
unchanged, then the PSO is terminated. For the experimen-
tation, we have considered the first terminating condition
for PSO.

VOLUME 9, 2021 45941



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 4. NoC router architecture modified version of [28].

FIGURE 5. Input channel of the router [28].

FIGURE 6. Output channel of the router [28].

This briefs the PSO formulation for the problem of
fault-tolerant application mapping onto Torus topology.

C. NoC ROUTER ARCHITECTURE AND ADDRESSING
SCHEME
In this section, we present the NoC router architecture and
addressing scheme used for the implementation of Torus
topology based NoC design onto an FPGA. The basic
router architecture is taken from the work presented in [28].
The overview of NoC router architecture (modified version
of [28]) is shown in Fig. 4.

We have used five port (four links and one core) Virtual
Channel (VC) based NoC router. It has one input and output
channel. The data flow in input channel and output chan-
nel is shown in Fig. 5 and 6, respectively. The application
data in NoC is transferred using packet-switching technique.
According to this technique, the data packet is divided into
Header Flit (HF), Payload Flit (PF), and Tailer Flit (TF).
The flits entering into a router will pass through the input
channel, via crossbar, and reach the output channel. The input
buffer (FIFO) in the input channel collects the flit and pass it
to the route computation (RC) unit. In RC unit, the routing
algorithm is responsible to request the corresponding output

FIGURE 7. The overall data-flow in NoC router [28].

FIGURE 8. Router addressing scheme for 4 × 4 Torus topology.

port to pass the flits from source to destination. The input read
switch (IRS) monitors the status of the FIFO. Based on the
availability of the FIFO, the next flits will be processed. The
output channel majorly consists of VC allocate and Switch
allocate modules. They involve in switching the data from
an input channel to the output port. The VC allocate module
monitors the status of the VCs used in the output links and
grant a response to the request received from the input chan-
nel. The arbiter is used to grant the response based on the
requests received. In the switch allocate module, the output
port is assigned with the help of an encoder. In one of the
output ports selected, the flits from the input channel will
be passed through it by updating its VC-id. The overall
data-flow noticed from input port of a router to the output
port can be realized using the Fig. 7. It can be noticed that
from the entire data flow process that the router addresses
in HF and routing algorithm are the key blocks, which can
request the corresponding output link for successful delivery
of data flits. Therefore, in this work, the router addressing
scheme and routing algorithm have also been proposed for
the implementation of Torus topology on an FPGA.

Fig. 8 shows the router addressing scheme proposed for
the 4× 4 Torus topology with the indication of North, South,
East, and West links of a router. We have used the concept
of reflected binary (RB) code for addressing the routers.
According to RB coding scheme, the neighbouring routers
are differentiated by one bit only. This adds an advantage in
terms of the comparison between two routers in the topology
by checking single bit change in the router addresses. The
router addressing scheme for 4 × 4 Torus topology requires

45942 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

four bits D[3:0]. The router architecture used for the 4 × 4
Torus topology is of five ports (north, south, east, west, and
local). As we can observe from the Fig. 5, the routers can be
compared by considering one binary bit in the address. This
can be scalable to higher network size of Torus topology.

D. ROUTING ALGORITHM AND RUN TIME
FAULT-INJECTION MODEL
1) ROUTING ALGORITHM
In this section, we present the routing algorithm designed for
4 × 4 Torus topology by considering the router addressing
scheme discussed in Section IV.C. Algorithm 1 shows the
routing algorithm proposed for the Torus topology. Input and
output to this algorithm are Header Flit (HF) and current
router link request, respectively. Once the HF is received at
the current router, the destination router address D[3:0] is
taken and compared with the current address C[3:0]. Accord-
ing to this algorithm, the current and destination routers
are compared bit wise. Since the router addressing scheme
is based on binary, therefore, bit-wise comparisons are
done.

As we have mentioned in Section IV.C, the router arbitra-
tion unit grants the access to the output links requested by
routing algorithm. Therefore, the routing algorithm proposed
will request the output links of the current router. According
to the Algorithm 1, there are four different conditions to be
checked before requesting the current router’s output links.
The description of each condition is given below.

1) East or West link: The first bit C[0] in current address
and D[0] in destination address are compared. If they
are not equal, then the first bit C[0] and second bit C[1]
in the current address will be compared. If C[0] and
C[1] are equal, then the proposed algorithm requests
the current router’s East link. If C[0] and C[1] are not
equal, then the current router’s West link is requested.
If the first bit in current address C[0] and destination
address D[0] are equal, then the proposed algorithm
compares with its next bit, i.e., the second bit of the
current and destination address.

2) West or East link: The second bit C[1] in the current
address and D[1] in destination address are compared.
If they are not equal, then the first bit C[0] and sec-
ond bit C[1] in the current address will be compared.
If C[0] and C[1] are equal, then the proposed algorithm
requests the current router’sWest link. If C[0] and C[1]
are not equal, then the current router’s East link is
requested. If the second bit in current and destination
address are equal, then the proposed algorithm will
compare with its third bit, i.e., C[2] and D[2].

3) North or South link: The third bit C[2] in the cur-
rent address and D[2] in destination address are com-
pared. If they are not equal, then the third bit C[2] and
fourth bit C[3] in the current address will be compared.
If C[2] and C[3] are equal, then the proposed algorithm
requests the current router’s South link. If C[2] and C[3]
are not equal, then it requests North link of the current

Algorithm 1 Routing Algorithm for Torus Topology
Input : Header Flit (HF)
Output: Link request of current router

1 Read the destination address D[3:0] from HF

2 for Each HF received at the router do
3 Compare the destination address D[3:0] with current

address C[3:0]

4 if (C[0] 6= D[0]) then
5 if (C[0] == C[1]) then
6 request East link
7 else
8 request West link
9 else if (C[1] 6= D[1]) then
10 if (C[0] == C[1]) then
11 request West link
12 else
13 request East link
14 else if (C[2] 6= D[2]) then
15 if (C[2] == C[3]) then
16 request South link
17 else
18 request North link
19 else if (C[3] 6= D[3]) then
20 if (C[2] == C[3]) then
21 request North link
22 else
23 request South link
24 else
25 request local link
26 end
27 Once the link connection is established PF, TF follow

the path

router. If the third bit of the current C[2] and destination
address D[2] are equal, then the proposed algorithm
compares with its next bit, i.e., C[3] and D[3].

4) South or North link: The fourth bit in the current
address C[3] and destination address D[3] are com-
pared. If they are not equal, then the third C[2] and
fourth bit C[3] in the current address will be compared.
If C[2] and C[3] are equal, then the proposed algorithm
requests the current router’s North link. If C[2] and
C[3] are not equal, then it requests South link of the
current router. If the fourth bit of the current C[3] and
destination address D[3] are equal, then the proposed
algorithm requests the local link.

2) RUN TIME FAULT-INJECTION MODEL
We have proposed a run time fault-injection model for the
FPGA implementation of fault-tolerant application mapping
onto Torus topology. In general, there are several ways to
inject the faults on an FPGA to test the design. The authors
in [29] have proposed an emulation based fault-injection

VOLUME 9, 2021 45943



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 3. FPGA switch operations used for fault injection model.

control and monitoring technique. They have injected the
faults into a specific location of the design, i.e., flip-flops, and
observed the functional characteristics while monitoring the
state of flip-flops. In contrast to it, our proposed model shown
in Algorithm 2 has the flexibility to inject the faults into the
cores. Instead of injecting the faults in selected flip-flops
of the design, our proposed model considers the failures
in a higher level of the design like cores and deactivates
it. Since we assume that the most communicating core has
high chances of failure, the fault is injected into it using the
switches on a Kintex-7 KC705 FPGA. Compared to the work
proposed in [29], our proposed model is a proof-of-concept
that shows the fault-tolerance can be achieved with the help
of spare cores. However, the methodology proposed in [29]
can be considered as an extension to this work.

The inputs to our proposed model are Header Flit (HF),
fault information (FI), and spare core activation (SCA). The
output is to establish a routing path from the spare core to
the other cores in an application. Since we have assumed
that the most communicating core is failed in an application,
the fault is injected into it. However, the fault can be injected
into any one of the cores of an application. The term fault
injection in this work refers to the deactivation of the most
communicating core from the network. Once the fault has
been injected in runtime, the failed core will not exchange the
flits from other cores in an application. In such a case, based
on the spare core activation, the communications associated
with failed core will be taken up by the spare core.

Table 3 represents the FPGA onboard switch operations
used for the fault-injection model. The first column rep-
resents the status of FI, the second column represents the
status of SCA, and the third column represents the switch
operations. There are multiple switches on the KC705 FPGA
board. We have used the 4-bit DIP switch (SW11) (denoted
by the SW11[s4:s1]) to configure the fault-injection model.
The Low and High represent the DIP switch status 0 and 1,
respectively. Out of the four bits in the DIP switch SW11,
the second bit SW11[s2] is used for the injection of fault in
the cores, and the third bit SW11[s3] is used for the activation
of the spare core. The first bit and fourth bit of SW11 has not
been used for the fault-injection model. If SW11[s2] is high,
then it denotes that the fault has been injected into the core;
otherwise, there is no fault injected in the core. If SW11[s3]
is high, then it denotes that the spare core is activated in
the design; otherwise, there is no fault-tolerance provided
to the design. From Table 3, it can be observed that there

Algorithm 2 Run Time Fault-Injection Model
Input : Header Flit (HF), DIP switch status

SW11[s4:s1]
Output: Establish the routing path from the spare core

1 Read the HF, the switch SW11[s2] and SW11[s3] status
from the KC705 FPGA

2 for each HF received at the router do

3 if ((SW11[s2] == 0)&&(SW11[s3] == 1)) then
4 Establish the routing path between the fault-free

cores and spare core.
5 Invalid operation

6 if ((SW11[s2] == 1)&&(SW11[s3] == 0)) then
7 Establish the routing path between the cores

except the failed one.
8 Unreliable operation

9 if ((SW11[s2] == 1)&&(SW11[s3] == 1)) then
10 if (source core is failed) then
11 Establish the routing path from spare core.
12 Spare core sends the HF.
13 end
14 if (destination core is failed) then
15 Establish the routing path from spare core.
16 Spare core receives the HF.
17 end

18 else
19 Fault-free cores exchange the HFs

20 end
21 Payload Flit (PF), Tailer Flit (TF) follows the routing

path established by spare core

are four different switch modes that can be used to verify
the functionality of the fault-injection model. Fig. 9 shows
different switch configurations discussed in Table 3. Each one
of these configurations is detailed below.

1) No failure: If the second bit (SW11[s2]) and third bit
(SW11[s3]) of the switch SW11 is configured to low,
then it is considered as fault-free mode. Fig. 9(a) shows
the SW11 configuration, it can be seen that the second
and third bit is configured to 0 or low. In fault-free
mode, the data will be exchanged between the healthy
cores of an application.

2) Invalid: If the second bit of the switch SW11 is con-
figured to Low and the third bit of the switch SW11 is
configured to high, then it is an invalid mode. In this
mode, only the spare core is activated which sends the
redundant data to the other cores of the application.
Therefore, it is considered as the invalid mode.

3) Fault-injected but the spare core is not activated: If
the second bit of the switch SW11 is configured to High
and the third bit of the switch SW11 is configured to
Low, then the fault is injected into the core which is
assumed to be failed. In the event of failure, the spare

45944 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 9. DIP Switch SW11 configuration on KC705 FPGA board, (a) No failure, (b) Invalid, (c) fault is injected but spare core not activated, and (d) fault
is injected and spare core is activated.

core need to send the data flits to the cores associated
with the failed one. Since the spare core is not activated,
it will not send the data flits to the other cores. This
results in the degradation of system performance.

4) Fault injected and the spare core is activated: If
the second bit and third bit of the switch SW11 is High,
then the fault is injected into the core and the spare
core is activated. In the event of core failure, the spare
core will send or receive the data flits to or from the
cores associated with the failed one. Based on the role
of failed core as either source or destination, the spare
core will send or receive the data flits by establishing a
routing path.

V. EXPERIMENTAL RESULTS
In this section, we demonstrate the fault-tolerant application
mapping using software and hardware (FPGA) implementa-
tion. The major aim of this study is to understand and analyse
the performance parameters of an application with inclu-
sion of spare core while providing fault-tolerance to system.
We have taken multimedia application benchmarks [6] and
synthetic applications [11] for the experimentation. Further,
to analyze the fault-tolerant application mapping solution
obtained using our approach and the approaches FSCM [10],
SA algorithm [20], GA [21] an FPGA implementation is
done. For a fair comparison with our approaches (ILP/PSO),
we have extended the approaches based on FSCM tech-
nique [10], SA algorithm [20] and the GA [21] to Torus
topology by considering the core faults. The experimenta-
tions are carried out with the same configuration settings used
for our approach and the approaches FSCM [10], SA algo-
rithm [20], and the GA [21]. The experimental flow is shown
in Fig. 10 and the results are organized based on the software
and FPGA implementation.

The primary input to the experimentations are
application-core graphs and the outputs are static, dynamic,
and on-chip parameters. The fault-tolerant application-
mapping algorithms such as PSO, SA, GA, and FSCM are

evaluated using the software and hardware platform and its
efficiency is analyzed in terms of solution quality. The quality
ofmapping solution can be ranked by the communication cost
defined in equation (1). In software implementation, we have
performed static simulations for our approaches (ILP, PSO)
and FSCM [10], SA [20], GA [21]. To understand the static
behavior of fault-tolerant application mapping solutions,
we have performed the experimentations with the following
configurations.
• Scaling the number of cores in the applications (multi-
media and synthetic).

• Scaling the Torus network size from 5× 5 to 12× 12
• Scaling the percentage of router faults in 9 × 9 Torus
network.

Similarly, the dynamic behavior of the proposed solutions is
analysed using the cycle accurate NoC simulator and com-
pared the results in terms of network latency (in clock cycles),
throughput (in flits/cycle/core), and router power consump-
tion (in mW). In hardware implementation, the fault-tolerant
application mapping information is prototyped onto FPGA
and on-chip parameters namely resource utilization, appli-
cation runtime on an FPGA, and static/dynamic power
consumption are analyzed. To compare our approach and
FSCM [10], SA algorithm [20], and GA [21] the applications
are run on an FPGA with the respective mapping information
obtained in the software implementation stage and the overall
runtime is noted. These application mapping algorithms are
validated on an FPGA by providing real application traffic
patterns in terms of flits. We have used Virtual Input Out-
put (VIO) IP core to assign the cores to the routers and
send the data flits. Based on the analysis, the efficacy of the
fault-tolerant application mapping algorithms is known.

A. EXPERIMENTAL SETUP
The algorithms PSO (our approach), SA [20], and GA [21]
are coded in high-level language and performed static sim-
ulations. They are independently run for 30 times and the
best results are reported. The parameters used for the PSO

VOLUME 9, 2021 45945



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

FIGURE 10. Experimental flow of the fault-tolerant application mapping onto Torus topology based NoC.

algorithm are the number of particles (1000), number of gen-
erations (200), acceleration co-efficient alpha (0.5), and beta
(0.3). The parameters used for the SA algorithm are initial
temperature (40), damping rate (0.95), annealing loop (500),
and thermal equilibrium loop (10). Similarly, the parameters
used for the GA are population size (500), number of gener-
ations (100), mutation probability (0.9), and crossover prob-
ability (0.1). We have used IBM CPLEX-ILOG tool [26] to
run ILP formulations, cycle-accurate NoC simulator [28] for
dynamic simulations, and Kintex KC705 FPGA for hardware
implementation. The simulator settings are detailed below.
• Simulation time: 2,00,000 clock cycles
• Saturation time: 10,000 clock cycles
• Flit size: 32 bits
• Clock period: 5 ns
• Number of flits per packet: 64
• Traffic: application specific
• Router ports: 5 (4 global, 1 local)
• Mapping information: Our approach (PSO), FSCM [10],
SA [20], and GA [21]

• Routing algorithm: Modified XY
Please note for the experimentation (software and FPGA) the
most communicating core in the application is assumed to be
failed. This assumption is valid in most of the approaches [9],
[10], [12]–[14], [16]–[19] reported in the literature.

1) COMPARISON OF COMMUNICATION COST BETWEEN
OUR APPROACHES (ILP AND PSO) AND THE APPROACHES
FSCM [10], SA [20], AND GA [21] BY SCALING THE TORUS
NETWORK SIZE
This section presents the experimental results obtained by
mapping the application cores (including spare core) onto
the routers by scaling the network size. We have assumed
that the most communicating core has high chances of failure
for the applications considered and performed fault-tolerant
application mapping. Table 4 shows the comparison of com-
munication cost between our approach and the approaches
FSCM [10], SA [20], and GA [21] by scaling the Torus
network size from 5 × 5 to 12 × 12. In Table 4, column one
represents the application to be mapped onto Torus topology.
The second column represents the number of cores present in
the application. Columns three to seven, eight to twelve, thir-
teen to seventeen represent the communication cost results for
the 5×5, 9×9, and 12×12, respectively. From theMotivation

section, it has been seen that; if there is a fixed region for
mapping the cores (including spare core), then it has resulted
in a high communication cost. With this motivation, we have
modified the approaches SA [20] and the GA [21] without
considering any fixed region. This can be considered as a
major modification to the approaches SA [20] and GA [21]
while extending it to Torus topology. As we can observe from
Table 4, the communication cost results for the 5× 5, 9× 9,
12 × 12 Torus network obtained using our approaches (ILP
and PSO) are less than the approaches FSCM [10], SA [20],
and GA [21]. From the experimental results, it has been
observed that the FSCM technique used by the authors in [10]
has placed the spare core in the center of the NAD region
selected in the topology. With the change in communication
requirement of the applications, the FSCM [10] has fixed the
position for the placement of the spare core in the network.
In contrast to FSCM, our approaches (ILP/PSO) and the
approaches SA [20] and GA [21] have provided the flexibility
to place the spare core while performing the fault-tolerant
application mapping. Fig. 11 shows the comparison of the
communication costs obtained by the approaches SA [20],
GA [21], and FSCM [10]. In Fig. 11, X-axis represents the
application benchmarks, and Y-axis represents the commu-
nication cost results normalized to our approach PSO algo-
rithm. It can be noted that the approaches SA [20] and the
GA [21] have resulted in less communication cost compared
to the FSCM technique [10]. From Fig. 11(a), it can be
seen that the modified approaches SA [20] and GA [21]
have performed well for the smaller application benchmarks.
As the number of cores and the network size are increased,
the approaches SA [20] and GA [21] have shown very little
improvements (Fig. 11(b) and 11(c)) over our approach PSO
algorithm. This is due to the increase in the search space from
25 routers (in 5× 5) to 81 routers (in 9× 9) and 144 routers
(in 12× 12). As the search space is increased, the algorithms
SA [20] and GA [21] have not converged to the best solution.
On the other hand, though the search space is increased, our
approach PSO has converged to the best solution. This is
possible due to the swarm intelligence policy that exists in
the PSO algorithm.

Fig. 12 shows the average percentage improvement in
communication cost obtained using our approach over the
approaches FSCM [10], SA [20], and GA [21] by scal-
ing the network size, from 5 × 5 to 9 × 9 and 12 × 12,

45946 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 4. Communication cost comparison between our approaches (ILP/PSO) and the approaches FSCM [10], SA [20], GA [21], by varying the Torus
topology size.

FIGURE 11. Normalized communication cost comparison of PSO algorithm with SA algorithm [20], GA [21], and FSCM approach [10] by scaling
the Torus topology size from 5 × 5 to 12 × 12.

FIGURE 12. Average percentage improvements in communication costs
obtained by scaling the network size using our approach over the
approaches FSCM [10], SA [20], and GA [21].

respectively. On an average, by scaling the network size,
our approach has shown an improvement of 18.83%, 4.55%,
and 12.12% in communication cost over the approaches
FSCM [10], SA [20], and GA [21], respectively. This shows
our approach’s efficiency in mapping the cores (including
spare core) onto the different network sizes of Torus topology.

2) COMPARISON OF COMMUNICATION COST BETWEEN
OUR APPROACH (PSO) AND THE APPROACHES FSCM [10],
SA [20], GA [21] BY SCALING THE PERCENTAGE OF ROUTER
FAULTS IN 9× 9 TORUS TOPOLOGY
In the previous experiment, we have seen the efficacy of the
approaches by increasing the network size. This experiment
demonstrates our approach’s efficiency while performing
fault-tolerant application mapping onto 9× 9 Torus topology
by changing the percentage of router faults. Please note that
the same kind of experiments can be done with any size of the
network. This kind of study helps to analyze the efficiency of
the approaches PSO, FSCM, SA, and GA in finding the best

possible router locations for mapping the cores (including
spare core) onto the network. The term percentage of router
faults is defined as the number of unavailable routers in the
mxn for mapping the cores of an application. For example,
if we consider 15% router faults in 9×9 Torus topology, then
out of 81 routers, 12 of them are unavailable formapping [15].
As the percentage of router faults is increasing, the selection
of routers for mapping an application plays a key role in
the quality of the solution. Further, the quality of a mapping
solution depends on the communication cost.

Table 5 shows the communication cost results comparison
between our approaches (ILP and PSO) and the approaches
FSCM [10], SA [20], and GA [21] by varying the percentage
of router faults in 9 × 9 network. The term NA represents
that the concerned application is not suitable for mapping
because the number of routers required for mapping is less
than the cores. As we can observe from Table 5, with an
increase in the percentage of router faults, our approach
could place the cores (including spare core) efficiently. The
communication cost obtained using our approach isminimum
when compared with the approaches FSCM [10], SA [20],
and GA [21]. We have normalized the communication cost
values to our approach, and the results for different applica-
tion benchmarks are shown in Fig. 13. In Fig. 13, the X-axis
represents the application benchmarks, and Y-axis represents
the communication cost normalized to our approach PSO
algorithm. As mentioned earlier, compared to our approach
and the approaches SA [20] and GA [21], the FSCM tech-
nique has fixed the NAD region to map the cores (including
spare ones) onto the routers. This resulted in high communi-
cation costs because the number of hops required to commu-
nicate between the healthy cores and the spare core is high.

VOLUME 9, 2021 45947



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 5. Communication cost comparison between our approaches (ILP/PSO) and the approaches FSCM [10], SA [20], GA [21], by scaling the percentage
of router faults.

FIGURE 13. Normalized communication cost comparison of PSO algorithm with SA algorithm [20], GA [21], and FSCM approach [10] by scaling the
percentage of router faults in Torus topology size of 9 × 9.

FIGURE 14. Average percentage improvements in communication costs
obtained by scaling the percentage of router faults using our approach
over the approaches FSCM [10], SA [20], and GA [21].

From Fig. 13, it can be observed that as the number of
cores in an application and the percentage of router faults are
increased, our approach PSO has shown significant improve-
ments over the approaches SA [20], GA [21], and FSCM [10].
Fig. 13(a), 13(b), and 13(c) show the normalized communica-
tion cost results for the applications mapped onto 9×9 Torus
topology with 15%, 35%, and 50% router faults, respectively.
It can be observed that from Fig. 13, our approach and the
approaches SA [20] and GA [21] have performed better
compared to the approach FSCM [10]. This is due to the
utilization of the entire search space by the approaches PSO,
SA, and GA over the approach FSCM, to map the cores
(including the spare core) onto the Torus network.

With increase in the router faults, the search space for the
algorithms PSO, SA and GA is limited. Within the limited
search space, the approaches SA and GA could not per-
form well because of the poor convergence in obtaining the

minimum communication cost for GA [21] and the premature
convergence in SA algorithm [20]. Fig. 14 shows the aver-
age percentage improvement in communication cost obtained
using our approach over the approaches FSCM [10], SA [20],
andGA [21] by scaling the router faults, in 9×9 network from
15% to 35% and 50%, respectively. On an average, by scaling
the router faults our approach has shown an improvement
of 34.27%, 26.26%, and 30.41% in communication cost over
the approaches FSCM [10], SA [20], and GA [21], respec-
tively. This improvements are due to the efficient placement
of spare core in the network over the FSCM [10] and better
convergence of the PSO algorithm over the SA algorithm [20]
and GA [21]. Compared to the scaling in network size,
the average percentage improvements in communication cost
achieved using our approach is high while we scale the router
fault-percentage in the network. It is due to efficiency of the
PSO algorithm that has the capability to explore entire search
space of the solutions.

3) COMPARISON OF DYNAMIC SIMULATION RESULTS
BETWEEN OUR APPROACH AND THE APPROACHES
FSCM [10], SA [20], GA [21]
This experiment demonstrates the dynamic behavior of the
application benchmarks simulated using the cycle-accurate
NoC simulator [28]. The inputs to the simulator are mapping
information (obtained for different applications using our
approach and the approaches FSCM [10], SA [20], GA [21]),
routing algorithm, application traffic, simulation, and satura-
tion time. The outputs are average network latency (in clock
cycles), throughput (in flits/cycle/core), and router power
consumption (in mW). For the router power consumption

45948 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 6. Average network latency, throughput, and router power consumption comparison between our approaches ILP, PSO and the approaches
FSCM [10], SA [20], GA [21] in 9 × 9 Torus topology.

FIGURE 15. Normalized network latency, throughput, and router power consumption comparison of PSO algorithm with SA algorithm [20],
GA [21], and FSCM approach [10] by performing dynamic simulations.

calculations, we have used ORION 2.0 tool [30]. Table 6
shows the comparison of dynamic simulation results between
our approach and the approaches FSCM [10], SA [20],
GA [21] for 9 × 9 Torus topology. In Table 6, first column
represents the application type, and the second column rep-
resents the number of cores. Columns three to six, seven to
ten, eleven to fourteen represent the network latency, through-
put, router power consumption results obtained using our
approach and the approaches FSCM [10], SA [20], GA [21],
respectively. Fig. 15 shows the results of the approaches
FSCM [10], SA [20], GA [21] normalized to the results
obtained using our approach. In Fig. 15, X-axis represents
application benchmarks shown in Table 6 and Y-axis rep-
resents normalized values of dynamic simulation param-
eters namely network latency (in Fig. 15(a)), throughput
(in Fig. 15(b)), and router power consumption (in Fig. 15(c)).
As it can be seen from Fig. 15(a), the network latency for the
approach FSCM [10] is comparatively higher than that of our
approach PSO algorithm, SA algorithm [20], and GA [21].
From Fig. 15(b), it is evident that the throughput for the
approach FSCM [10] is less than our approach. This improve-
ments using our approach could be possible because of the
efficient placement of spare core in the network. However, for
the router power consumption there are little improvements
using our approach over the approaches FSCM [10], SA [20]
and GA [21]. This is due to the static power consumption and
switching activity of the routers in the topology. In addition to
these, the leakage power consumption of the routers will also
add to the total power consumption of the network. Therefore,
we could not see much improvements in the router power
consumption.

FIGURE 16. Average percentage improvements in dynamic simulations
using our approach over the approaches FSCM [10], SA [20], and GA [21].

Fig. 16 shows the average percentage improvements in
dynamic simulations performed for the fault-tolerant appli-
cation mapping onto Torus topology using our approach and
the approaches FSCM [10], SA [20], and GA [21]. In Fig. 16,
the X-axis represents the simulation parameters namely net-
work latency, throughput, and the router power consumption.
The Y-axis represents the average percentage of improve-
ments using our approach over the approaches FSCM [10],
SA [20] and GA [21], respectively. On an average, our
approach has achieved an improvement of 5.67%, 0.44%, and
3.69% in terms of dynamic simulation parameters over the
approaches FSCM [10], SA [20], and GA [21], respectively.

It has been observed from the dynamic simulation results
that the mapping of spare core onto the topology affects
the system performance. From the software implementation,
i.e., static and dynamic results, it has been noticed that in
the event of core failures, selection of mapping algorithm
plays a major role in analyzing the performance of an appli-
cation. This completes the software implementation of the

VOLUME 9, 2021 45949



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

fault-tolerant applicationmapping onto Torus topology. How-
ever, the software implementation gives only an estimation
of system performance. To realize the practical behavior of
the mapping solutions obtained using our approach and the
approaches proposed in the literature, hardware prototyping
of the fault-tolerant application mapping solutions is highly
essential. This study helps us to analyze the communica-
tion latency behavior of different application benchmarks.
Next, we look into FPGA implementation of the proposed
fault-tolerant application mapping techniques.

B. FPGA IMPLEMENTATION
This section presents the experimental results of the
fault-tolerant application mapping solutions validated using
an FPGA. From the software implementation results, we have
observed that fault-tolerant application mapping performed
using our approach has achieved significant improvements
over the approaches FSCM, SA, and GA. As mentioned ear-
lier, to analyze an application’s practical behavior, an FPGA
prototyping of fault-tolerant mapping of applications has
been carried out. As part of FPGA prototyping, we have
used the fault-injection model proposed in Algorithm-2 of
Section IV.D. The faults are injected in the run-time of an
application, and the communication latency or application
run-time is calculated. Since communication latency plays
a major role in time-critical applications, it is necessary to
analyze the fault-tolerant mapping solutions by injecting the
core faults and running them on an FPGA.

With the specifications mentioned above, 4 × 4 Torus
topology is implemented on an FPGA and the fault-tolerant
application mapping solutions obtained using our approach,
FSCM [10], SA [20], and GA [21] are validated. The figure-
of-merit for the validation process is the application run time
on FPGA, which is dependent on the number of hops between
the routers. Further, the number of hops required for the com-
munication between the cores varies from one application
mapping approach to another. In other words, it is depen-
dent on the fault-tolerant application mapping algorithm. The
step by step procedure for the validation of fault-tolerant
applicationmapping solutions onto Torus topology is detailed
below.

1) 4× 4 TORUS TOPOLOGY IMPLEMENTATION
ON FPGA BOARD
As part of the validation, firstly a communication platform
has to be implemented on an FPGA. For the FPGA imple-
mentation of Torus topology, we have considered five port
VC based wormhole router architecture [28]. Initially, single
NoC router is synthesized with the addressing scheme and
routing algorithm discussed in Section IV.C. Later, the 4× 4
Torus topology is generated by connecting the routers as
shown in Fig. 2. After the generation of 4×4 Torus topology,
the design has been tested with different use cases to ensure
the routing algorithm and proposed addressing scheme is
working. This completes the 4×4 Torus topology implemen-
tation on an FPGA.

FIGURE 17. Packet format used for transferring the data.

We have scaled the Torus topology from 4 × 4 to 5 × 5,
9 × 9, 12 × 12 and attempted to implement them on the
FPGA board. Table 7 shows the FPGA resource utiliza-
tion and on-chip power (in Watts) calculated using Xilinx
Xpower analyzer for the Torus topologies 4 × 4, 5 × 5,
9 × 9, and 12 × 12. The resource utilization shown in this
Table consists of post-synthesis and post-implementation of
the proposed fault-injection model for the 4 × 4, 5 × 5,
and 12 × 12 Torus topology. The major reason to calculate
the resource utilization independently for the post-synthesis
and post-implementation is to know the number of Lookup
Tables (LUTs) and Flip-Flops (FFs) required for the design.
Due to the limited resources on KC705 FPGA, the Torus
topologies 5× 5, 9× 9, and 12× 12 have only been synthe-
sized. They have not been implemented on the FPGA. Once
the Torus topologies are synthesized on the FPGA, on-chip
static and dynamic powers have been calculated using the
Xilinx power analyzer tool. This gives the resource utilization
and power profiles that can be used for the validation of the
application-mapping solutions. Next, fault-tolerant applica-
tion mapping solutions are validated on the KC705 FPGA
board.

2) FAULT-TOLERANT APPLICATION MAPPING
PROTOTYPING ON FPGA
The fault-tolerant application mapping solutions obtained
using our approach and the approaches FSCM [10], SA [20],
GA [21] are taken. Since the 4 × 4 Torus topology is imple-
mented on an FPGA, the applications having the number
of cores less than sixteen are mapped onto it. While map-
ping an application onto routers in the topology, the spare
cores are also considered to provide fault-tolerance. Once
the application is mapped onto the Torus topology, the real
application traffic traces are given to the cores via Virtual
Input Output (VIO) IP core. The application traffic traces
are taken from the NoC simulator [28] and the number of
flits (Header Flit (HF), Payload Flit (PF), Tailer Flit (TF)) are
calculated.

Fig. 17 shows the packet format used for transferring the
application data. To calculate the number of flits required
per edge in the ACG is given by equation (11). From
Fig. 17, it can be noticed that the number of data bits per
PF is 27 bits. Therefore, for a given application Bandwidth
(Bw), the number of flits required can be calculated using
equation (11).

No. of Flits = (HF +
Bw (in bits)

27
+ TF) (11)

45950 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 7. Estimation of resource utilization and on-chip power utilization report of different Torus topology sizes synthesized and implemented on Kintex
KC705 FPGA [31].

FIGURE 18. Screenshot of the post-implementation sending and receiving the data flits for an edge C3 - C4 in the MPEG-4 application ACG shown
in Fig. 1.

FIGURE 19. Screenshot of the post-implementation sending and receiving the data flits for an edge C2 - C4 (failed core) in the MPEG-4 application ACG
shown in Fig. 1.

We have used the VIO IP core to send and receive the
data flits from the source core to the destination core. Since
the inputs, i.e., data flits to be given to core, are of 32 bits,
the available on-board switches are not sufficient. Hence,
theVIO IP core has been used to send and receive the data flits
from source core to destination core. Fig. 18 and Fig. 19 show
the screenshot of the post-implementationwaveform showing
the functional validation of spare core sending and receiving
the data in the event of core-failure. The screenshot of the
post-implementation of data flits sent and received for an
edge C3-C4 in the MPEG-4 ACG shown in Fig. 1. There are
six different signals whose transitions are captured in Fig. 18.
The signals are Fault_Inj, Start, clk, Data Sent by C3, Data
Received at C4, and Data Received at C15. The signals
Fault_Inj and Start represent the status of fault injected and
activation of spare core. They are connected to the DIP switch
SW11 (as shown in Fig. 9) available on FPGA board [31].
The operation of these switches is shown in Table 3. The
signal clk represents the FPGA clock working at 100 MHZ
frequency. The signals Data Sent by C3, Data Received at
C4, and Data Received at C15 represents the transition of
data flits sent and received from the cores. The core C3 has to
send the data to core C4 in the fault-free case. In the event of

failure, the data from C4 will be sent to spare core C15. The
mapping information used for this experimentation is shown
in Fig. 2(a) and Fig. 2(b).

From Fig. 18, it can be observed that if the signal Fault_Inj
is high, then the core C4 is failed (most communicating).
In this case, the data from core C3 will be sent to spare core
C15 instead of C4. It is also evident from the screenshot
shown in Fig. 18, the failed core C4 has not received any data
from the core C3, instead, the data has been received by the
spare core C15. This shows that the functionality is matching
with the description shown in Table 3. Since the cores C3 and
C15 are connected to routers R2 and R14 using the wrap
around link; therefore, the hop count is one. For one-hop
count, the time taken for sending or receiving the data flits
(32 bits) is 100 ns. Similarly, we have experimented with
other edges of the MPEG-4 ACG, and the results are shown
in Table 8. In Table 8, columns one and two represent the
edge of the MPEG-4 ACG. Columns three and four represent
the bandwidth (in Megabits per second) and the number of
flits (HF+PF+TF) per edge in the application. Columns five
and six represent the number of hops required for an edge to
communicate using the FSCM [10] and our approach map-
ping information (shown in Fig. 2(a) and 2(b)), respectively.

VOLUME 9, 2021 45951



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

TABLE 8. Comparison of communication latency (application run time) between our approach and FSCM [10] for an MPEG-4 application running on an
FPGA.

TABLE 9. Comparison of application run time on an FPGA between our
approach and the approaches FSCM [10], SA [20], and GA [21] for 4 × 4
Torus topology.

Columns seven and eight represent the time taken to send
or receive one flit for the FSCM [10] and our approach,
respectively. Columns nine and ten represent the total time
taken to deliver the data flits (shown in column four) per an
edge using the FSCM [10], and our approach, respectively.
The total time took to run the application (all edges in the
ACG) using the FSCM [10] and our approach, in the event of
core faults, is 19.11 and 13.66 seconds, respectively. This is
due to the mapping of the spare core along with other cores
onto the topology by the FSCM [10] and our approach. It can
be observed that the flexibility provided by our approach to
map the spare core along with healthy cores of an appli-
cation can result in less communication latency. Similarly,
we have calculated the communication cost and application
run time for the applications shown in the first column of
Table 4. Please note that in Table 8, the detailed comparisons
are shown between our approach and the FSCM [10] only.
A similar method is used to calculate the application run-time
on an FPGA for the approaches SA [20] and GA [21], and
results are shown in Table 9. As it can be seen from Table 9,
our approach has achieved significant improvements in terms
of application runtime on an FPGA over the approaches
FSCM [10], SA [20], and GA [21]. On an average there is an
improvement of 5.38%, 7.45%, 27.10% using our approach
over the approaches SA [20], GA [21], and FSCM [10],
respectively. These improvements are due to the selection
of possible router locations for the cores (including spare
core) in 4 × 4 Torus topology using our approach over the
approaches SA [20], GA [21], and FSCM [10].

VI. LIMITATIONS OF THE STUDY
The fault-tolerant application-mapping onto NoCs is well
researched area and there exists many approaches in the
literature [8]. The meta-heuristic algorithms PSO, SA, and
GA are not the only remedies to solve the problem of
fault-tolerant application-mapping. The possible limitation
of the meta-heuristic PSO algorithm proposed in this paper
is fine-tuning of parameters namely number of particles,
number of generations, local and global swarm confidence
values. Selection of these parameters require thorough inves-
tigation of the convergence of PSO algorithm in the context
of fault-tolerant application mapping. There exists several
meta-heuristic algorithms which advances the PSO, SA, and
GA algorithms in terms of fine-tuning parameters. Though,
the work addressed in this paper is limited to PSO, SA,
and GA algorithms, there is still a room to explore other
meta-heuristics presented in the literature.

VII. CONCLUSION
In this paper, we have presented fault-tolerant Torus topology
based NoC design and validated the fault-tolerant solutions
via FPGA implementation. The techniques ILP and PSO are
proposed as the solutions for the fault-tolerant application
mapping onto the Torus topology. An FPGA implementation
of the fault-tolerant application mapping onto Torus topology
has performed. For the FPGA implementation, fault-injection
model, router addressing scheme, and routing algorithm has
been proposed. The experimentations have been performed
on the multimedia and synthetic application benchmarks. The
behavior of fault-tolerant application mapping techniques is
analysed using the software and hardware implementations.
The results have shown significant improvements in terms
of software and FPGA implementation. In software imple-
mentation, parameters such as communication cost, num-
ber of hops, network latency, throughput, and router power
consumption calculated using our approach are superior
when compared to the approaches reported in the literature.
In FPGA implementation, communication latency or appli-
cation run time obtained using our approach is superior when

45952 VOLUME 9, 2021



P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

compared with approaches reported in the literature. Future
work includes extending the proposed techniques to consider
multiple core failures by assuming the link, and router faults
in the NoC topologies. A multi-application fault-tolerant
mapping onto Torus topologies can also be considered as one
of the possible extensions to this work.

REFERENCES
[1] W. J. Dally and B. Towles, ‘‘Route packets, net wires: On-chip inte-

connectoin networks,’’ in Proc. 38th Conf. Design Autom. - DAC, 2001,
pp. 684–689.

[2] L. Benini and G. De Micheli, ‘‘Networks on chips: A new SoC paradigm,’’
Computer, vol. 35, no. 1, pp. 70–78, 2002.

[3] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, ‘‘HERMES: An
infrastructure for low area overhead packet-switching networks on chip,’’
Integration, vol. 38, no. 1, pp. 69–93, Oct. 2004.

[4] G. Moore, ‘‘Moores law,’’ Electron. Mag., vol. 38, no. 8, p. 114, 1965.
[5] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, ‘‘Methods for fault toler-

ance in networks-on-chip,’’ ACM Comput. Surv., vol. 46, no. 1, pp. 1–38,
Oct. 2013, doi: 10.1145/2522968.2522976.

[6] P. K. Sahu and S. Chattopadhyay, ‘‘A survey on application mapping
strategies for network-on-chip design,’’ J. Syst. Archit., vol. 59, no. 1,
pp. 60–76, Jan. 2013.

[7] M. E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. A. Nordbotten,
O. Lysne, and T. Skeie, ‘‘An efficient fault-tolerant routing methodology
for meshes and tori,’’ IEEE Comput. Archit. Lett., vol. 3, no. 1, p. 3,
Jan. 2004.

[8] N. Kadri and M. Koudil, ‘‘A survey on fault-tolerant application map-
ping techniques for network-on-chip,’’ J. Syst. Archit., vol. 92, pp. 39–52,
Jan. 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1383762118301498

[9] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra, ‘‘Hard-
ware implementation of fault tolerance NoC core mapping,’’ Telecommun.
Syst., vol. 68, no. 4, pp. 621–630, Aug. 2018.

[10] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra,
‘‘An energy-efficient fault-aware core mapping in mesh-based network on
chip systems,’’ J. Netw. Comput. Appl., vol. 105, pp. 79–87, Mar. 2018.

[11] R. P. Dick, D. L. Rhodes, and W. Wolf, ‘‘TGFF: Task graphs for free,’’
in Proc. 6th Int. Workshop Hardw./Softw. Codesign (CODES/CASHE),
Seattle, WA, USA, 1998, pp. 97–101, doi: 10.1109/HSC.1998.66624.

[12] C.-L. Chou and R. Marculescu, ‘‘FARM: Fault-aware resource manage-
ment in NoC-based multiprocessor platforms,’’ in Proc. Design, Autom.
Test Eur., Mar. 2011, pp. 1–6.

[13] F. Khalili and H. R. Zarandi, ‘‘A fault-aware low-energy spare core alloca-
tion in networks-on-chip,’’ in Proc. NORCHIP, Nov. 2012, pp. 1–4.

[14] F. Khalili and H. R. Zarandi, ‘‘A fault-tolerant low-energy multi-
application mapping onto NoC-based multiprocessors,’’ in Proc. IEEE
15th Int. Conf. Comput. Sci. Eng., Dec. 2012, pp. 421–428.

[15] P. V. Bhanu, P. V. Kulkarni, and J. Soumya, ‘‘Fault-tolerant network-on-
chip design with flexible spare core placement,’’ ACM J. Emerg. Technol.
Comput. Syst., vol. 15, no. 1, p. 23, 2019.

[16] B. N. Kumar and D. Sharma, ‘‘Communication energy constrained spare
core on NoC,’’ in Proc. 11th Conf. Ph.D. Res. Microelectron. Electron.
(PRIME), Jun. 2015, pp. 21–24.

[17] B. N. K. Reddy,M.H. Vasantha, andY. B. N. Kumar, ‘‘A gracefully degrad-
ing and energy-efficient fault tolerant NoC using spare core,’’ in Proc.
IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016, pp. 146–151.

[18] N. K. R. Beechu, V. M. Harishchandra, and N. K. Y. Balachandra, ‘‘High-
performance and energy-efficient fault-tolerance core mapping in NoC,’’
Sustain. Comput., Informat. Syst., vol. 16, pp. 1–10, Dec. 2017.

[19] F. Khalili and H. R. Zarandi, ‘‘A fault-tolerant core mapping technique in
networks-on-chip,’’ IET Comput. Digit. Techn., vol. 7, no. 6, pp. 238–245,
Nov. 2013.

[20] J. M. Joseph, D. Ermel, L. Bamberg, A. García-Oritz, and T. Pionteck,
‘‘Application-specific SoC design using core mapping to 3D mesh NoCs
with nonlinear area optimization and simulated annealing,’’ Technologies,
vol. 8, no. 1, p. 10, Jan. 2020.

[21] J. Fang, H. Zong, and H. Zhao, ‘‘DI_GA: A heuristic mapping algorithm
for heterogeneous network-on-chip,’’ IOP Conf. Ser., Mater. Sci. Eng.,
vol. 490, Apr. 2019, Art. no. 042021.

[22] P. V. Bhanu, P. Kulkarni, S. J., L. R. Cenkarmaddi, and H. Idsoe, ‘‘Torus
topology based fault-tolerant Network-on-Chip design with flexible spare
core placement,’’ in Proc. 14th Conf. Ph.D. Res. Microelectron. Electron.
(PRIME), Jul. 2018, pp. 97–100.

[23] A. Alagarsamy, L. Gopalakrishnan, S. Mahilmaran, and S.-B. Ko, ‘‘A self-
adaptive mapping approach for network on chip with low power consump-
tion,’’ IEEE Access, vol. 7, pp. 84066–84081, 2019.

[24] W. Amin, F. Hussain, S. Anjum, S. Khan, N. K. Baloch, Z. Nain, and
S. W. Kim, ‘‘Performance evaluation of application mapping approaches
for Network-on-Chip designs,’’ IEEE Access, vol. 8, pp. 63607–63631,
2020.

[25] W. E. Donath, ‘‘Complexity theory and design automation,’’ in Proc. 17th
Design Autom. Conf. Design Autom. DAC, 1980, pp. 412–419.

[26] IBM Corporation, ‘‘V12. 1: Users manual for CPLEX,’’ Int. Bus. Mach.
Corp., vol. 46, no. 53, p. 157, 2009.

[27] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE
ICNN, vol. 4, Nov./Dec. 1995, pp. 1942–1948.

[28] S. Kundu, J. Soumya, and S. Chattopadhyay, ‘‘Design and evaluation of
mesh-of-tree based network-on-chip using virtual channel router,’’Micro-
processors Microsyst., vol. 36, no. 6, pp. 471–488, Aug. 2012.

[29] Z. U. Abideen and M. Rashid, ‘‘EFIC-ME: A fast emulation based fault
injection control and monitoring enhancement,’’ IEEE Access, vol. 8,
pp. 207705–207716, 2020.

[30] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, ‘‘ORION 2.0: A power-area
simulator for interconnection networks,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 20, no. 1, pp. 191–196, Jan. 2012.

[31] M. A. Finlayson, KC705 Evaluation Board for the Kintex-7 FPGA Users
Guide UG 810. San Jose, CA, USA: Xilinx, 2019.

P. VEDA BHANU received the bachelor’s degree
in electronics and communication engineering
from Jawaharlal Nehru Technological University
at Hyderabad, Telangana, India, in 2015, and the
master’s degree in embedded systems from the
National Institute of Electronics and Information
Technology at Calicut, Kerala, India, in 2017.
He is currently pursuing the Ph.D. degree with
the Department of Electrical and Electronics Engi-
neering, Birla Institute of Technology and Sci-

ence (BITS), Pilani, Hyderabad-Campus, Telangana.
From 2016 to 2017, he was an Electronic Design Intern with Panacea

Medical Technologies, Bengaluru, India. From 2017 to 2020, he was a Junior
Research Fellow with the Department of EEE, BITS-Pilani, Hyderabad
Campus working for the Department of Science and Technology, Govern-
ment of India, sponsored project. His research interests include network-
on-chip (NoC) design, FPGA-based system design, optimization of perfor-
mance parameters in NoC basedmulti-processor system-on-chips (MPSoCs)
design, and high-performance computing.

RAHUL GOVINDAN received the bachelor’s
degree in engineering from the Electrical and Elec-
tronics Department, BITS Pilani, Hyderabad Cam-
pus, in 2020. His research interests include digital
design, computer architecture, VLSI design, and
FPGA implementation.

VOLUME 9, 2021 45953

http://dx.doi.org/10.1145/2522968.2522976
http://dx.doi.org/10.1109/HSC.1998.66624


P. V. Bhanu et al.: Flexible Spare Core Placement in Torus Topology Based NoCs and Its Validation on an FPGA

PLAVA KATTAMURI is currently pursuing the
bachelor’s degree in engineering in electronics
and communication engineering fromBITS Pilani,
Hyderabad Campus, India. Her research interests
include the field of VLSI design, hardware secu-
rity, and FPGA implementations.

J. SOUMYA received the bachelor’s degree in
electronics and communication engineering from
Jawaharlal Nehru Technological University at
Hyderabad, Telangana, India, in 2007, and the
master’s and Ph.D. degrees in electronics and
electrical communication engineering from the
Indian Institute of Technology, Kharagpur, India,
in 2010 and 2015, respectively.

From 2011 to 2012, she was a Scientist ‘SC’
with Indian Space Research Organization (ISRO),

Bengaluru, India. From 2014 to 2015, she was a faculty with the National
Institute of Technology (NIT), Goa. India. Since 2015, she has been an Assis-
tant Professor with the Department of EEE, BITS-Pilani, Hyderabad campus,
Telangana, India. Her research interests include network-on-chip design,
reconfigurable computing, fault-tolerant system design, and real-time sys-
tems. As a Principal Investigator, she has been implementing several funded
projects from DST, Government of India, and has been collaborating with
various research groups in India and abroad. Her research interests led to a
credit of more than 25 publications in peer-reviewed journals and reputed
international conferences held in India and abroad.

LINGA REDDY CENKERAMADDI (Senior
Member, IEEE) received the master’s degree in
electrical engineering from the Indian Institute of
Technology, New Delhi, India, in 2004, and the
Ph.D. degree in electrical engineering from the
Norwegian University of Science and Technology,
Trondheim, Norway, in 2011. Heworked for Texas
Instruments in mixed signal circuit design before
joining the Ph.D. program at NTNU. After finish-
ing his Ph.D., he worked in radiation imaging for

an atmosphere space interaction monitor (ASIM mission to International
Space Station) with the University of Bergen, Norway, from 2010 to 2012.
He is currently working as an Associate Professor with the University of
Agder, Campus Grimstad, Norway. His main research interests include
cyber-physical systems, autonomous systems, and wireless embedded
systems.

45954 VOLUME 9, 2021


