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ABSTRACT Specular reflection algorithm (SRA) was a single population meta-heuristic algorithm inspired
by the physical function of mirror. However, similar to most of meta-heuristic algorithms, it had the
disadvantages of weak population diversity, stagnation in local optimal and low convergence rate. In order to
overcome these shortcomings, a chaotic multi-specular reflection optimization algorithm considering shared
nodes (CMSRAS) was proposed by the combination of population strategy with shared node, improved
Tent chaos strategy and Gaussian mutation strategy. Initially, a single population SRA was extended to the
multi-population with shared node and the population was initialized by improved Tent chaos sequence to
improve the quality of the initial solution and the population diversity, and to enhance the global search
ability. Meanwhile, to strengthen the local search ability and the convergence accuracy, the Gaussian
mutation and improved Tent chaotic disturbance strategy were introduced into SRA. And then the influence
law and sensitivity analysis of the CMSRAS algorithm between the initial setting parameters were obtained
based on the response surface method and the Sobol’s method. Finally, compared with both 12 state-of-
the-art algorithms and 8 well-known advanced algorithms, the performance of CMSRAS was evaluated on
a comprehensive set of 32 benchmark problems. In addition, CMSRAS was applied to solve the complex
optimization problems of engineering structure. The results demonstrated that proposed CMSRAS algorithm
outperformed most competitive algorithms and efficiently solve the real-life global optimization problems.

INDEX TERMS Specular reflection algorithm, chaotic multi-specular reflection optimization algorithm,
sharing nodes, sensitivity analysis, Tent chaos, Gaussian mutation, real-life global optimization problems.

I. INTRODUCTION

Nowadays, with the continuous development of science and
technology, engineering design is developing in the direc-
tion of lightweight, green intelligent manufacturing, high
reliability etc. Therefore, the optimal design of engineering
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structures has become the focus of attention of many schol-
ars. However, many engineering structural optimization prob-
lems are generally continuous, nonlinear, multi-dimensional
and complex constraints. Traditional numerical optimization
methods have low computational efficiency and low preci-
sion, so it is difficult to find global optimal solutions that
meet the structural performance requirements. Due to the
low computational efficiency and low accuracy of traditional

VOLUME 9, 2021


https://orcid.org/0000-0003-2409-6214
https://orcid.org/0000-0002-6605-1615
https://orcid.org/0000-0003-1800-3683
https://orcid.org/0000-0001-9461-0157
https://orcid.org/0000-0001-6835-5981

B. Ma et al.: CMSRAS: Novel Chaotic Multi-Specular Reflection Optimization Algorithm Considering Shared Nodes

IEEE Access

numerical optimization methods, it is difficult to find the
global optimal solution to meet the requirements of structural
performance.

In order to solve such complex engineering structure
optimization design problems, humans simulate the behav-
ior of natural biological groups from a biological point of
view, and many metaheuristic swarm intelligence optimiza-
tion algorithms are emerged and have been successfully
applied to solve the complex optimization design problems
of various engineering structures. Genetic algorithm (GA)
was a robust stochastic global search optimization algorithm
based on natural selection and natural genetics. Genetic
algorithm (GA) was used to solve the shell structure opti-
mization problem [1], flexure hinge mechanism optimiza-
tion problem [2], path planning problem [3], scheduling
problem [4] and the air conditioning fuzzy controller opti-
mization problem [5], respectively. PSO, as a swarm intelli-
gent optimization algorithm simulating the foraging behavior
of birds, was widely used in solving design optimization
problems of engineering structures [6], [7], BP neural net-
work optimization problem [8], electromagnetics optimiza-
tion problem [9], feature selection [10], and flexible job-shop
scheduling optimization problem [11], respectively. Differ-
ential evolution algorithm (DE) was one of the most popular
meta-heuristic algorithms with the characteristics of simple
structure, fast convergence and strong robustness [12]. Based
on the DE, the LIDDE was proposed to solve the social
networks problem [13]. The memory-based global differ-
ential evolution (MGDE) algorithm was proposed to solve
the dynamic economic dispatch problem [14]. The economic
load dispatch (ELD) problem was efficiently solved by the
ADE-MMS method [15]. The EFDE algorithm was used to
solve the dynamic economic emission dispatch (DEED) prob-
lem [16]. The Firefly Algorithm (FA) mimicked the social
behavior of fireflies based on their flashing characteristics
and was used to solve the optimization problems of hybrid
continuous/discrete structure [17] and the tracking architec-
ture [18]. CS, which mimicked the brood parasitism behavior
of cuckoos, combined with Levy flight, was a new type
of intelligent optimization proposed by Gandomi AH et al.
and widely used to solve structural nonlinear constrained
optimization problems [19] and the discrete size optimization
of composite steel-concrete box girders [20]. Yang X et al.
proposed a BA based on the echolocation behavior of bats,
which was applied to solve eight nonlinear engineering opti-
mization problems, and achieved good optimization design
results [21]. To solve the engineering combination optimiza-
tion problems, simulated annealing algorithm (SA), simulat-
ing the physical annealing process of solid material, was put
forward by Kirkpatrick ef al. [22], [23]. Artificial bee colony
(ABC) algorithm was inspired by the intelligent behavior of
honey bee swarm to optimize he multivariable functions [24].
Based on the law of gravity and mass interactions, gravita-
tional search algorithm (GSA) was proposed to solve vari-
ous nonlinear functions [25]. By mimicking the leadership
hierarchy and hunting mechanism of grey wolves, grey wolf
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optimizer (GWQO) was used to solve the classical engineer-
ing design problems [26]. Multi-Verse Optimizer (MVO)
was inspired by the concepts of white hole, black hole, and
wormhole to deal with both challenging test and real engi-
neering problems [27]. Moth-Flame Optimization (MFO)
algorithm mimicked the navigation method of moths in nature
called transverse orientation [28]. Whale Optimization Algo-
rithm (WOA) mimicked the social behavior of humpback
whales which inspired by the bubble-net hunting strategy
to solve structural design problem [29]. Based on a math-
ematical model based on sine and cosine functions, Sine
Cosine Algorithm (SCA) was proposed to solve optimiza-
tion problems [30]. By inspired the social interaction of
dragonflies in navigating, searching for foods, and avoiding
enemies, the dragonfly algorithm (DA) was used to solve
optimization problems [31]. Based on the intelligent behavior
of crows, a crow search algorithm (CSA) was successful to
solve some classic engineering problems [32]. Salp swarm
algorithm (SSA) was inspired by the swarming behavior of
salps when navigating and foraging in oceans to efficiently
solve engineering design problems [33]. Inspired by the
behaviors of searching for prey, encircling, and attacking
prey for spotted hyenas, Spotted Hyena Optimizer (SHO)
was applied to deal with engineering design problems [34].
Seagull Optimization Algorithm (SOA) mimicked the migra-
tion and attacking behaviors of a seagull in nature to solve
large-scale industrial engineering problems [35]. A butterfly
optimization algorithm (BOA) was proposed, which mim-
icked the butterfly’s food search and mating behavior and
was used to solve three classic engineering problems (spring
design welding beam design and gear train design) [36].
By the cooperative behavior and chasing style of Harris
hawks in nature, Harris Hawks Optimizer (HHO) was used
to solve several real-world engineering problems [37]. A new
slime mould algorithm (SMA) based on the oscillation mode
of slime mould in nature for solving the optimizing engineer-
ing problems [38]. Based upon the gradient-based Newton’s
method and utilize the GSR and LEO, gradient-based opti-
mizer (GBO) was proposed in solving complex real-world
engineering problems [39]. The heap-based optimizer (HBO)
was proposed by the concept of CRH, which built on three
pillars: the interaction between the subordinates and their
immediate boss, the interaction between the colleagues, and
self-contribution of the employees [40]. The Social Engi-
neering Optimizer (SEO) algorithm was an effective meta-
heuristic algorithm inspired by social engineering to solve
some optimization problems [41]. The Turbulent Flow of
Water-based Optimization (TFWO) algorithm was a state-of-
the-art optimization algorithm, which mimicked whirlpools
created in turbulent flow of water [42]. The Barnacles Mat-
ing Optimizer (BMO) algorithm inspired by the mating
behavior of barnacles was proposed to solve optimization
problems [43].

Nevertheless, on the one hand, there were differences
between the proposed meta-heuristic algorithms, and these
algorithms had the common characteristics: exploration and
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exploitation behavior[44], [45]. The exploration stage was to
search for the optimal solution in the global space randomly.
Based on the exploration stage, the exploitation stage was to
search for the accurate solution and to improve the accuracy
of the optimal solution. However, there was often a certain
contradiction between the two stages, how to balance the
relationship between the two stages was a relatively difficult
problem. On the other hand, another common characteris-
tic of these popular meta-heuristic algorithms was that they
couldn’t guarantee that the global optimum could be found
for all optimization problems which was confirmed by No
Free Lunch Theorem (NFL) [46].

In order to be able to handle optimization issues, based
on the physical function of mirror, a new specular reflection
algorithm (SRA) was proposed by Qi. When the object was
hidden, the object could be found by the mirror reflecting
lights, and then the object was observed and displayed in
the mirror. It was a non-population algorithm so that only
a single solution was calculated in each iteration to search
for the new solution, which could improve the computational
efficiency. Compared with DE and MDE algorithm, SRA
had unique advantages, with fewer set parameters and higher
solution accuracy, which can also better deal with the com-
plex engineering structure optimization problems [47]. SRA
was used in the robust optimization design and reliability
robust optimization design of crane girder structure, and it
was proved that the algorithm can effectively deal with the
structure robust optimization design [48]. Compared with
PSO, FOA and SA, SRA was an effective and superior algo-
rithm, but for solving high dimensional, multi-peak complex
functions, it was easy to fall into local optima, and the con-
vergence accuracy of SRA was lower [49]. At present, there
is little research on SRA. Compared some traditional algo-
rithms, it has advantages of fast convergence rate and higher
solution accuracy. However, similar to other meta-heuristic
algorithms, SRA has the disadvantages of single population,
jumping into local optimum, low robustness, weak ergodic-
ity etc. How to improve the performance of metaheuristic
swarm intelligence optimization algorithms has been a hot
issue problem by the way to the convergence accuracy, global
search ability, the ability to resist local optimization etc. One
way is to improve the performance of meta-heuristic algo-
rithms by using shared concepts. To solve the problem of pre-
mature convergence frequently appearing in ABC algorithm
and convergence slowly of ABC, ABC algorithm with sharing
factor was proposed. The results showed that this algorithm
had higher convergence property compared with ABC algo-
rithm [50]. In order to improve the convergence accuracy
and late search ability of crow search algorithm, a shar-
ing mechanism was introduced into crow search algorithm,
shared crow algorithm using multi-segment perturbation was
proposed. The results showed that the comprehensive perfor-
mance of this algorithm was better than other meta-heuristic
algorithms [51]. A multi-subpopulation based on symbiosis
and non-uniform Gaussian mutation salp swarm algorithm
(MSNSSA) was proposed to the overcome the disadvantages
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of slow convergence rate and low precision in salp swarm
algorithm (SSA) [52]. Another way is to improve the per-
formance of meta-heuristic algorithm by using chaos the-
ory and Gaussian mutation. The ABC algorithm based on
self-adaptive Tent chaos was proposed to improve the per-
formance of ABC algorithm, and the results show that it had
a better performance compared with ABC algorithm [53].
Chaos optimization algorithm based on Tent map was pro-
posed with a fast search rate [54]. The gravitational search
algorithm based on improved Tent chaos ITC-GSA) was put
forward, which could effectively overcome the shortcomings
of the GSA’s vulnerability to premature convergence and
local optimization, and improve the algorithm’s convergence
speed and optimization accuracy [55]. A new improved popu-
lation migration algorithm was proposed by adding Gaussian
mutation and the steepest descent algorithms, and the simula-
tion results demonstrated that the convergence rate and global
convergence ability of population migration algorithm was
improved [56].

Currently, to the best of our knowledge, there is no work
proposed in literatures to improve the exploitation and the
exploration of SRA. Therefore, in this paper, a novel chaotic
multi-specular reflection optimization algorithm considering
shared nodes (CMSRAS) was proposed by the combination
of population strategy with shared node, improved Tent chaos
strategy and Gaussian mutation strategy, respectively. The
main contributions of this paper were summarized as follows:

(a) a novel chaotic multi-specular reflection optimiza-
tion algorithm considering shared nodes (CMSRAS) was
proposed.

(b) Combined with the RSM method and Sobol’s method,
the influence law and sensitivity analysis of the CMSRAS
algorithm were attained.

The rest of this paper is organized as follows: SRA algo-
rithm was described in deal in section 2. The proposed
CMSRAS algorithm, the pseudocode and flow chart of
CMSRAS algorithm, and computational complexity analysis
of CMSRAS algorithm were described in deal in section 3,
respectively. In section 4, the influence of algorithm param-
eters on the performance of CMSRAS algorithm and its sen-
sitivity analysis were obtained. In section 5, the performance
of CMSRAS algorithm was evaluated compared with other
competitive meta-heuristic algorithms. In the last section,
conclusions and prospects were presented.

Il. DESCRIPTION OF SRA ALGORITHM

According to the physical laws of mirrors reflection, the SRA
algorithm was proposed by Qi et al. [47]-[49]. The physical
model of SRA was shown in Fig. 1. It was observed that
SRA consists of eye, mirror and object, respectively. Through
the reflection behavior and reversing function of the mir-
ror, the search range of the solution was expanded to achieve
the purpose of searching for the global optimal solution. For
n dimensional minimum optimization problem, the detailed
steps of SRA were obtained as follows:
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FIGURE 1. Physical model of SRA.

Step 1: In the independent variable feasible region, ran-
domly generated three groups of initialization solution X; =
[xl.l, xl.z, cee, xl."], i = 1,2, 3, and maximum number of iter-
ations Max_I, search step factor ¢ and convergence iteration
accuracy ¢ were determined, respectively.

Step 2: Evaluate of initial fitness value f (X;), and then sort
it, when f(X1) < f(X2) < f(X3), let X; = X9°, X, = X"irror,
X3 = Xabject_

Step 3: Updated the optimal solution position xy,,, ; and
XNew 2 DY (1), respectively.

n _ o n i no_ .n
XNew_ 1 = Yeye T €T (xeye xobject)

n
~ *obj ect)

()
n — N n n
ANew 2 = xeye +tc-r (xeye ~ Xmirror
where ¢ was search step factor and » was random number.
Step 4: Updated the new optimal solution xy,,, by (2).

n _ .D . D D
ANew = xNew_l lff (xNew_l) Sf (xNew_2)

n _ ,D : D D
XNew = xNew_2 lff (xNew_l> Ef <xNew_2)

Step 5: If it met the constraints of ¢ or Max_I, output the
global optimum xy,,,, otherwise go to step 2, and continue to
calculate the global optimal optimum. The flow chart of SRA
was shown in Fig. 2.

@

Ill. THE PROPOSED CMSRAS ALGORITHM

SRA is an efficient and general random search optimization
algorithm with high global search capability. However, it has
the disadvantages of single population, slow convergence in
the later stage, easily fall into local optimum. In order to over-
come the shortcomings of SRA, the CMSRAS algorithm is
proposed based on the multi-population strategy with shared
node, improved Tent chaos strategy and Gaussian mutation
strategy, respectively.

A. IMPROVEMENT STRATEGIES
(I) Multi-population strategy with shared node
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Initialize X; (+=1,2,3), Max_I, ¢
and {, respectively.

| oo | | |

L . . |

|Update X"New_1 and X"xew 20 respectively.l

!

Determine X"y, by evaluating
STIX "New 1) and fIX"new 2) srespectively.

Satisfies iteration
condition

FIGURE 2. The flow chart of SRA.

SRA has a single population and weak population diversity,
which easily leads to low ability of jumping out of local opti-
mum and global optimum search. To enrich the population
diversity of SRA, the single SRA model is modified into a
multi-specular reflection optimization algorithm model based
on a shared node, as shown in Fig. 3. The same as SRA is
that its main components are eyes, suspicious targets, mirrors
and target. Inversely, in the CMSRAS model, the popula-
tion of eyes, mirrors, and suspicious targets are expanded,
respectively.

Mirrors

RN
Obstacle B //?'(‘: ay

4 Target
object

% 4 _—
Mirrors~

FIGURE 3. Physical model of CMSRAS.
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FIGURE 6. The iterative process of CMSRAS by starting with the shared
node.

A shared node is obtained by the selecting the suspicious
targets according to the survival of the fittest, and to improve
the efficiency of the algorithm. The specific selection process
of shared nodes is shown in Fig. 4 to Fig. 6. And then a

43054

shared node is obtained by the selecting the suspicious targets
according to the survival of the fittest, and to improve the
efficiency of the algorithm. The specific selection process
of shared nodes is shown in Fig. 4 to Fig. 6. In Fig. 4,
the number of eyes is n, and it is the same as the num-
ber of mirrors. Different eyes can find the different target
objects through the reflection function of different mirrors.
Suspicious targets are made up of the different target objects,
which are close to the real target objects. The number of
suspicious targets is also n. The specular reflection rings are
composed of eyes, mirrors and suspicious targets. Eyes can
use the specular reflection ring to continuously search for
the target, through the reflection and reversing behavior of
the mirrors. However, this search method has the disadvan-
tages of a certain blind selectivity and low efficiency and
stability, because it is unable to accurately determine which
suspicious target is closest to the real target. In order to
further improve the efficiency of CMSRAS algorithm and
ensure that each search is in the best direction, eyes and
mirrors should have self-learning experiences (i.e. searching
information such as the best viewing angle, environmental
visibility, lighting conditions, mirror size, mirror reflection
path, etc.) and share them with each other. And then through
the way of information sharing between eyes and mirrors, the
optimal location of eyes and mirrors is selected to determine
the best suspected target, namely shared node. In Fig. 5, the
number of suspicious targets is n, which are obtained by
the Fig. 4. According to the law of survival of the fittest,
shared node is determined by the way of the exchange and
learning among n suspect targets. And the specular reflec-
tion rings with shared node are composed of shared node,
eyes and mirrors, respectively. In Fig. 6, when the share
node is determined, and then the specular reflection rings
with shared node are also obtained. The number of specular
reflection rings with shared node is n, and eyes can use the
specular reflection rings with shared node to continuously
search for the global optimal solution, through the reflection
and reversing behavior of the mirrors. In the search process,
the specular reflection rings with shared node are contin-
uously updated, namely eyes, mirrors and shared node are
continuously updated. The detailed steps were obtained as
follows:

Step 1: The population number of the specular reflection
ring n, the maximum iterations m and iterative precision £ is
defined, respectively.

Step 2: Randomly search for 2n + 1 initial variable value
in the feasible region x;(i= 1, 2, - - - , 2n+1).

Step 3: Calculate the fitness value of the objective func-
tion for each feasible solution f (x;), (i=1,2,---,2n+1).
According to the fitness value f (x;), select the opti-
mal fitness value as a shared node, the median fit-
ness value as eye(i)(i=1,2,---,n) and the worst fitness
value as Mirror(i)(i=1,2,--- ,n) for n specular reflec-
tion rings. Meanwhile, the shared node and determination
rules of specular reflection ring are shown in Table 1 in
detail.
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TABLE 1. The shared node and determination rules of specular reflection ring.

ID Judgement conditions Shared node Mirrors Eyes
1 if f(an-1) < fx2n) < f(x2n41) XShared node = X2n-1 Xiirror = Xan Xgye = Xant1
2 if fQane1) < flx2n) < fx2n-1) XShared node = X2n+1 Xiirror = Xan Xgye = Xan-1
3 if flxon-1) < f(¥ans1) < flx2n) XShared node = X2n-1 Xitirror = X2n+1 Xgye = Xan
4 if f(xzn) < f(xaner) < fx2n-1) XShared node = Xan Xhirror = Xan+1 Xoye = Xan-1
5 if f(xan) < f(xzn-1) < fx2n41) X$hared nodet = X2n Xitirror = X2n-1 Xoye = Xan+1
6 if f(ane1) < fean-1) < f(xzn) XShared node = X2n+1 Xiirror = Xan-1 Xgye = Xan
TABLE 2. The updated rules of specular reflection rings and shared node.
1D Judgement conditions Shared node Mirrors Eyes
1 if fORew) < f(hareanode) < O™ Xfhareanode = Xhew Xiirror = XShared node Xiye = Xpirror
2 if f(GShareanode) = f iew) < f Xfhirror) XShared node = XShared node Xiirror = XNew Xgye = Xigirror
3 if f(Shareanoae) < f Khpirror) < f (Xiew) X§hared node = XSharednode  XMirror = Xiirror Xeye = XNew

Step 4: Based on the shared node, (1) is modified by (3).
. n n .
And then new sglutlons XNew 1 and xy,, 5 are obtained by (3)
and (4), respectively.
n — 4 N n n
XNew_l = XSharednode +cin (xMirror - xeye)
n n
teor (xShared node — ‘xMirr()r)
n n
+e3r3 (xShared node ~— xcye) 3)
n _n n n
XNew_Z = XSharednode T €171 (xMirror - xeye)
n n
tear (xShared node ~ xMirmr)
n n
tesrs (xShared node ~ xeye) )

where c1, ¢» and c3 is search step size coefficient, respec-
tively. rq, rp and r3 is random number at [—1, 1].

Step 5: According to (5), two new specular reflection rings
are selected for iterative calculation.

multi-population strategy with shared node, the SRA model
is extended to the CMSRAS model. In the CMSRAS model,
the population number of eyes, mirrors, and suspected targets
are expanded, respectively. The equivalent suspected target
is determined by the selection of suspected targets, namely
shared node. The specular reflection ring is also modified
by the specular reflection rings with shared node which are
composed of shared node, eyes and mirrors, respectively.
Eyes can efficiently find the final object by the way of the
specular reflection rings with shared node. In Fig. 8, through
the initial calculation of all fitness values, eyes, mirrors and
shared node are defined by the worst solution, near-optimal
solution and optimal solution, respectively. The reflection
rings are composed of shared node, eyes and mirrors (i.e. the
worst solution, near-optimal solution and optimal solution).
It shows that the iteration process of CMSRAS algorithm is
more complex than SRA. In this way, a group of n initial

i n ) " " reflection rings with shared node is generated. In addition,
XNew = X New, iff (XNem) <f (XNeWz) the shared node and reflection ring are updated in each itera-
. tion. In the same way, a final optimal solution can be searched

XNew = XNew, v (X;\l'ewl> > (X;\z’eWZ) ®) after n iterations.
— - ; - C d with SRA, CMSRAS algorithm has the follow-
xr = X/}’\llewz _ X;’\ller if f (X}}’\l]er> —f( ﬁewz) ompared wi algorithm has the follow

Step 6. The updated rules of specular reflection rings and
shared node is shown in Table 2. According to the Table 2,
specular reflection rings are updated accurately and effi-
ciently.

The simplified model and iteration process of SRA and
CMSRAS algorithm are described, as shown in Fig. 7 and
Fig. 8, respectively. In Fig. 7, the SRA algorithm model is
composed of eye, mirror and suspected object, respectively.
The specular reflection ring is composed of eye, mirror and
suspected target, and the eye can use the reflection and
reversing function of the mirror to continuously search for
the final target by the specular reflection ring. Based on the
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ing advantages: (a) CMSRAS algorithm mainly consists of
three behaviors: the selection behavior of mirror reflection
path, a shared node and mirror reversing, respectively. (b) The
selection behavior of mirror reflection path is used to fully
enhance the ergodicity of CMSRAS algorithm. (c) The selec-
tion behavior of a shared node to increase the diversity of the
population. (d) The reversing behavior of multiple mirrors
can refine the local optimum and improve the search ability of
the optimal solution, and to improve the global convergence
efficiency and accuracy of the algorithm and avoid falling into
the local optimum.

(IT) Population initialization based on improved Tent chaos
Strategy
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Based on the multi-population strategy with shared node,
the population diversity of CMSRAS algorithm is enriched.
Chaos is a kind of nonlinear phenomenon in nature, and
CMSRAS algorithm searches for global optimal solutions in

chaotic space.
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Because the Tent chaotic sequence has the characteristics
of randomness, property ergodicity and regularity, therefore,
in order to further improve the population diversity and the
ability to jump out of local optimal and global search ability
of CMSRAS algorithm, in this part, population is initialized
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by the way of improved Tent chaos strategy. The form of
chaotic mapping has a great influence on the optimization
performance of the algorithm [53]. Compared with Logistic
chaotic map, the Tent chaotic map has more uniform ergod-
icity and faster search speed [54]. The expression for the Tent
chaotic map is expressed by (6).

2x; 0<x<05

“120-x) 05<x<1 ©

Xi+1
By the Bernoulli shift method and (6), x;41 is obtained as
shown in (7).

Xit+1 = (2x;) mod|1 @)

Due to the existence of small period and unstable periodic
points in Tent chaotic map, in order to ensure the random-
ness, ergodicity and regularity of Tent chaotic map, avoid
falling into small period or unstable periodic point, (6) can
be improved by the rand(0, 1) x 1/n, as shown in (8) [55].

®)

2x; + rand(0, 1)x & 0<x<05
Xiyl] =
7200 = %) +rand©, Hxt 05 <x <1

By the Bernoulli shift method and (8), x;y1 is obtained as
shown in (9).

1
Xi+1 = (2x;) mod1 + rand(0, 1)x — O]
n

where n is the population number of specular reflection ring.

The steps of population initialization based on improved
Tent chaos strategy as follows:

Step 1: The initial value xq is generated randomly in [0,1],
andleti = 0.

Step 2: set the maximum number of iterations is max _i.
And according to (8), loop iteration is calculated for i times,
chaotic sequence x4 is obtained.

Step 3: If i < max_i, save the x,4.

(III) Improved Tent chaotic disturbance strategy

In order to further improve the ability of jumping out
of local optimum and the convergence precision of global
optimization, the improved Tent chaotic disturbance strat-
egy is introduced into CMSRAS algorithm. And then spe-
cific steps of improved Tent chaotic disturbance are as
follows:

Step 1: Chaotic sequence x, is obtained in (II) section.

Step 2: According to (10), x4 is carried into the search
space of the corresponding variable.

X = min(™) + (max(ry™) — minG™ N (10)

where min(x/*") and max(x/}") is the maximum and mini-

mum of x7°", respectively.

Step 3: Perturbation search for individuals by (11).

x’new = + x"V) /2 (11)

where x’ is disturbed individuals, x™" is chaotic disturbance

quantity, and x 1% s individual after chaotic disturbance,
respectively.
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(IV) Gaussian mutation strategy

In the CMSRAS algorithm, the position update mainly
depends on the interaction between groups, and the individual
has no mutation mechanism. Therefore, the individuals easily
fall into the local optimum, which leads the algorithm to
premature convergence, reduced population diversity and low
optimization accuracy. In order to improve the ability of indi-
vidual variation, the Gaussian mutation strategy is introduced
into the CMSRAS algorithm. The Gaussian mutation is to add
arandom number that obeys the normal distribution N (i, o?)
to replace the original parameter value [56], as shown in (12).

X — W1 £ N(O, 1)) (12)
where x"®" is the original parameter value, N (0, 1) is random
number with a standard normal distribution, and X is the
parameter value after Gaussian mutation.

The Gaussian mutation based on normal distribution can
ensure the individual to search in the local neighborhood
of the individual, and the local search ability is greatly
improved, which can improve the ability and robustness of
the CMSRAS algorithm and avoid the local optimum.

B. PSEUDOCODE AND FLOW CHART OF CMSRAS
ALGORITHM

The pseudocode and flow chart of the proposed CMSRAS
algorithm are reported in Algorithm 1 and Fig. 9,
respectively.

Algorithm 1 Pseudo Code of CMSRAS

Initialize the parameters: specular reflection ring n,
max_iteration. variable dimension Dim

Initialize the populationx; i = 1,2, --- ,2n+ 1) by (9)
and (10)

Specular reflection ring (shared node, eyes, mirrors, respec-
tively.) is obtained by f (x;).

While (k < max_iteration)

For each specular reflection ring in population do
Updated the positions of specular reflection ring by (3)
and (4)

End for

Updated fitness f; and calculated mean fitness f;.

For each specular reflection ring in population do
If (fi < fave)

Update specular reflection ring by Eq. (12)

Else
Update specular reflection ring by Eq. (11)
End if

For each specular reflection ring in population do

Update specular reflection ring by Eq. (5)

End for

End for
k=k+1
End while
Return the best solution found
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FIGURE 9. The flow chart of proposed CMSRAS algorithm.

C. COMPUTATIONAL COMPLEXITY ANALYSIS OF CMSRAS
ALGORITHM

Note that the computational complexity of the CMSRAS
algorithm mainly depends on three parts: initialization, defi-
nition of the specular reflection rings and specular reflection
rings update. Among them, N denotes the number of specular
reflection rings, D denotes the dimension of functions, and
T denotes the maximum number of iterations. The computa-
tional complexity of initialization is O((2 x N + 1) x D), and
the computational complexity of definition of the specular
reflection rings is O(2 x N + 1), and the computational
complexity of specular reflection rings update is O((N x D) x
(N + 1)). Therefore, the total complexity of the CMSRAS
algorithmis O(2xN +1)x (14+D))+O(T x N x Dx (N +1)).

IV. CHANGE TREND AND SENSITIVITY ANALYSIS OF
PARAMETERS IN CMSRAS ALGORITHM

Because there are many parameters in the multi mirror
optimization algorithm, such as the population number,
the design variable dimension, step size factors, etc., whether
these parameters are set reasonably or not determines the
performance of the CMSRAS algorithm. However, there
is a recessive relationship between these parameters and
the performance of the algorithm. In order to study the
influence of the parameters on the performance of the
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CMSRAS algorithm, it is necessary to convert the implicit
relationship into explicit relationship. Response surface anal-
ysis method (RSM) is a popular method that can real-
ize the conversion of implicit relationship into explicit
relationship [57], [58].

In this paper, by selecting the step size factors ¢, ¢z and c3,
the number of mirror populations n and the design variable
dimension D are selected as factor indexes, respectively.
Meanwhile, the average iteration times N, convergence time
T and optimal solution are taken as the objective factors,
respectively.

The selected test function is shown in (13), and the image
is shown in Fig. 10. And thenset 0.1 <c¢; < 1.7,0.1 < ¢ <
1.7,01 <¢3 < 17,10 <n<50,ne NT,10 <D <
100,D € N, respectively. At the same time, the indepen-
dently calculation times are set to 30, the maximum iteration
times are 500 and the iteration accuracy is 0.

FIGURE 10. The test function.

Based on the RSM, the orthogonal test analysis results are
obtained, as shown in Table 3. It is found that the accuracy
of all optimal solutions has reached 0. Therefore, only the
relationship between c1, ¢z, ¢3, n, D and N, T is analyzed,
respectively. Explicit objective functions of average conver-
gence time and average number of iterations are determined,
as shown in (14) and (15), respectively.

D
EOED S (13)
T = 227150 — 2.06974 x ¢| — 2.14435
x 3 — 1.11918 x ¢3 — 6.08949E — 003
x D+ +0.35613xn + 0.35613 x ¢
X ¢y +0.34417xc; x ¢3 + 0.010766 x ¢y
x D +0.018506 x ¢ x n + 0.45426xc;
X ¢34 9.3963E — 003xcy x D + 0.024198 x ¢;
xn—2.12222E — 003 x ¢3 x D + 0.015033 x c3
xn+490213E — 004 x n x D + 0.64025xc%
+0.55815 x ¢3 + 0.079309 x ¢3 + 1.45701E
—004xD? — 6.75825E — 004 x n* (14)
N = 5778.28124 — 531.97259 x ¢| — 684.7207
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TABLE 3. The orthogonal test analysis results.

Average
1D “ © e D " T N optimal solution
1 0.1 0.1 0.9 55 30 1.055267 812.7 0
2 1.7 0.1 0.9 55 30 2.826967 2204.8 0
3 0.1 1.7 0.9 55 30 2.76483 2089.63 0
4 1.7 1.7 0.9 55 30 5.448233 3669.2333 0
5 0.9 0.9 0.1 10 30 0.781 1710.6 0
6 0.9 0.9 1.7 10 30 0.8213 1763.766 0
7 0.9 0.9 0.1 100 30 4.1801 1758.433 0
8 0.9 0.9 1.7 100 30 3.9148 1615.733 0
9 0.9 0.1 0.9 55 10 1.309 3262.333 0
10 0.9 1.7 0.9 55 10 1.399367 3394.8333 0
11 0.9 0.1 0.9 55 50 2.28137 989.2333 0
12 0.9 1.7 0.9 55 50 3.9204 1670.333 0
13 0.1 0.9 0.1 55 30 2.093733 1604.466 0
14 1.7 0.9 0.1 55 30 3.10006 2319.3333 0
15 0.1 0.9 1.7 55 30 1.990566 1505.133 0
16 1.7 0.9 1.7 55 30 3.8779666 2674.4333 0
17 0.9 0.9 0.9 10 10 0.5285 3785.533 0
18 0.9 0.9 0.9 100 10 2.8089 3258.8666 0
19 0.9 0.9 0.9 10 50 1.0198 1138.9333 0
20 0.9 0.9 0.9 100 50 5.0649667 1117.8333 0
21 0.9 0.1 0.1 55 30 2.1850667 1678.2667 0
22 0.9 1.7 0.1 55 30 2.8749333  2157.96667 0
23 0.9 0.1 1.7 55 30 1.8847333 1437.7333 0
24 0.9 1.7 1.7 55 30 3.7375 2663.5 0
25 0.1 0.9 0.9 10 30 0.698833 1539.5 0
26 1.7 0.9 0.9 10 30 1.0654 2364.5333 0
27 0.1 0.9 0.9 100 30 4.0705333 1483.5 0
28 1.7 0.9 0.9 100 30 5.987466 2184.9333 0
29 0.9 0.9 0.1 55 10 1.6144333 3770.5 0
30 0.9 0.9 1.7 55 10 1.11656667 2575.6 0
31 0.9 0.9 0.1 55 50 2.6456 1110.0333 0
32 0.9 0.9 1.7 55 50 3.10986667  1278.26667 0
33 0.1 0.9 0.9 55 10 1.3867 3258.06667 0
34 1.7 0.9 0.9 55 10 1.484433 3416.3333 0
35 0.1 0.9 0.9 55 50 2.55156667 1045.6333 0
36 1.7 0.9 0.9 55 50 3.8337 1575.1 0
37 0.9 0.1 0.9 10 30 0.7243 1542.433 0
38 0.9 1.7 0.9 10 30 1.0737333 2314.8667 0
39 0.9 0.1 0.9 100 30 4.20876667  1519.46667 0
40 0.9 1.7 0.9 100 30 59112667 21255 0
41 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
42 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
43 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
44 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
45 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
46 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
47 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
48 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
49 0.9 0.9 0.9 55 30 2.2468333 1629.633 0
50 0.9 0.9 0.9 55 30 2.2468333 1629.633 0

x ¢3 — 1266.86679 x ¢3 — 5.41298

x D—167.60062xn + 73.24348 x ¢1 X ¢
+177.51289x¢1 x ¢3 —0.85833 x ¢ x D

+5.8 xc1 xn+291.43232xcy X ¢3
—1.15556x¢cy x D+ 8.57187 x ¢3

xn—1.36018 x ¢3 x D+ 21.29896 x ¢3 X n
+0.14044 x n x D + 406.58302x¢?

+378.65336 x ¢3 + 130.07723 x ¢}
+0.024677xD? + 1.25472 x n? (15)
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According to (14) and (15), the change trends of average
convergence time 7' and average number of iterations N with
c1, ¢2, ¢3, n and D can be determined respectively, as shown
in Fig. 11 and 12.

As n and D is constant, it can be seen in Fig. 11(a), 11(b)
and 11(c) that 7' decreases rapidly and then increases slowly
with the increase of ¢; and c;, but decreases rapidly with the
increase of c3. In Fig. 11(a), when 0 < ¢; < 0.9,0 <¢p <
08,0 < ¢3 < 0.95, T decreases with the increase of
c1 and the decrease rate v.;1 becomes smaller and smaller.
When 0 < ¢ < 03,0<¢; < 17,0 < ¢35 < 17, T
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FIGURE 11. Change trend of average convergence time T with (a) c;, (b) ¢, (c) c3, (d) D, (e) n.

decreases with the increase of c¢j, and the decreasing rate
\/C 11 becomes smaller and smaller and 1/Cll < vc11. However,
when 0.5 < ¢; 09,13 < <1.7,04<c3 < 1.7, T
increases with the increase of ¢ and the change rate v¢q is
getting bigger and bigger. In Fig. 11(b), when 0 < ¢; <
09,0<c; < 06,0 < ¢3 < 0.8, T decreases with the

43060

increase of ¢y and the decrease rate v,,, becomes smaller
and smaller. However, when 1.5 < ¢; < 1.7,0.1 <¢p <
0.9, 1.4 <c3 < 1.7, T increases with the increase of ¢, and
the change rate v is getting faster and faster. In Fig. 11(c),
when0 <c¢; <0.9,0 <¢; <0.9,0 <c¢3 <0.9, T decreases
with the increase of ¢3 and the decrease rate v.3; becomes
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FIGURE 12. Change trend of average number of iteration N with (a) c¢;, (b) ¢, (c) c3, (d) D, (e) n.

larger and larger. However, when 0.9 < ¢; < 1.7,0.9 <¢; <
1.7,0.1 <c3 < 0.9, T increases with the increase of ¢3 and
the change rate v.31 becomes larger and larger. In Fig. 11(d)
and 11(e), when cy, ¢, and c3 is constant, T increases with
the increase of n and D, and the decrease rate v,; and vpj
remain nearly constant and v,; > vpi;. When n and D is
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constant, it can be seen in Fig. 12(a), 12(b) and 12(c) that N
decreases slowly and then increases rapidly with the increase
of ¢; and ¢, but decreases rapidly with the increase of c3.
In Fig. 12(a), when 0 < ¢ < 05,0<¢; < 14,0 <
c3 < 6, N decreases with the increase of ¢ and the decrease
rate v.;1 becomes smaller and smaller. However, when
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FIGURE 13. First order effects (a) and total effects (b) of average convergence time T using Sobol’s method of sensitivity analysis.

05 < ¢ < 09,0<c; < 17,15<¢c3 < 119, T
increases with the increase of c1, and the increasing rate v’C12
becomes larger and larger. In Fig. 12(b), when 0 < ¢; <
1.7,0 <c; < 05,0 < ¢3 < 0.6, N decreases with the
increase of ¢p and the decrease rate vé22 becomes smaller
and smaller. However, when 0 < ¢; < 1.7,0.1 <¢p <
0.9,1.5 <c3 < 1.7, N increases with the increase of ¢, and
the increase rate v,,,, is getting faster and faster. In Fig. 12(c),
when 0 < ¢; < 1.7,0<¢; < 17,01 <c3 < 09, N
increases with the increase of c3 and the increase rate V'3
becomes uniformly. However, when 0 < ¢; < 1.7,0 <cp <
1.7,0 < ¢3 < 0.3, N decreases with the increase of c3
and the decrease rate /.33 becomes smaller and smaller.
In Fig. 12(d) and 12(e), when cj, ¢3 and c¢3 is constant,
it shows that N decreases rapidly with the increase of D
but decreases rapidly and then slowly with the increase
of n.

All in all, these results show that the reasonable parameter
setting plays a crucial role in the performance of CMSRAS
algorithm.

Parameter sensitivity analysis is helpful to set the param-
eters reasonably and ensure the performance of CMSRAS
algorithm. Sobol’s method is a global sensitivity analysis
method based on variance.

In practical application, Sobol’s method is relatively easy
to implement by using Monte Carlo simulation method. The
first order and total sensitivity indexs of Sobol’s method are
relatively easy to obtain. The detailed calculation steps are
shown in Ref. [59].

Therefore, in this paper, Sobol’s method is used to deter-
mine the sensitivity of setting parameters of CMSRAS
algorithm.

It supposes that the parameters c1, ¢z, ¢3, n and D obey
uniform distribution and 0.1 < ¢; < 1.7,0.1 < ¢ <
1.7,0.1 < ¢3 < 17,10 < n < 50,10 < D < 100
and the simulation times by Monte Carlo method are 20000,
respectively.
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According to (14) and (15), the first-order effect sensitiv-
ity coefficient and total effect sensitivity coefficient of the
setting parameters to the average convergence time and the
average number of iterations are calculated respectively, and
the results are shown in Fig. 13 and Fig. 14.

It can be seen from Fig. 13(a) that the first-order effect
sensitivity coefficient of the average convergence time in cy,
¢z, ¢3, D and n is 0.0074, 0.0065, 0.001, 0.0495, 0.9307,
respectively. The result shows that n and D are more sensitive
to the average convergence time, followed by cj, ¢z, and
c3. Similarly, it can be seen from Fig. 14(a) that the first-
order effect sensitivity coefficient of the average number of
iterations in ¢y, ¢2, ¢3, D and n is 0.1179, 0.1015, 0.0049,
0.0027, 0.7259, respectively. The results show that n and ¢
are more sensitive to the average convergence time, followed
by ¢3, ¢2, and D. It can be seen from Fig. 13(b) that the
total effect sensitivity coefficient of the average convergence
time in c1, ¢2, ¢3, D and n is 0.0092, 0.0090, 0.0012, 0.0520,
0.9339, respectively. The result shows that n and D are more
sensitive to the average convergence time, followed by cy,
¢y and c3. Similarly, it can be seen from Fig. 14(b) that the
total effect sensitivity coefficient of t the average number of
iterations in ¢y, ¢z, ¢3, D and n is 0.1240, 0.1153, 0.0420,
0.0068, 0.7602, respectively. The results show that n and ¢
are more sensitive to the average convergence time, followed
by ¢2, ¢3 and D.

In summary, these results indicated that ¢y, D and n are
more sensitive to the performance of CMSRAS algorithm.

V. PERFORMANCE EVALUATION OF CMSRAS
ALGORITHM

In this section, we compared the CMSRAS with some
competitive meta-heuristic algorithms by 32 benchmark
functions. The experiments were run on the operating
system of Windows 10, the CPU of Intel (R) Xeon (R)
Gold5118 CPU@2.3Hz 2.29Hz and the memory of 64G.
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FIGURE 14. First order effects (a) and total effects (b) of average number of iteration N using Sobol’s method of sensitivity analysis.

TABLE 4. Setting parameters of the algorithm.

Function Dim Range fnin
Fi(x) = $0, «? n [-100,100] 0
F(x) = Xizqlal + H?:zllxil n [-10,10] 0
F3(x) = 3 (25-1%7) n [-100,100] 0
F,(x) = max{|x;|, 1 < x <n} n [-100,100] 0
Fs(x) = I 100(x;41 — x)% + (x; — 1)7] n [-30,30] 0
Fo(x) = 3™, ([x; + 0.5]) n [-100,100] 0
F,(x) =Y, ix} + random[0,1] n [-1.28,1.28] 0
TABLE 5. Description of unimodal test functions.
Function Dim Range fnin
Fg(x) = Xt —x;siny/ x| [-500,500] -418.9829xDim
Fo(x) = X1, [x? — 10 cos(2mx;) + 10] n [-5.12,5.12] 0
Fo(x) = n
—20exp (—0.2 ,% . xf) —exp (%Z{‘:l cos(erxl-)) +20+e [-32,32] 0
1 i
Fiy(x) = —= %, 2 [T, cos (%) +1 n [-600,600] 0
Uz . — .
Fi2(x) = ;{Sm(ﬂ)ﬁ) I — D?[1 + 10sin? (myq)] + n
Om — 1%} + XLy u(x;, 10,100,4)
xi+1
yi=1+=-
k(x;—a)™ x;>a [-50,50] 0
u(x;, a,k,m) = 0 —a<x;<a
k(—x;—a)™ x;<—a
Fi3(x) = X, 0.1{sin* Bmx;) + X7, (; — D?[1 + n
sin?(Bmx; + 1)] + [-50,50] 0

(x, — 1)?[1 + sin? ux, )]} + X, u(x;, 5,100,4)

All the algorithm codes are written in M file by MATLAB
R2019a version.

A. BENCHMARK FUNCTIONS SET AND COMPARED
ALGORITHM

In order to verify the performance of the CMSRAS algo-
rithm proposed in this paper, some diverse subsets of bench-
mark functions are selected as shown in Tables 4-7, which
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include unimodal functions (F;-F7), multimodal functions
(Fs-F13), fixed-dimension unimodal functions (F4-F»7) and
fixed-dimension multimodal functions (F»g-F33), respec-
tively. These functions are widely used to test the var-
ious characteristics of the proposed algorithm, such as
the ability of fast convergence ability, global convergence,
avoiding the local optimum and premature convergence,
respectively. In Tables 4-7, Dim is the dimension of
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TABLE 6. Description of multimodal test functions.

Function Dim Range fivin
=
Fia(x) = (ﬁ + Zfilﬁ) 2 [-65,65] |
Fis(x) = T2 [a- —M]Z 4 [-5,5] 0.00030
=M p2abixgtx, >
Fio(x) = 4x? — 2.1x¢ + %xf + x,%, — 4x2 + 4x5 2 [-5,5] -1.0316
Fip(0) = (1, = 20} + 23, — 6) + 10 (1 - é) cosx; + 10 2 [-5,5] 0.398
Fig(x) = [1+ (% + x; + 1)2(19 — 14x, + 3x7 — 14x, +
6x1x, +3x2)] X [30 + (2x; — 3x,)% X (18 — 32x; + 12x% + 2 [-2,2] 3
48x, — 36x,x, + 27x2)]
Fio(x) = = Xi, ciexp(— 213'=1 a;(x; — pij)z) 3 [1.3] -3.86
Fao(x) = =X, ciexp(— Z?:l a;(x; _pij)z) 6 [0,1] -3.32
Fi(x) = — ;-r’=1[(X —a)X—a)"+¢]™? 4 [0,10] -10.1532
Fpo(x) ==Y (X —a)X —a)" + ]! 4 [0,10] -10.4028
Fps(x) = =YX —a)X —a)" + ]t 4 [0,10] -10.5363
Fou(x) = sin?(3mxy) + (x; — 1?[1 + sin?(3mx,)] + ) [-10.10] 0
(x; — 1)?[1 + sin®(2mx,)] ’
Fy5(x) = —cos(x;)cos(x,)exp[—(x; — 12 — (x, — m)?] 2 [-100,100] -1
Foo(x) = (2 + x2)°25[50(x? + x2)°1 + 1] 2 [-100,100] 0
F,,(x) = x? 4+ 2x% — 0.3 cos(3mx;) — 0.4 cos(4mx,) + 0.7 2 [-100,100] 0
TABLE 7. Description of fixed-dimension multimodal test functions.

Function Dim Range fivin
Fog(x) = (1.5 — x; + x1x5)% + (2.25 — x; + x,x2)% +
(62 i 1 ) 2 [-4.5,4.5] 0
Fyo(x) = (x; + 2%, — 7)2 + (22, + X, — 5)2 2 [-10,10] 0
Fao(x) = 0.26(x? + x2) — 0.48x, %, 2 [-10,10] 0
Fay(x) = (2 + x2 — 2x;)% + 0.25x, 2 [-1,5] -0.00379
Fap(x) = 100(x, — x3)2 4+ (1 — x;)? 2 [-1.2,1.2] 0

benchmark functions, and Range is the definition of bench-
mark functions and fi,in is the global optimum of bench-
mark functions, respectively. The results and performance
of the proposed CMSRAS algorithm is compared with
some well-known meta-heuristic algorithms including both
traditional meta-heuristic algorithms: PSO [6], CS [19],
DA [31], GWO [26], MFO [28], HHO [37], MVO [27],
SMA [38], SCA [30], SOA [35], WOA [29], SRA [47]-[49]
and advanced meta-heuristic algorithms: TAPSO [61],
MPSO [62], IPSO [63], I-GWO [64], AGPSO1 [60],
AGPSO2 [60], AGPSO3 [60], GWOCS [65]. The parameter
setup of all traditional and advanced meta-heuristic algo-
rithms is detailed in Table 8. The parameters of all algorithms
are set by more commonly-used or popular parameters in
literatures.

In order to ensure the fairness of competitive exper-
iments, all the algorithms were carried out under the
same experimental conditions. In this paper, the popula-
tion and the maximum iterations of all algorithms were
set to 30 and 2000, respectively. In addition, for the pur-
pose of avoiding the error caused by random factors, all
the algorithms were independently run by 30 times for
all tested benchmark functions, and at the same time,
the average value (AVG) and standard deviation (STD)
were selected as the evaluation index of the experimental
results.

43064

TABLE 8. Description of fixed-dimension unimodal test functions.

Algorithms Parameter settings
PSO Wamax=0.9; Wyin=0.6; c1=¢2=2, V(=06
CS p~0.25
DA w=09-02,5=0.1,a=0.1,c=0.7, f=1, e=1
GWO a=[2,0]
MFO b=1; =[-1,1]; a=[-1,-2]
HHO beta=1.5; E0=[-1,1]; J=[-2,2]
MVO Wormbhole Existence Prob. [0.2, 1]
Traveling Distance Rate [0.6, 1]
SMA z=0.03
SCA A=2
SOA A=[2,0]; fc =2
WOA a,=[2,0]; ar=[-2,-1]; b=1
SRA &=1.68
CMSRAS ¢1=0.4; ¢,=0.6; ¢;=1.68
TAPSO Whax=0.9; Wrin=0.6; V,,0,=6
MPSO Whax=0.9; Win=0.6; V=6
IPSO WMaX:O.g; WMm:O.6; V,MX:6
I-GWO a=[2,0]
AGPSO1 WhMax=0.9; Win=0.6; V=6
AGPSO2 Whax=0.9; Wrin=0.6; V(=0
AGPSO3 Whax=0.9; Wrin=0.6; V,,0i,=6
GWOCS beta=1.5; a=[2,0]; L=0.001.

B. QUALITATIVE ANALYSIS OF CMSRAS ALGORITHM

In order to demonstrate the convergence analysis of the
CMSRAS algorithm, the search history, the trajectory of
mirrors in the Ist dimension, the average fitness of mirrors
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FIGURE 15. Qualitative results of unimodal problems.

and the convergence curve are selected as the evaluation index
in the 2D environment as shown in Fig. 15 and Fig. 16,
respectively. The search history shows the location and distri-
bution of mirrors during the iteration process. The trajectory
of the Ist mirror shows the value of the first variable in each
iteration. The average fitness indicates the average objective
value of all mirrors in each iteration. The convergence curve
indicates the optimal objective value of all mirrors in the
iteration process.

From the search history in Fig. 15 and Fig. 16, it shows that
the mirrors are similarly gathered near the optimal solution.
Meanwhile, the optimal solution is precisely searched in the
search area by the frequently reversing and rapidly reflecting
behavior of the mirror. For unimodal functions, the distribu-
tion of mirrors is relatively discrete, and the phenomenon of
local optimum aggregation is not obvious. However, for mul-
timodal functions, the distribution of mirrors is mainly con-
centrated in multiple regions with local optimum, which fully
demonstrates that mirrors can realize the tradeoff between
multiple local optimums.

As it can be seen in Fig. 15 and Fig. 16, the trajectory of 1st
mirrors indicates that the preliminary exploratory behavior
of mirrors. Through the larger oscillation in the initial stage
and the smaller oscillation in the later stage, mirrors can

VOLUME 9, 2021
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improve the convergence speed and the search accuracy of
the optimal solution [66]. In the initial stage, the space search
is larger than that in the later stage, and even at 60% of the
exploration space. Compared with the unimodal functions,
the position of mirrors fluctuates greatly in the late stage
for the multimodal functions, and varies with the value of
the benchmark functions. These results show that mirrors
are more versatile and have higher robustness in different
functional functions.

From the average convergence curve in Fig. 15 and Fig. 16,
the results show that the average convergence curve of
the mirror decreases first rapidly and then slowly with the
increase of iterations, and the amplitude of oscillation attenu-
ation is relatively small. Thus, the ability of fast convergence
in the early stage and accurate search in the later stage are
ensured.

According to the convergence curve in Fig. 15 and Fig. 16,
it is obvious that CMSRAS can reveal an accelerated in the
iteration stage, the ability of shifting from exploration to
exploitation is higher and the rate of convergence is faster.

C. EXPLOITATION COMPETENCE ANALYSIS
(I) CMSRAS compared with SRA
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FIGURE 16. Qualitative results of multimodal problems.
Unimodal functions can be well used to test the exploita- comprehensively, the exploitation ability test was carried out.

tion ability of algorithms. Therefore, in this section, in order In different dimensions of search space and population size,
to compare performance of CMSRAS with basic SRA more the performance of both CMSRAS and SRA is performed
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TABLE 9. Results on unimodal benchmark functions by different population size.

F1 AVG STD 2 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 4.521E-239 0.000 10 5.028E-138 3 088E- 2.754E-137
30 0.000 8.69E-04 0.000 7.125E-04 30 8.726E-198 ’ 03 0.000 2.112E-03
50 0.000 0.000 50 7.058E-237 0.000
3 AVG STD ¥4 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 1.547E-230 0.000 10 2.888E-120 1.815E 1.581E-119
30 0.000 1.121E+04 0.000 3.751E+03 30 1.529E-179 ’ 01 : 0.000 7.788E-2
50 0.000 0.000 50 1.059E-216 0.000
5 AVG STD 6 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 2.218E-28 1.158E-27 10 1.791E-10 2.306E-10
30 0.000 6.487 0.000 11.687 30 3.483E-14 8.791E-2 5.4E-14 8.558E-2
50 0.000 0.000 50 1.219E-16 1.663E-16
¥ AVG STD
CMSRAS SRA CMSRAS SRA
10 1.782E-04 1.818E-04
30 1.241E-04 0.4132 1.232E-04 0.6895
50 4.832E-05 3.088E-05
TABLE 10. Results on unimodal benchmark functions by different dimensions.
F1 AVG STD - AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
30 0.000 8.692E-04 0.000 6.719E-04 30 4.359E-201 9.27E-03 0.000 3.074E-03
100 0.000 1.124E-01 0.000 2.511E-02 100 1.096E-198 2.267E-01 0.000 2.096E-02
200 0.000 8.517E-01 0.000 1.601E-01 200 2.221E-196 8.554E-01 0.000 6.483E-02
3 AVG STD F4 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
30 0.000 1.127E+04 0.000 4.976E+03 30 9.054E-176 2.097E-01 0.000 1.167E-01
100 0.000 1.282E+05 0.000 2.437E+04 100 8.087E-46 2.2008 3.961E-45 1.097
200 0.000 4.858¢+05 0.000 8.012e+04 200 9.922E-27 8.064 5.434E-26 2.942
Fs AVG STD Fé AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
30 0.000 5.703 0.000 10.124 30 2.519E-16 8.009E-02  6.021E-16 7.0541E-02
100 0.000 9.151 0.000 13.005 100 2.441E-02 8.09104 7.217E-03 9.9801E-01
200 0.000 8.541 0.000 12.287 200 2.647 30.527 0.611 1.5957
7 AVG STD
CMSRAS SRA CMSRAS SRA
30 6.636E-05 4.3311E-01 7.847E-05 6.6933E-01
100 7.503E-05 5.368E-01 8.121E-05 2.7872E-01
200 5.832E-05 7.6049E-01 4.778E-05 3.1853E-01

by the 12 unimodal benchmark functions (Fi-F; and Fog-
F37), respectively. In this experiment, the maximum number
of iterations and calculated times was set to 2000 and 30,
respectively. The experiment is divided into two parts: in
the first part, for Fi-F;7 benchmark functions, the dimension
of search space was set to 30 and the population size of
CMSRAS was set to 10, 30, 50, respectively. Meanwhile,
the population size of CMSRAS was set to 30, and the dimen-
sion of search space was set to 30, 100, 200, respectively.
In the second part, for Fg-F32 benchmark functions, under
a fixed dimension, the population size of CMSRAS was set
to 10, 30, 50, respectively. The average optimum (AVG) and

VOLUME 9, 2021

standard deviation (STD) of the attained results over 30 times
independent runs as shown in Table 9-11, respectively. The
convergence curves of unimodal benchmark functions by
the different population sizes and dimensions are shown
in Fig. 17 and 18, respectively.

As it can be seen from Table 9 and 11, as the population
increases, for F1 . F3, F5, Fzg, F29, F30, F31 and F32, CMSRAS
obtains the global optimum and the STD is respectively
smaller. In addition, for F;-F; and Fg-F3;, the AVG and
STD obtained by CMSRAS are getting better and better.
However, the AVG and STD obtained by SRA are worse than
that of CMSRAS, and it is easy to fall into local optimum.
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TABLE 11. Results on fixed dimension unimodal benchmark functions by different population size.

28 AVG STD 29 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 5.0804E-02 0.1933 10 0.000 0.000
30 0.000 0.6838 0.000 0.879 30 0.000 8.643E-04 0.000 1.501E-03
50 0.000 0.000 50 0.000 0.000
AVG STD AVG STD
F30 F31
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 7.657E-244 0.000 10 -0.0037912 1.764E-18
30 0.000 5.275E-03 0.000 8.345E-03 30 -0.0037912 -0.002738  1.764E-18 3.692E-03
50 0.000 0.000 50 -0.0037912 1.764E-18
AVG STD
F32
CMSRAS SRA CMSRAS SRA
10 2.379E-21 1.22E-20
30 1.824E-31 0.7689  9.096E-31 1.224
50 0.000 0.000

wol
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FIGURE 17. The convergence curves of unimodal benchmark functions by different population sizes.
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The unimodal benchmark functions are more challenging to
be addressed as the dimension of search space increases.
As per results in Table 10, as the dimension increases, for
Fi, F3 and Fs, CMSRAS can obtain the global optimum
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and the STD is 0. Meanwhile, for F-F7, the AVG and STD
of CMSRAS is getting worse and worse but better than
that of SRA with the increase of the dimension of search
space.
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FIGURE 18. The convergence curves of unimodal benchmark functions by different dimensions.
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FIGURE 18. (Continued.) The convergence curves of unimodal benchmark functions by different dimensions.

As it can be seen in Fig. 17 and 18, for all unimodal
benchmark functions, the convergence rate of CMSRAS is
faster than that of SRA. With the increase of population size,
the convergence rate of CMSRAS is gradually increased.
Inversely, as the dimension of search space increases, the con-
vergence rate of CMSRAS is gradually decreased for most of
unimodal benchmark functions. The results of convergence
curves show that SRA is more easily to fall into local opti-
mum than CMSRAS.

To sum up, the exploitation ability of CMSRAS is supe-
rior to that of SRA, whether in low dimensions or in high
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dimensions. That may be because the combination of popu-
lation strategy with shared node, improved tent chaotic muta-
tion strategy and Gaussian mutation strategy increases the
population diversity, making CMSRAS more likely to jump
out of the local optimum and obtain a better solution with a
fast convergence rate.

(II) CMSRAS compared with traditional and advanced
algorithms

In this section, in order to evaluate performance of
CMSRAS compared with other algorithms more com-
prehensively, the exploitation ability test was performed
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TABLE 12. Comparison results of unimodal functions with traditional algorithms.

F1 F2 F3
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 0.000 0.000 1.735E-196 0.000 0.000 0.000
PSO 1.05E-02 1.021E-02 6.527E-02 3.993E-02 3.351E+02 1.112E+01
CS 4.929E-10 3.944E-10 1.802E-04 1.152E-04 1.465E+01 7.192
DA 6.092E+02 3.385E+02 1.388E+01 4.764 7.402E+03 5.395E+03
GWO 8.823E-122 2.259E-121 8.367E-71 1.292E-70 1.13E-32 5.551E-32
MFO 4.11E-11 2.12E-10 8.647 1.001E+01 1.276E+04 9.843E+03
HHO 0.000 0.000 1.202E-189 0.000 1.367E-259 0.000
MVO 7.696E-02 3.133E-02 2.021E-01 5.752E-02 9.68 4.394
SMA 0.000 0.000 4.986E-238 0.000 0.000 0.000
SCA 4.593E-07 1.889E-06 3.008E-11 5.984E-11 1.196E+03 1.662E+03
SOA 0.000 0.000 0.000 0.000 2.134E+03 2.851E+03
WOA 4.411E-311 0.000 4.582E-212 0.000 7.538E+03 5.279E+03
. F4 F5 F6
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 4.762E-255 0.000 0.000 0.000 1.178E-13 3.170E-13
PSO 1.272E+00 2.213E-01 2.286E-19 1.047E-18 7.235E-03 5.657E-03
CS 2.969E+00 1.255E+01 0.000 0.000 4.396E-10 2.858E-10
DA 1.633E+01 5.1784E+01 8.167E-01 3.708E+00 5.129E+02 1.909E+02
GWO 1.274E-29 2.64E-29 5.592E-08 5.722E-08 4.352E-01 3.475E-01
MFO 6.3044+01 9.287E+00 1.468E-02 6.148E-02 1.684E-09 8.237E-09
HHO 2.179E-181 0.000 3.078E-09 1.161E-08 8.849E-06 1.182E-05
MVO 4.571E-01 1.594E-01 5.529E-06 6.811E-06 7.652E-02 2.091E-02
SMA 2.226E-221 0.000 3.431E-08 7.372E-08 2.543E-04 9.538E-05
SCA 5.161E+00 6.288E+00 3.929E-04 4.782E-04 4.213E+00 3.511E-01
SOA 1.926E-95 1.055E-94 1.141E-01 1.956E-01 1.728E-01 8.931E-01
WOA 2.961E+01 2.713E+01 2.026E-08 3.31E-08 2.224E-03 1.494E-03
F7
Algorithms
AVG STD
CMSRAS 8.230E-05 7.025E-05
PSO 4.212E-01 2.512E-01
CS 2.514E-05 9.203E-03
DA 1.804E-01 1.096E-01
GWO 3.438E-04 2.137E-04
MFO 1.585E+00 4.231E+00
HHO 3.678E-05 3.259E-05
MVO 1.259E-02 4.655E-03
SMA 5.83E-05 4.276E-05
SCA 1.291E-01 1.141E-02
SOA 5.976E-05 5.797E-05
WOA 6.268E-04 5.995E-04

by the 12 unimodal benchmark functions (Fi-F; and
Fag-F35), respectively. In this test, the maximum num-
ber of iterations, the dimension of search space and the
population size were set to 2000, 30 and 30 respec-
tively. The average optimum (AVG) and standard devia-
tion (STD) the attained results over 30 times independent
runs as shown in Table 12-15, respectively. The conver-
gence curves of unimodal benchmark functions by tradi-
tional and advanced algorithms are shown in Fig. 21 and 22,
respectively.
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As it can be seen in Table 12 and 14, for F{, the CMSRAS,
HHO, SMA and SOA can obtain the global optimum with the
best STD, and the AVG and STD of CMSRAS are superior to
PSO, CS, DA, GWO, MFO, MVO, SCA and WOA, respec-
tively. For Fo, SMA can obtain the global optimum is superior
to other traditional algorithms. Meanwhile, the AVG and STD
of CMSRAS are superior to PSO, CS, DA, GWO, MFO,
MVO, HHO and SOA, respectively. For F3, both CMSRAS
and SMA can obtain the global optimum with the best STD,
which is superior to PSO, CS, DA, GWO, MFO, MVO, SCA,
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TABLE 13. Comparison results of unimodal functions with advanced algorithms.

F1 F2 F3
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 0.000 0.000 2.915E-189 0.000 0.000 0.000
TAPSO 1.669E-12 8.379E-12 8.085E-05 2.093E-04 1.599E-01 2.451E-01
MPSO 4.052E-11 1.268E-10 2.333E+01 6.261E+00 1.627E-01 2.117E-01
IPSO 1.676E-13 2.953E-13 3.334E-01 1.825E+00 2.904E-01 6.782E-01
I-GWO 4.540E-124 1.61E-123 3.266E-75 4.928E-75 2.001E-23 7.421E-23
AGPSOL1 1.598E-10 3.349E-10 6.711E-01 2.535E+00 1.559E+00 2.304E+00
AGPSO2 7.549E-10 3.356E-09 1.004E+00 3.049E+00 6.640E-01 4.92E-01
AGPSO3 1.819E-13 4.496E-13 9.468E-03 2.335E-03 2.062E-01 3.063E-01
GWOCS 9.125E-123 2.114E-122 2.152E-71 1.844E-71 1.647E-33 7.513E-33
F4 F5 F6
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 6.174E-253 0.000 0.000 0.000 1.171E-12 1.44E-12
TAPSO 6.652E-02 3.083E-02 0.000 0.000 1.5E-11 7.353E-11
MPSO 1.043E-01 4.394E-02 0.000 0.000 1.57E-12 5.441E-12
IPSO 6.857E-02 3.109E-02 0.000 0.000 5.989E-13 2.368E-12
I-GWO 1.465E-23 3.065E-23 1.831E-13 3.143E-13 3.067E-11 2.018E-11
AGPSO1 3.837E-01 1.789E-01 0.000 0.000 6.34E-10 1.934E-09
AGPSO2 2.522E-01 1.165E-01 0.000 0.000 6.303E-10 3.032E-09
AGPSO3 8.939E-01 4.308E-01 0.000 0.000 1.761E-13 6.953E-13
GWOCS 2.742E-30 5.9E-30 6.802E-08 7.201E-08 5.391E-01 2.279E-01
F7
Algorithms
AVG STD
CMSRAS 6.403E-05 1.69E-05
TAPSO 2.053E-02 6.996E-03
MPSO 3.798E-01 1.534E+00
IPSO 2.058E-02 8.326E-03
I-GWO 6.343E-04 2.209E-04
AGPSOL1 2.979E-01 1.469E+00
AGPSO2 2.831E-02 1.324E-02
AGPSO3 2.562E-02 1.045E-02
GWOCS 3.455E-04 1.533E-04

HHO, WOA and SOA, respectively. For Fs5 and F3,, both
CMSRAS and CS can obtain the global optimum with the
best STD, which is superior to other algorithms. For F7,
the HHO can obtain the best results, and the AVG and STD of
CMSRAS is superior to PSO, DA, GWO, MFO, MVO, SCA
and WOA, respectively. For F4 and Fs, CMSRAS can attain
the best results compared with other algorithms. For Fg and
F29, CMSRAS, PSO and CS can attain the global optimum
with the best STD, which is superior to other algorithms. For
F39, the global optimum is obtained by CMSRAS, GWO,
HHO, SMA, SOA and WOA. For F31, the AVG and STD of
SMA are ranked first. As per results in Table 13 and 15, for
F1, Fa, F3, F4 and F7, the results of CMSRAS are optimal.
For Fog, Fog and F31, the AVG and STD of CMSRAS are
the smallest in parallel compared with other algorithms, but
that is better than GWOCS. For F33, CMSRAS, I-GWO and
GWOCS can attain the best results and that is better than
other algorithms. For F31, the AVG and STD of CMSRAS are
the smallest in parallel compared with other algorithms, but
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that is better than -GWO, AGPSO1, AGPSO2, AGPSO3 and
GWOCS, respectively.

As it can be seen in Fig. 21 and 22, it is visually observed
that CMSRAS has the fastest convergence rate than other
competitive algorithms in F3, Fy4, Fs, Fg, F7, Fag, Fo9 and
F31, respectively. All in all, compared with traditional and
advanced algorithms, CMSRAS has an advantage in uni-
modal functions.

D. EXPLORATION COMPETENCE ANALYSIS
(I) CMSRAS compared with SRA

The ability to exploit and avoid falling into local opti-
mum is often evaluated by multimodal functions. In this
section, in order to compare performance of CMSRAS with
basic SRA more comprehensively, the experiments were per-
formed by the 20 multimodal benchmark functions (Fg-F»7).
In this experiment, the maximum number of iterations and
calculated times was set to 2000 and 30, respectively. The
experiments were divided into two parts: in the first part, for
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TABLE 14. Comparison results of fixed dimension unimodal functions with traditional algorithms.

F28 F29 F30
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 0.000 0.000 0.000 0.000 0.000 0.000
PSO 0.000 0.000 0.000 0.000 8.274E-56  4.516E-55
CS 0.000 0.000 0.000 0.000 5.928E-64  3.243E-63
DA 2.815E-04 1.527E-03 1.931E-05 6.335E-05 1.283E-07 3.182E-07
GWO 5.08E-02 1.933E-01 2.519E-08 2.808E-08 0.000 0.000
MFO 3.573E-20 2.808E-20 1.028E-19 9.833E-20 7.678E-122  4.205E-121
HHO 8.379E-13 3.260E-12 2.469E-06 3.652E-06 0.000 0.000
MVO 1.524E-01 3.1E-01 4.357E-08 4.496E-08 2.906E-10  2.922E-10
SMA 3.139E-10 6.231E-10 2.027E-10 4.241E-10 0.000 0.000
SCA 6.259E-05 6.055E-05 2.331E-04 2.420E-04 3.722E-215 0.000
SOA 2.032E-01 3.427E-01 4.578E-01 7.809E-01 0.000 0.000
WOA 5.411E-12 1.216E-11 2.052E-05 1.777E-05 0.000 0.000
F31 F32
Algorithms
AVG STD AVG STD
CMSRAS -3.79E-02 1.764E-18 0.000 0.000
PSO -3.79E-02 1.764E-18 7.227E-15 3.282E-14
CS -3.79E-02 1.764E-18 0.000 0.000
DA -3.79E-02 8.843E-07 1.049E-03 1.762E-03
GWO -3.79E-02 2.641E-11 1.254E-07 1.647E-07
MFO -3.79E-02 1.764E-18 4.058E-03 5.945E-03
HHO -3.79E-02 1.481E-11 3.732E-07 1.155E-06
MVO -3.79E-02 1.796E-09 1.933E-08 3.228E-08
SMA -3.79E-02 1.50E-18 1.386E-08 2.462E-08
SCA -3.79E-02 2.323E-10 7.328E-05 7.429E-05
SOA -3.67E-02 1.808E-04 3.021E-03 8.280E-03
WOA -3.79E-02 1.530E-10 1.429E-06 3.507E-06
TABLE 15. Comparison results of fixed dimension unimodal functions with advanced algorithms.
F28 F29 F30
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 0.000 0.000 0.000 0.000 0.000 0.000
TAPSO 0.000 0.000 0.000 0.000 8.014E-129 3.464E-128
MPSO 0.000 0.000 0.000 0.000 8.086E-117 2.528E-116
IPSO 0.000 0.000 0.000 0.000 2.967E-115 1.470E-114
I-GWO 0.000 0.000 0.000 0.000 0.000 0.000
AGPSOL1 0.000 0.000 0.000 0.000 2.649E-107 1.447E-106
AGPSO2 0.000 0.000 0.000 0.000 4.282E-110 2.142E-109
AGPSO3 0.000 0.000 0.000 0.000 3.491E-179 0.000
GWOCS 2.540E-02 1.391E-02 3.098E-08 2.843E-08 0.000 0.000
F31 F32
Algorithms
AVG STD AVG STD
CMSRAS -3.79E-02 1.764E-18 0.000 0.000
TAPSO -3.79E-02 1.764E-18 0.000 0.000
MPSO -3.79E-02 1.764E-18 0.000 0.000
IPSO -3.79E-02 1.764E-18 0.000 0.000
I-GWO -3.79E-02 1.764E-18 1.365E-11 1.894E-11
AGPSOL1 -3.79E-02 1.764E-18 9.522E-27 2.832E-26
AGPSO2 -3.79E-02 1.764E-18 1.643E-33 9.001E-33
AGPSO3 -3.79E-02 1.764E-18 1.643E-33 9.001E-33
GWOCS -3.79E-02 3.091E-11 9.689E-08 1.032E-07

Fg-F13 benchmark functions, the population size of respectively. In the second part, for Fi4-Fy7; benchmark
CMSRAS was set to 10, 30, 50, respectively. and then functions, under a fixed dimension, the population size of
the dimension of search space was set to 30, 100, 200, CMSRAS was set to 10, 30, 50, respectively. The AVG
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FIGURE 19. The convergence curves of multimodal benchmark functions by different dimensions.
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FIGURE 19. (Continued.) The convergence curves of multimodal benchmark functions by different dimensions.
TABLE 16. Results on multimodal benchmark functions by different population size.
s AVG STD o AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 -9.181E+03 1.451E+02 10 0.000 0.000
30 -1.040E+04 -7.962E+03 1.244E+02 8.006E+02 30 0.000 4.682E-04 0.000 2.931E-04
50 -1.095E+04 1.220E+02 50 0.000 0.000
F10 AVG STD Fi1 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 8.8818E-16 0.000 10 0.000 0.000
30 8.8818E-16 6.732E-03 0.000 2.525E-03 30 0.000 2.622E-02 0.000 2.7594E-02
50 8.8818E-16 0.000 50 0.000 0.000
F12 AVG STD F13 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 1.8377E-12 2.4719E-12 10 1.919E-11 3.891E-12
30 7.4797E-16 2.0808E-02 1.3146E-15 2.557E-02 30 2.087E-15 2.901E-01 3.473E-14 3.601E-01
50 1.4982E-18 3.403E-18 50 6.141E-16 2.854E-16

and STD of the attained results over 30 times independent
runs as shown in Table 16-18, respectively. The convergence
curves of multimodal benchmark functions by different pop-
ulation sizes and dimensions are shown in Fig. 19 and 20,

respectively.

The data in Table 16 and 18 demonstrates that CMSRAS
obtains the global optimum with lowest STD in Fo, Fy1, Fy4,
F16, F17, Flg, F19, Fz(), Fz] , Fzz, F23, F26 and F27, respectively.
However, SRA can attain the global optimum in Fy¢, F17 and

Fi9, the STD of SRA is less than CMSRAS.

VOLUME 9, 2021

As the population increases, the AVG and STD obtained
by CMSRAS are getting better and better in Fg, Fi2, Fi3
and Fis, respectively. These results show that CMSRAS can
still exhibit significant advantages compared to SRA, such as

ranking first among other multimodal benchmark functions

other than Fi¢ and F»7.

As per results in Table 17, with the increase of the dimen-
sion of search space, for Fg and Fi;, CMSRAS can obtain
the global optimum and the STD is 0. Meanwhile, for Fj,

and Fy3, the AVG and STD of CMSRAS is getting worse and
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FIGURE 20. The convergence curves of multimodal benchmark functions by different population sizes.
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TABLE 17. Results on multimodal benchmark functions by different dimensions.

Tteration

¥s AVG STD 9 AVG STD

CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
30 -1.06E+04  -7.91E+03 2.26E+02 7.58E+02 30 0.000 4.319E-04 0.000 2.861E-04
100 -3.12E+04 -1.83E+04 6.47e+02 1.25E+03 100 0.000 6.411E-02 0.000 1.034E-02
200  -3.72E+04 -2.67E+04 3.47e+02 1.36E+03 200 0.000 4.551E-01 0.000 1.2136E-01
F10 AVG STD Fi1 AVG STD

CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
30 8.882E-16 7.036E-03 0.000 2.192E-03 30 0.000 2.107E-02 0.000 2.634E-02
100  8.882E-16 4.868E-02 0.000 4.445E-03 100 0.000 7.087E-02 0.000 2.1589E-02
200  8.882E-16 1.016E-01 0.000 8.528E-03 200 0.000 2.334E-01 0.000 3.998E-02
F12 AVG STD F13 AVG STD

CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
30 6.058E-16 2.685E-02 1.2196E-15 3.542E-02 30  7.0668E-12 0.4592 1.0311E-11 0.1608
100 1.909E-04 2.748E-01 7.921E-05 4.521E-02 100 1.244E-06 2.0482 1.629E-06 3.106E-01
200  1.633E-02 6.117E-01 4.766E-02 5.449E-02 200  5.688E-02 18.108 8.4007E-02 2.949E-01

worse but better than that of SRA with the increase of the
dimension of search space. Especially for Fg-F;3, the AVG
and STD of CMSRAS is better than SRA. In other words,
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the ability of both exploration and avoiding falling into the
local optimum of CMSRAS is superior to SRA. That may be
because the reversing behavior and disturbance behavior of
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FIGURE 22. The convergence curves of unimodal benchmark functions by advanced algorithms.

multiple mirrors can refine the local optimum and improve (II) CMSRAS compared with traditional and advanced

the search ability of the optimal solution, and to improve the algorithms

global convergence efficiency and accuracy of the algorithm In this section, in order to compare performance of

and avoid falling into the local optimum. CMSRAS with other algorithms more comprehensively,
As it can be seen in Fig. 19 and 20, for Fg-F,7, the conver- the experiments were performed by the 20 multimodal bench-

gence rate of CMSRAS is faster than that of SRA. With the mark functions (F8-F27) to evaluate the ability of exploration

increase of population size, the convergence rate of CMSRAS and avoiding the local optimum. Initially, the maximum num-

is gradually increased. That may be because the population ber of iterations, the dimensions and the population size were
diversity of CMSRAS is enriched by the selection behavior set to 2000, 30 and 30 respectively. The AVG and STD of

of a shared node. As the dimension of search space increases, the attained results over 30 times independent runs as shown
the convergence rate of CMSRAS is gradually decreased. The in Table 19-22. The convergence curves of multimodal bench-
results of convergence curves show that SRA is more easily mark functions by the traditional and advanced algorithms are
to fall into local optimum than CMSRAS. shown in Fig. 23 and 24, respectively.

In conclusion, for high-dimensional multimodal functions, Compared with traditional and advanced algorithms,
CMSRAS is obviously better than SRA in terms of in the data in Table 19-22 represents that CMSRAS is still
terms of the ability to exploit and avoid falling into local competitive in multimodal benchmark functions. As it can be
optimum. seen in Table 19 and 21, for Fo, Fio, F11, F14, F16, F19, F24,
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TABLE 18. Results on fixed dimension multimodal benchmark functions by different population size.

p1q VG STD s VG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 1.0641 3.6224E-01 10 5.1841E-04 6.6274E-04
30 0.998 9.737 0.000 4.2088 30 4.8279E-04  2.064E-02  6.5133E-04  2.3299E-02
50 0.998 0.000 50 3.38E-04 1.6718E-04
16 —AVG STD p1y VG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 -1.0316 6.712E-16 10 0.3978 0.000
30 -1.0316 -1.0316  6.7752E-16  4.8261E-16 30 0.3978 0.3978 0.000 3.0717E-06
50 -1.0316 6.7752B-16 50 0.3978 0.000
p1g —AYG STD 1o AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 3.000 6.0599E-16 10 -3.86 9.362E-16
30 3.000 3.000  13297E-16  2.9608E-04 30 -3.86 -3.86 9362E-16  4.44E-16
50 3.000 1.3168E-16 50 -3.86 9.362E-16
oy AVG STD g AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 332 0.000 10 -10.03 0.47218
30 332 3.238 0.000 S743E-02 30 -10.1532 597287  1.7763E-15 3.3703
50 332 0.000 50 -10.1532 1.4503E-15
pyy _AVG STD 23 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 9.9576 1.838 10 -9.8663 2.119
30 -10.4028 46646 5.713E-16 27715 30 -10.5364 -3.4495 1.899E-15 2.5845
50 -10.4028 1.189E-15 50 -10.5364 1.6747E-15
g AVG STD s AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 1.3497E-31 6.6808E-47 10 -0.8333 0.379
30 1.3497E-31 0.1303  6.6808E-47 0.4961 30 -1 0.7 0.000 0.483
50  1.3497E-31 6.6808E-47 50 -1 0.000
g AVG STD 7 AVG STD
CMSRAS SRA CMSRAS SRA CMSRAS SRA CMSRAS SRA
10 3.0119E-57 1.6096E-56 10 0.000 0.000
30 0.000 5.01E-05 0.000 2.182E-04 30 0.000 0.000 0.000 0.000
50 0.000 0.000 50 0.000 0.000

F»5, Fog and Fy7, the AVG and STD of CMSRAS were the
smallest in parallel compared with other algorithms, but that
was better than most traditional algorithms. For F12, F13, Fag,
F>1, Fyy and F,3, it shows that the results of CMSRAS are
optimal, which indicates that CMSRAS can still maintain its
advantages compared to the traditional algorithms and reflect
CMSRAS’s capability to avoid local optimum solutions.

As per results in Table 20 and 22, for Fo, Fjo, F11, Fi2,
F13, F1g, Fao, Fa1, Fa2 and Fa3, compared with other advanced
algorithms, the AVG and STD of CMSRAS was ranked first.
For F16, F17, Flg, F25, F24 and F27, the AVG and STD of
CMSRAS was equal to or close to other advanced algorithms.
However, for Fg, the AVG of CMSRAS was inferior to
I-GWO and GWOCS, but the STD of CMSRAS was superior
to all advanced algorithms. In addition, for F;s, the AVG of
CMSRAS was better than TAPSO, MPSO, IPSO, AGPSO1,
AGPSO2 and GWOCS, but that was worse than I-GWO
and AGPSO3. The STD of CMSRAS was superior to other
advanced algorithms except I-GWO. For Fy4, the AVG and
STD of both CMSRAS and I-GWO were better than other
advanced algorithms.

Compared with traditional algorithms, Fig. 23 shows
that CMSRAS can find a superior solution at a relatively

VOLUME 9, 2021

fast convergence tendency in multimodal functions such as
Fg-Fis, Fi6-F19, F21-F25 and F»7. In addition, in Fig. 24,
it shows that CMSRAS also can find a superior solution at a
relatively fast convergence tendency in multimodal functions
such as F9-F19, le-Fzs and F27.

To sum up, CMSRAS can achieve superior faster than most
of other counterparts, thus well coordinating the ability of
exploration and exploration, and CMSRAS can avoid falling
into local optimum with fast convergence.

E. SIGNIFICANCE OF SUPERIOR ANALYSIS

There are often some shortcomings in evaluating the per-
formance of CMSRAS algorithm based on the AVG and
STD. In order to accurately evaluate the performance of the
CMSRAS algorithm, a statistical test is needed to determine
whether there are statistically significant differences between
the CMSRAS algorithm and other competitive algorithms.
In this section, the Wilcoxon rank-sum test with 5% degree
is carefully performed on the results of 30 independent
runs [67]. Table 23 shows the obtained p-value, h-value and
z-value of the Wilcoxon rank-sum test with 5% significance.
The term of NaN means that both algorithms are successful
in determining optimal points of a specific function in all the
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TABLE 19. Comparison results of multimodal functions with traditional algorithms.

leorith F9 F10
gorithms AVG STD AVG STD AVG STD
CMSRAS  -9.3358E+03 19756102 0.000 0.000 8.8818E-16 0.000
PSO -6.7400E+03 9.967E+02 7.0344E+01 2.178E+01 8 454E+02 9.192E-02
cs -9.2459E+03 2.786E+02 5.522E+01 8251 4510E-01 7.114E-01
DA -5.8867E+03 6.169E+02 1.402E+02 3.967E+01 7.309E+00 1.166E+00
GWO 6.2080E+03  1.0126E+03 1.351E-01 5.14E-01 8.704E-15 1.957E-15
MFO -8.9889E+03 8 327E+02 1 49E+02 2.791E+01 1.391E+01 8.301E+00
HHO 1.25694E+04  3.8551E-02 0.000 0.000 8.8818E-16 0.000
MVO -8.0986E+03 7.266E+02 1.038E+02 2.843E+01 7.731E-01 7.676E-01
SMA -1.25694E+04 1.614E-02 0.000 0.000 8.8818E-16 0.000
SCA -4.0603E+03 2.743E+02 7 735E+00 1.857E+01 1.590E+01 7.496E+00
SOA -1.25694E+04 1.65E-06 0.000 0.000 8.8818E-16 0.000
WOA -1.13055E+04  1.4799E+03 0.000 0.000 4322F-15 2.184E-15
Aleorithms —F1L F12 F13
gorithms AVG AVG AVG STD AVG STD
CMSRAS 0.000 0.000 7.233E-16 1.920E-15 2.553E-12 6.322E-12
PSO 1.158E-02 9.121E-03 6.488E-05 7.534E-05 5.893E-03 5.948E-03
cs 9.61E-05 2237E-04 2.753E-01 4379E-01 1.72E-06 6.306E-06
DA 6.665E+00 3.035E+00 2.867E+01 6.885E-+01 3.801E+03 6.601E+03
GWO 0.000 0.000 3.569E-02 2.306E-02 5.261E-01 1.942E-01
MFO 3.042E+00 1.652E+00 4.631E-01 8.436E-01 1.844E-01 7.075E-01
HHO 0.000 0.000 5.846E-07 1.103E-06 7.248E-06 1.331E-05
MVO 3.073E-01 6.852E-02 1.071E+00 1.037E+00 2203E-02 2.444E-02
SMA 0.000 0.000 2.535E-04 3.072E-04 1.896E-04 9.073E-05
SCA 1.195E-01 2.101E-01 1.0704E+00 2.347E+00 2 309E+00 1.417E-01
SOA 0.000 0.000 1.390E-01 1.352E-01 6.881E-01 5.728E-01
WOA 2.198E-03 8.416E-03 2.034E-02 5.938E-02 4258E-02 5.307E-02

TABLE 20. Comparison results of multimodal functions with advanced algorithms.

F8 F9 F10
Algorithms
AVG AVG AVG STD AVG STD

CMSRAS -1.0518E+04 1.553E+02 0.000 0.000 8.8818E-16 0
TAPSO -6.959E+03 8.583E+02 5.881E+01 2.233E+01 4.468E-02 2.447E-01
MPSO -6.729E+03 7.931E+02 9.167E+01 3.245E+01 5.926E-02 3.246E-01
IPSO -6.751E+03 5.978E+02 7.232E+01 2.189E+01 5.005E-02 2.741E-01
I-GWO -1.0523E+04 7.996E+02 1.476E+01 8.046E+00 7.993E-15 9.329E-16
AGPSO1 -6.615E+03 8.033E+02 5.97E+01 1.938E+01 1.068E-01 3.316E-01
AGPSO2 -6.556E+03 8.529E+02 6.341E+01 1.974E+01 4.469E-02 2.447E-01
AGPSO3 -6.637E+03 8.705E+02 4.344E+01 1.236E+01 7.046E-01 6.638E-01
GWOCS -1.0295E+04 2.018E+03 2.545E-01 1.394E+00 9.177E-15 2.154E-15

F11 F12 F13
Algorithms
AVG AVG AVG STD AVG STD

CMSRAS 0.000 0.000 6.16E-16 9.744E-16 3.256E-12 9.939E-12
TAPSO 6.337E-02 6.459E-02 1.727E-02 5.501E-02 5.493E-03 4.493E-02
MPSO 1.19E-02 1.193E-02 2.351E-13 1.261E-12 3.631E-03 9.009E-03
IPSO 9.187E-03 1.484E-02 3.455E-03 1.892E-02 1.098E-03 5.908E-03
I-GWO 1.559E-03 4.36E-03 3.456E-03 1.892E-02 3.296E-03 3.352E-03
AGPSO1 6.814E-03 9.091E-03 1.708E-11 6.454E-11 2.532E-03 1.805E-02
AGPSO2 8.784E-03 9.709E-03 3.481E-12 8.615E-12 2.563E-03 5.424E-03
AGPSO03 9.602E-03 9.124E-03 1.363E-12 7.127E-12 1.098E-03 4.726E-03
GWOCS 1.274E-03 3.947E-03 3.323E-02 2.004E-02 4.738E-01 3.352E-03

runs and the statistical Wilcoxon test is not applicable. And competitive algorithms, except HHO, SMA, SOA. For F,,
the non-parametric Friedman’s test [68] was utilized. The CMSRAS is significantly better than all competitive algo-
average rank of the results of the algorithms on 32 benchmark rithms. For F3 and F4, CMSRAS is significantly better com-
functions is shown in Table 24. As it can be seen from pared to other algorithms, except SMA. For F5, CMSRAS is
Table 23, for F;, CMSRAS is significantly better than other significantly superior to other algorithms, except CS, TAPSO,
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TABLE 21. Comparison results of fixed dimension multimodal functions with traditional algorithms.
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lvorith Fl14 F15 Fl6
gorithms AVG AVG AVG STD AVG STD
CMSRAS 9.98E-01 0.000 3383E-04 1.670E-04 ~1.0316 6.775E-16
PSO 3.359E+00 2.971E+00 7.683E-04 2.318E-04 -1.0316 6.775E-16
cs 9.98E-01 0.000 3.074E-04 1.769E-19 -1.0316 6.775E-16
DA 9.98E-01 2.1785-10 2.206E-03 3.699E-03 -1.0316 1.278E-05
GWO 4.845E-+00 4 479E+00 5.720E-03 8.984E-03 -1.0316 1.595E-09
MFO 2 314E+00 2.065E+00 1.419E-03 3.583E-03 -1.0316 6.775E-16
HHO 9.98E-01 1.092E-10 3.462E-04 1.661E-04 -1.0316 3.657E-13
MVO 9.98E-01 1.963E-12 6.584E-03 1.232E-02 -1.0316 2.38E-08
SMA 9.98E-01 7.086E-15 3.877E-04 1.539E-04 -1.0316 3.961E-12
SCA 1.461E+00 8.535E-01 7.366E-04 3.945E-04 -1.0316 2.05E-05
SOA 5.422E+00 4.844E+00 1.606E-03 1.535E-03 -1.0316 5.28E-03
WOA 1.621E+00 1.861E+00 5.769E-04 3.204E-04 -1.0316 4503E-12
Aleorith F17 F18 F19
gorithms AVG STD AVG STD AVG STD
CMSRAS 3.979E-01 0.000 3E+00 1.533E-16 3.862E100  2.71E-15
PSO 3.979E-01 0.000 3E+00 6.059E-16 3.862E+00  2.682E-15
cs 3.979E-01 0.000 3E+00 1.319E-15 3.862E+00  2.71E-15
DA 3.979E-01 1.102E-05 3E+00 3.187E-05 3.862E+00  2.748E-05
GWO 3.979E-01 2.044E-07 5.7E+00 1.478E+01 3.862E+00  1.353E-03
MFO 3.979E-01 0.000 3E+00 2.041E-15 3.862E+00  2.371E-15
HHO 3.979E-01 2.106E-08 3EH00 2.099E-09 3.862E+00  1.295E-03
MVO 3.979E-01 3.137E-08 3E+00 1.616E-07 3.862E+00  8.896E-08
SMA 3.979E-01 6.151E-10 3E+00 1.737E-13 3.862E+00  3.075E-09
SCA 3.982E-01 3.698E-04 3E+00 3.952E-06 3.855E+00  2.427E-03
SOA 3.980E-01 1.492E-04 1.524E+01 1.428E+00 3.61E+00  1.957E-01
WOA 3.979E-01 4.469E-08 3E+00 1.831E-06 3.861E+00  2.304E-03
Aleorith F20 F21 F22
gortthms AVG STD AVG STD AVG STD
CMSRAS 3321 1.108E-15 ~10.1532 6.564E-15 -10.4029 7.054E-16
PSO 3.262 6.046E-02 -8.2976 2.480E+00 -9.7953 1.887E+00
cs 3.321 1.342E-15 -10.1532 7.226E-15 -10.4029 1.475E-15
DA 3.254 7.809E-02 -9.6333 1.542E+00 -8.4666 2.810E+00
GWO -3.259 8.422E-02 -9.6463 1.546E+00 -10.4028 7.220E-05
MFO -3.250 6.596E-02 -7.2246 3.293E+00 7.3223 3.433E+00
HHO 3.166 8.037E-02 -5.5631 1.549E+00 -5.6148 1.609E-+00
MVO 3.270 5.998E-02 -7.9546 2.557E+00 -9.4437 2.216E+00
SMA 3.238 5.541E-02 -10.1532 1.708E-05 -10.4029 2.549E-05
SCA 2.826 4.48E-01 -3.0953 2.707E+00 3.8418 2 349E+00
SOA 2.874 4.038E-01 -4.4579 2.783E+00 3.8012 2.023E+00
WOA 3253 7.923E-02 -9.5042 2.078E+00 -9.8254 1.772E+00
Aleorith F23 F24 F25
gortthms AVG STD AVG STD AVG STD
CMSRAS ~10.5363 2.856E-15 1.349E-31 6.680E-47 1 0.000
PSO 9.9971 1.645E+00 1.349E-31 6.680E-47 1 0.000
cs -10.5364 1.806E-15 1.349E-31 6.68E-47 1 0.000
DA -9.3445 2.469E+00 2.239E-29 1.134E-28 -1 7511E-06
GWO -10.5363 4.729E-05 3.558E-10 6.814E-10 A 3.913E-08
MFO -7.2839 3.824E+00 2.492E-23 5.966E-23 -1 0.000
HHO -5.1282 4.028E-04 1.349E-31 6.680E-47 A1 2331E-07
MVO -9.6429 2.031E+00 3.216E-09 6.001E-09 -8.99E-01 3.051E-01
SMA -10.5363 2.940E-05 1.036E-14 2370E-14 992E-01  2.345Ee-02
SCA 47077 1.607E+00 8.660E-08 1.545E-07 -9.99E-01 5.532E-04
SOA -3.8423 2.510E+00 6.485E-10 2.046E-09 -9.68E-01 3.50E-02
WOA -10.3547 9.870E-01 6.608E-17 2.531E-16 -1 6.226E-09
Alsorith F26 F27
gorithms AVG STD AVG STD
CMSRAS 0.000 0.000 0.000 0.000
PSO 2.247E-18 4203E-18 0.000 0.000
cs 2.990E-17 4.898E-17 0.000 0.000
DA 2361E-01 8.661E-01 2.409E-03 9.614E-03
GWO 0.000 0.000 0.000 0.000
MFO 0.000 0.000 0.000 0.000
HHO 0.000 0.000 0.000 0.000
MVO 4.065E-01 1.771E-01 2.688E-05 2.555E-05
SMA 0.000 0.000 0.000 0.000
SCA 8.566E-70 2.641E-69 0.000 0.000
SOA 0.000 0.000 0.000 0.000
WOA 0.000 0.000 0.000 0.000
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TABLE 22. Comparison results of fixed-dimension multimodal functions with advanced algorithms.

F14 F15 F16
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 0.998 0.000 3.378E-04 1.584E-04 -1.0316 6.775E-16
TAPSO 1.163 E+00 3.767E-01 4.4657E-04 3.001E-04 -1.0316 6.712E-16
MPSO 1.916 E+00 2.160E+00 1.819E-03 4.027E-03 -1.0316 6.712E-16
IPSO 1.163 E+00 3.767E-01 8.065E-04 1.469E-03 -1.0316 6.712E-16
I-GWO 0.998 0.000 3.074E-04 1.255E-10 -1.0316 6.775E-16
AGPSO1 2.116 E+00 1.929E+00 1.221E-04 3.639E-03 -1.0316 6.584E-16
AGPSO2 1.130 E+00 3.436E-01 1.068E-03 3.652E-03 -1.0316 6.712E-16
AGPSO3 1.460 E+00 9.610E-01 3.233E-04 8.675E-05 -1.0316 6.712E-16
GWOCS 4.326 E+00 4.196 E+00 3.808E-04 2.835E-04 -1.0316 1.704E-09
F17 F18 F19
Algorithms
AVG STD AVG STD AVG STD
CMSRAS 3.978E-01 0.000 3E+00 8.49E-16 -3.862E+00 2.710E-15
TAPSO 3.978E-01 0.000 3E+00 1.421E-15 -3.862E+00 2.710E-15
MPSO 3.978E-01 0.000 3E+00 1.314E-15 -3.862E+00 2.682E-15
IPSO 3.978E-01 0.000 3E+00 1.272E-15 -3.862E+00 2.696E-15
I-GWO 3.978E-01 0.000 3E+00 1.862E-15 -3.862E+00 2.710E-15
AGPSOL1 3.978E-01 0.000 3E+00 2.313E-15 -3.862E+00 2.696E-15
AGPSO2 3.978E-01 0.000 3E+00 1.269E-15 -3.862E+00 2.710E-15
AGPSO3 3.978E-01 0.000 3E+00 1.538E-15 -3.862E+00 2.710E-15
GWOCS 3.978E-01 8.906E-08 3E+00 1.929E-06 -3.862E+00 2.038E-06
F20 F21 F22
Algorithms
AVG STD AVG STD AVG STD
CMSRAS -3.321E+00 1.806E-15 -10.1532 5.770E-15 -10.4029 8.079E-16
TAPSO -3.260E+00 6.395E-02 -5.6353 2.964E+00 -9.7180 2.120E+00
MPSO -3.245E+00 6.581E-02 -8.4690 2.422E+00 -9.5239 1.999E+00
IPSO -3.272E+00 6.304E-02 -7.8026 2.795E+00 -9.4757 2.121E+00
I-GWO -3.294E+00 5.114E-02 -9.8367 1.207E+00 -10.4029 3.459E-15
AGPSO1 -3.253E+00 6.059E-02 -9.6479 1.541E+00 -10.4029 1.094E-15
AGPSO2 -3.270E+00 6.015E-02 -8.3869 2.575E+00 -9.2666 2.345E+00
AGPSO3 -3.278E+00 5.827E-02 -8.5553 2.518E+00 -9.8755 1.609E+00
GWOCS -3.321E+00 7.789E-07 -8.9726 2.176E+00 -9.1653 2.281E+00
F23 F24 F25
Algorithms
AVG STD AVG STD AVG STD
CMSRAS -10.5363 2.086E-15 1.349E-31 6.68E-47 -1 0.000
TAPSO -9.7448 2.085E+00 1.349E-31 6.680E-47 -1 0.000
MPSO -10.3561 9.873E-01 1.349E-31 6.680E-47 -1 0.000
IPSO -9.8466 2.133E+00 1.349E-31 6.680E-47 -1 0.000
I-GWO -10.5364 1.979E-15 1.349E-31 6.680E-47 -1 0.000
AGPSO1 -10.2809 1.399E+00 1.349E-31 6.680E-47 -1 0.000
AGPSO2 -10.5364 1.894E-15 1.349E-31 6.680E-47 -1 0.000
AGPSO3 -9.7448 2.085E+00 1.349E-31 6.680E-47 -1 0.000
GWOCS -10.1773 1.366E+00 3.675E-10 6.470E-10 -1 5.148E-08
F26 F27
Algorithms
AVG STD AVG STD
CMSRAS 0.000 0.000 0.000 0.000
TAPSO 7.665E-35 7.651E-35 0.000 0.000
MPSO 4.964E-32 1.523E-31 0.000 0.000
IPSO 4.813E-32 5.717E-32 0.000 0.000
I-GWO 0.000 0.000 0.000 0.000
AGPSO1 1.839E-31 2.588E-31 0.000 0.000
AGPSO2 1.248E-31 1.440E-31 0.000 0.000
AGPSO3 7.126E-48 1.237E-47 0.000 0.000
GWOCS 0.000 0.000 0.000 0.000
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FIGURE 23. The convergence curves of multimodal benchmark functions by traditional algorithms.
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FIGURE 24. The convergence curves of multimodal benchmark functions by advanced algorithms.
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MPSO, IPSO, AGPSO1, AGPSO2 and AGPSO3. For Fg,
CMSRAS is significantly superior to most other algorithms,
but inferior to TAPSO, MPSO, IPSO and AGPSO3. For
F7, CMSRAS is significantly better than most other algo-
rithms, but less than SMA and SOA. For Fg, CMSRAS
is significantly less than MFO. For Fg-F;;, CMSRAS is
not significantly better compared to HHO, SMA, SOA and
GWOCS. For Fj, CMSRAS is not significantly better com-
pared with MPSO, IPSO and AGPSO3. For F3, CMSRAS is
significantly better compared with other competitors, expect
MPSO, IPSO and TAPSO. For Fi4 and F15, CMSRAS is not
significantly superior to CS, HHO, SMA and I-GWO. For
F15, CMSRAS is significantly better compared with other
competitors, expect GWOCS. For F17 and F19, CMSRAS is
significantly superior to other competitors, except CS, PSO,
MFO, I-GWO and GWOCS. For F;g and Fp4, CMSRAS
is not significantly better compared to PSO, CS, TAPSO,
MPSO, IPSO, I-GWO, AGPSO1, AGPSO2 and AGPSO3.
For Fpp, CMSRAS is not significantly superior to DA, MFO
and MVO. For F,;, CMSRAS is not significantly better
compared to CS and I-GWO. CMSRAS is not significantly
superior to PSO, CS and I-GWO on F;; and F>3. CMSRAS is
not significantly superior to PSO, CS MFO, TAPSO, MPSO,
IPSO, AGPSO1, AGPSO2, AGPSO3, I-GWO and GWOCS
on Fp5 and F»7. CMSRAS is significantly better compared
to DA, GWO, MFO, HHO, SMA, MVO, SCA, SOA, WOA
and GWOCS on F,g and Fo9. CMSRAS is not significantly
better compared to HHO, MVO, I-GWO and GWOCS on
F30 and F3;. For Fpg, CMSRAS is significantly better com-
pared to other competitors, except GWO, MFO, HHO, SMA,
WOA, SOA, I-GWO and GWOCS. For F3;, CMSRAS is
significantly better compared to PSO, DA, GWO, MFO,
HHO, MVO, SMA, SCA, WOA, SOA, I-GWO and GWOCS.
Therefore, the statistical results of p-value, h-value and
z-value detected that the solutions of CMSRAS are signifi-
cantly better than those realized by other competitive algo-
rithms in most cases. As it can be seen from in Table 24,
the results show that CMSARS is ranked first compared to
other competitive algorithms for 32 benchmark functions.
Accordingly, CMSRAS has the best performance among
all these competitive algorithms from a statistical point
of view.

F. AVERAGE TIME-CONSUMING ANALYSIS

In the section, for 32 benchmark functions, CMSRAS
algorithm was compared with other 13 competitive algo-
rithms in the average time-consuming experiment men-
tioned above. Under the same lab environment, the average
time-consuming experiment was obtained by running inde-
pendently 30 times for each benchmark function, and the
results of the average time-consuming were shown in Table
25. As can be observed from the data in Table 25, the compu-
tation of CMSRAS took a relatively longer time than SRA.
This may be due to the enlargement of the population and
the addition of some mutation strategy. However, it can be
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FIGURE 25. Simplified model of the crane box girder.

seen from the experimental results that CMSRAS is signif-
icantly better than SRA and some competitive algorithms
in most cases. Therefore, the improved strategies introduced
into SRA are worth it. In addition, CMSRAS can still outper-
form some algorithms while taking less time, such as DA,
SMA, and IGWO. Generally, even if it is relatively time-
consuming, CMSRAS still has better advantages over other
algorithms.

VI. ENNGINEERING STRUCTURE OPTIMIZATION CASES
A. CASE |
Cranes are widely used in industrial and mining enterprises,
ports, construction sites, aerospace, energy construction and
other aspects. As the main load-bearing structure (subject
to lifting loads, self-weight, external load, etc.), a box-
shaped welded structure is generally adopted, and the sim-
plified structure model and the definition and value of design
parameters are described, as shown in Fig. 25 and Table 26,
respectively.

a) Design variable selection and objective function deter-
mination

X1, X2, x3 and x4 are selected as optimization design vari-
ables and written in vector form as follows: X = [x;x2x3x4]% .
In general, the minimum cross section area of the beam is
selected as the optimization objective function, as shown
in (16).

minf (X) = x1x3 + x2x4 (16)

b) Determining constraints

The design of the crane box girder should satisfy the
requirements of strength, stability and stiffness (3S), respec-
tively. Therefore, the constraint conditions can be obtained
from the aspects of 3S and geometric dimension.

(1) Strength constraint

g1 (X) = —

3s [Fl 1+ 7.8 x 1075 (x1x3 4 x2x4)
4

3x1x0x4 + X]2X3
)

——— |~ 140 <0 (17)
3x1x2x3 + X5x4
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TABLE 23. Results of wilcoxon’s rank-sum test on 32 benchmark functions.

CMSRAS Wilcoxon’s F1 F2 F3 F4 F5 F6 F7 F$
Vs. rank sum test
p-value 121E-12  3.02E-11  121E-12  3.00E-11  121E-12  3.01E-11  3.01E-11  2.78E-07
PSO h-value 1 1 1 1 1 1 1 1
z-value -7.104 -6.645 -7.104 -6.646 -7.104 -6.645 -6.645 -5.131
p-value 1.21E-12  3.02E-11  121E-12  3.00E-11 NaN 3.02E-11  3.02-11 7.81E-01
CS h-value 1 1 1 1 (1] 1 1 0
z-value -7.104 -6.645 -7.104 -6.646 NaN -6.645 -6.645 -0.273
p-value 1.21E-12  3.02E-11  121E-12  299E-11  121E-12  3.02E-11  3.02E-11  7.12E-09
DA h-value 1 1 1 1 1 | 1 1
z-value -7.104 -6.645 -7.104 -6.646 -7.104 -6.645 -6.645 -5.788
p-value 1.21E-12  3.01E-11  121E-12  3.00E-11  121E-12  3.02-11  1.36E-07  2.60E-08
GWO h-value 1 1 1 1 1 1 1 1
z-value -7.104E -6.646 -7.104 -6.646 -7.104 -6.645 -5.270 -5.566
p-value 1.21-12 3.02-11  121E-12  3.00E-11  121E-12  235E-05  3.02-11 2.28E-01
MFO h-value 1 1 1 1 1 1 1 0
z-value -7.104 -6.645 -7.104 -6.646 -7.104 4228 -6.645 -1.205
p-value NaN 9.76B-10  8.86E-07  3.00E-11  1.21E-12  3.02E-11  9.88E-03  5.57E-10
Traditional HHO h-value 0 1 1 1 1 1 1 1
algorithms z-value NaN -6.113 4915 -6.646 -7.104 -6.645 2.579 6.202
p-value 1.21E-12  3.02E-11  121E-12  3.00E-11  121E-12  3.02E-11  3.02E-11  3.56E-04
MVO h-value 1 1 1 1 1 1 1 1
z-value -7.104 -6.645 -7.104 -6.646 -7.104 -6.645 -6.645 -3.570
p-value NaN 2.52E-11 NaN 506E-01 121E-12  3.02E-11  3.63E-01  5.56E-10
SMA h-value 0 1 0 0 1 1 0 1
z-value NaN 6.672 NaN 0.664 -7.104 -6.645 0.909 6.202
p-value 1.21E-12  3.01E-11  121E-12  3.00E-11  121E-12  3.02E-11  3.02E-11 1.61E-10
SCA h-value 1 1 1 1 1 1 1 1
z-value -7.104 -6.645 -7.104 -6.646 -7.104 -6.645 -6.645 -6.394
p-value NaN 121E-12  121E-12  3.00B-11  121E-12  3.02E-11  2.64E-01  9.69E-11
SOA h-value 0 1 1 1 1 1 1] 1
z-value NaN 7.104 -7.104 -6.646 -7.104 -6.645 1.116 6.471
p-value 1.65E-11  2.01E-04 1.21E-12  3.00E-11  121E-12  3.02B-11  1.74E-05  1.40Ee-04
WOA h-value 1 1 1 1 1 1 1 1
z-value -6.733 3.718 -7.104 -6.646 -7.104 -6.645 -4.294 3.807
p-value 121E-12  3.02E-11  121E-12  3.00E-11 NaN 3.04E-01 3.02E-11  4.79E-07
TAPSO h-value 1 1 1 1 0 0 1 1
z-value -7.104 -6.645 -7.104 -6.646 NaN 1.027 -6.645 -5.034
p-value 121E-12  3.02E-11  1.21E-12  3.00E-11 NaN 1.95E-01  3.02E-11  2.37E-07
MPSO h-value 1 1 1 1 0 0 1 1
z-value -7.104 -6.645 -7.104 -6.646 NaN -1.293 -6.645 -5.167
p-value 121E-12  3.02E-11  1.21E-12  3.00E-11 NaN 1.95E-01  3.02E-11 1.25E-07
IPSO h-value 1 1 1 1 0 0 1 1
z-value -7.104 -6.645 -7.104 -6.646 NaN -1.293 -6.645 -5.285
p-value 121E-12  3.02E-11  121E-12  3.00E-11  121E-12  3.02B-11  3.02E-11  3.33E-03
I-GWO h-value 1 1 1 1 1 1 1 1
Advanced z-value -7.104 -6.645 -7.104 -6.646 -7.104 -6.645 -6.645 2.935
algorithms p-value 1.21E-12  3.02E-11  1.21E-12  3.00E-11 NaN 2.61E-10  3.02E-11 1.06E-07
AGPSO1 h-value 1 1 1 1 0 1 1 1
z-value -7.104 -6.645 -7.104 -6.646 NaN -6.320 -6.645 5315
p-value 121E-12  3.02E-11  1.21E-12  3.00E-11 NaN 4.40E-10  3.02E-11 1.06E-07
AGPS02 h-value 1 1 1 1 0 1 1 1
z-value -7.104 -6.645 -7.104 -6.646 NaN -6.239 -6.645 5315
p-value 1.21E-12  3.02E-11  1.21E-12  3.00E-11 NaN 1.08E-01  3.02E-11  9.82E-08
AGPSO3 h-value 1 1 1 1 0 0 1 1
z-value -7.104 -6.645 -7.104 -6.646 NaN 1.604 -6.645 -5.329
p-value 1.21E-12  3.02E-11  121E-12  3.00E-11  121E-12  298E-11  8.88E-10  3.14E-02
GWOCS h-value 1 1 1 1 1 1 1 1
z-value -7.104 -6.6457 -7.104 -6.646 -7.104 -6.647 -6.128 2.151
CMSRAS Wilcoxon’s F9 F10 F11 F12 F13 F14 F15 F16
Vs. rank sum test
p-value 121E-12  121E-12  121E-12  3.02E-11  3.02E-11  120E-07 2.44E-10 NaN
PSO h-value 1 1 1 1 1 1 1 0
. z-value -7.104 -7.104 -7.104 -6.645 -6.645 -5.292 -6.330 NaN
Traditional p-value 121E-12  121E-12  121E-12  3.02E-11  3.02E-I1 NaN 2.78E-03 NaN
algorithms
CS h-value 1 1 1 1 1 0 1 0
z-value -7.104 -7.104 -7.104 -6.645 -6.645 NaN 2.990 NaN
DA p-value 121E-12  121E-12  121E-12  3.02E-11  3.02E-11 3.33E-01 3.26E-11  4.57E-12
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TABLE 23. (Continued.) Results of wilcoxon’s rank-sum test on 32 benchmark functions.

h-value 1 1 1 1 1 0 1 1
z-value -7.104 -7.104 -7.104 -6.645 -6.645 -0.966 -6.633 -6.918
p-value 4.19E-02 8.71E-14 NaN 3.02E-11 3.02E-11 7.94E-07 1.44E-05 4.28E-08
GWO h-value 1 1 0 1 1 1 1 1
z-value -2.034 -7.459 NaN -6.645 -6.645 -4.936 -4.337 -5.478
p-value 1.21E-12 1.21E-12 1.20E-12 3.32E-11 6.08E-08 1.23E-05 1.47E-10 NaN
MFO h-value 1 1 1 1 1 1 1 0
z-value -7.104 -7.104 -7.104 -6.631 -5.416 -4.371 -6.407 NaN
p-value NaN NaN NaN 3.02E-11 3.02E-11 NaN 1.62E-08 NaN
HHO h-value 0 0 0 1 1 0 1 0
z-value NaN NaN NaN -6.645 -6.645 NaN -5.647 NaN
p-value 1.21E-12 1.21E-12 1.21E-12 3.02E-11 3.02E-11 NaN 4.93E-11 4.54E-12
MVO h-value 1 1 1 1 1 0 1 1
z-value -7.104 -7.104 -7.104 -6.645 -6.645 NaN -6.572 -6.919
p-value NaN NaN NaN 3.02E-11 3.02E-11 NaN 8.71E-09 NaN
SMA h-value 0 0 0 1 1 0 1 0
z-value NaN NaN NaN -6.645 -6.645 NaN -5.754 NaN
p-value 1.21E-12 1.21E-12 1.21E-12  3.02E-11 3.02E-11 1.15E-12  1.22E-10 1.21E-12
SCA h-value 1 1 1 1 1 1 1 1
z-value -7.104 -7.104 -7.104 -6.645 -6.645 -7.110 -6.436 -7.104
p-value NaN NaN NaN 3.02E-11 3.02E-11 1.61E-11 5.46E-11 1.21E-12
SOA h-value 0 0 0 1 1 1 1 1
z-value NaN NaN NaN -6.645 -6.645 -6.737 -6.557 -7.104
p-value NaN 8.81E-10 1.60E-01 3.02E-11 3.02E-11 5.56E-03 2.21E-10 NaN
WOA h-value 0 1 0 1 1 1 1 0
z-value NaN -6.129 -1.402 -6.645 -6.645 -2.772 -6.345 NaN
p-value 1.21E-12 1.21E-12 1.21E-12 8.77E-02  4.03E+01 3.08E-09 2.21E-04 5.35E-09
TAPSO h-value 1 1 1 1 0 1 1 1
z-value -7.1042 -7.104 -7.104 -1.707 -0.836 -5.927 -3.693 5.835
p-value 121E-12  121E-12  1.19E-12 3.87E+01  3.78E+01  530E-13  9.05E-08  1.16E-13
MPSO h-value 1 1 1 0 0 1 1 1
z-value -7.104 -7.104 -7.105 -0.864 -0.8807 7217 -5.344 7.420
p-value 1.21E-12 1.21E-12  1.20E-12  1.15E+01  1.10E+01  2.66E-07  2.10E-04 5.18E-07
IPSO h-value 1 1 1 0 0 1 1 1
z-value -7.104 -7.104 1.20E-12 0.115 1.596 -5.145 -3.706 5.019
p-value 1.20E-12  4.16E-14  4.19E-02  3.01E-11  1.09E-10 NaN 2.15E-02 NaN
I-GWO h-value 1 1 1 1 1 0 1 0
Advanced z-value -7.104 -7.555 -2.034 -6.645 -6.453 NaN 2.297 NaN
algorithms p-value 1.21E-12 1.21E-12 1.19E-12  898E-11  2.00E-08  2.52E-12  7.96E-07 1.16E-13
AGPSO1 h-value 1 1 1 1 1 1 1 1
z-value -7.104 -7.104 -7.106 -6.483 -5.611 -7.001 -4.936 7.420
p-value 121E-12  121E-12  1.19B-12 147E-07 428E-04 8.64E-14 497E-07  1.68E-14
AGPSO2 h-value 1 1 1 1 1 1 1 1
z-value -7.104 -7.104 -7.106 -5.255 -3.521 -7.460 -5.027 7.672
p-value 1.21E-12 1.20E-12  1.20E-12  1.76E-01  4.28E-04  7.04E-12  6.18E-06 7.15E-13
AGPSO3 h-value 1 1 1 0 1 1 1 1
z-value -7.104 -7.104 -7.104 0.176 -3.521 -6.856 -4.520 7.176
p-value 3.33E-01 2.53E-13  8.15E-02 3.00E-11  4.28E-04  7.87E-07 2.43E-01 NaN
GWOCS h-value 0 1 0 1 1 1 0 0
z-value -0.966 -7.317 -1.741 -6.646 -3.521 -4.938 1.166 NaN
CMszS r::;(lcs‘:l’:l"tss . F17 FI8 F19 F20 F21 F22 F23 F24
p-value NaN NaN NaN 527E-05 297E-04 8.15E-02  8.14E-02 NaN
PSO h-value 0 (1} 0 1 1 0 0 0
z-value NaN NaN NaN 4.043 -3.617 -1.741 -1.742 NaN
p-value NaN NaN NaN 1.16E-13 NaN NaN NaN NaN
CS h-value 0 [1} [1} 1 0 0 [1} 0
. z-value NaN NaN NaN 7.420 NaN NaN NaN NaN
Traditional p-value 121E-12  121E-12  121E-12  832E-01 121E-12 121E-12 121E-12  1.60E-01
algorithms
DA h-value 1 1 1 0 1 1 1 0
z-value -7.104 -7.104 -7.104 0.211 -7.104 -7.104 -7.104 -1.402
p-value 1.20E-12 1.21E-12 1.21E-12 2.61E-01 1.21E-12 1.21E-12 1.21E-12 1.21E-12
GWO h-value 1 1 1 0 1 1 1 1
z-value -7.104 -7.104 -7.104 1.122 -7.104 -7.104 -7.104 -7.104
MFO p-value NaN NaN NaN 1.06E-02 2.87E-05 2.88E-05 6.55E-05 1.21E-12
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TABLE 23. (Continued.) Results of wilcoxon’s rank-sum test on 32 benchmark functions.

h-value 0 0 [1} 1 1 1 1 1
z-value NaN NaN NaN 2.554 -4.182 -4.182 -3.992 -7.104
p-value 6.605E-04  1.20E-12 1.21E-12 1.09E-04 1.21E-12 1.21E-12 1.21E-12 NaN
HHO h-value 1 1 1 1 1 1 1 0
z-value -3.4057 -7.104 -7.104 -3.869 -7.104 -7.104 -7.104 NaN
p-value 4.55E-12 1.21E-12 1.21E-12  5.04E-01 1.21E-12 1.21E-12 1.21E-12 1.21E-12
MVO h-value 1 1 1 0 1 1 1 1
z-value -6.918 -7.104 -7.104 0.667 -7.104 -7.104 -7.104 -7.104
p-value 2.74E-03 1.17E-12 1.21E-12  3.08E-03 1.21E-12 1.21E-12 1.21E-12 1.21E-12
SMA h-value 1 1 1 1 1 1 1 1
z-value -2.994 -7.108 -7.104 -2.958 -7.104 -7.104 -7.104 -7.104
p-value 1.21E-12 1.21E-12 1.21E-12 1.72E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
SCA h-value 1 1 1 1 1 1 1 1
z-value -7.104 -7.104 -7.104 -7.055 -7.104 -7.104 -7.104 -7.104
p-value 1.21E-12 1.21E-12 1.21E-12 1.72E-12 1.21E-12 1.21E-12 1.21E-12 1.20E-12
SOA h-value 1 1 1 1 1 1 1 1
z-value -7.104 -7.104 -7.104 -7.055 -7.104 -7.104 -7.104 -7.104
p-value 1.30E-07 1.21E-12 1.21E-12  8.32E-01 1.21E-12 1.21E-12 1.21E-12 1.21E-12
WOA h-value 1 1 1 0 1 1 1 1
z-value -5.278 -7.104 -7.104 0.2118 -7.104 -7.104 -7.104 -7.104
p-value 5.35E-09 NaN 5.35E-09  2.92E-08 5.10E-11  8.14E-02  1.06E-04 NaN
TAPSO h-value 1 0 1 1 1 0 1 0
z-value 5.835 NaN 5.835 5.545 -6.567 -1.742 3.874 NaN
p-value 1.16E-13 NaN 1.16E-13  3.11E-02 1.56E-12  2.14E-02  7.03E-12 NaN
MPSO h-value 1 0 1 1 1 1 1 0
z-value 7.420 NaN 7.420 2.155 -7.068 -2.300 6.856 NaN
p-value 5.18E-07 NaN 5.18E-07  3.43E-09 4.93E-10  2.15E-02 1.74E-04 NaN
IPSO h-value 1 0 1 1 1 1 1 0
z-value 5.019 NaN 5.019 5.909 -6.221 -2.298 3.753 NaN
p-value NaN NaN NaN 147E-09 1.61E-01  3.33E-01 NaN NaN
I-GWO h-value 0 0 0 1 0 0 0 0
Advanced z-value NaN NaN NaN 6.047 -1.402 -0.966 NaN NaN
algorithms p-value 1.16E-13 NaN 1.16E-13  5.02E-06  3.59E-13 NaN 7.03E-12 NaN
AGPSOL1 h-value 1 [1} 1 1 1 (1} 1 0
z-value 7.420 NaN 7.420 4.563 -7.269 NaN 6.856 NaN
p-value 1.68E-14 NaN 1.68E-14 1.48E-11 3.61E-13 1.10E-02 1.68E-14 NaN
AGPSO2 h-value 1 0 1 1 1 1 1 0
z-value 7.6727 NaN 7.672 6.749 -7.269 -2.542 7.672 NaN
p-value 7.15E-13 NaN 7.15E-13  6.12E-12  6.45E-12  8.14E-02  5.74E-07 NaN
AGPSO3 h-value 1 0 1 1 1 0 1 0
z-value 7.176 NaN 7.176 6.876 -6.869 -1.742 4.999 NaN
p-value NaN NaN NaN 1.68E-14  5.51E-03 1.21E-12  1.61E-01 1.21E-12
GWOCS h-value 0 0 0 1 1 1 0 1
z-value NaN NaN NaN 7.672 -2.775 -7.104 -1.402 -7.104
CMSRAS Wilcoxon’s F25 F26 F27 F28 F29 F30 F31 F32
Vs. rank sum test
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 1.68E-14 1.21E-12
PSO h-value 0 1 [1} 0 0 1 1 1
z-value NaN -7.104 NaN NaN NaN -7.104 -7.672 -7.104
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 1.68E-14 NaN
CS h-value 0 1 [1} 0 0 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.104 -7.672 NaN
p-value 6.242E-10  1.10E-02 1.10E-02 1.21E-12 1.21E-12 1.21E-12 1.68E-14 1.13E-12
DA h-value 1 1 1 1 1 1 1 1
z-value -6.184 -2.541 -2.541 -7.104 -7.104 -7.104 -7.672 -7.113
p-value 1.20E-12 NaN NaN 1.21E-12 1.21E-12 NaN 1.68E-14 1.21E-12
Traditional GWO h-value 1 0 0 1 1 0 1 1
algorithms z-value -7.1043 NaN NaN -7.1041 -7.1041 NaN -7.6726 -7.1041
p-value NaN NaN NaN 1.21E-12 1.21E-12 1.21E-12 1.68E-14 1.21E-12
MFO h-value 0 0 0 1 1 1 1 1
z-value NaN NaN NaN -7.104 -7.1041 -7.104 -7.672 -7.104
p-value 1.64E-11 NaN NaN 1.65E-11 1.21E-12 NaN NaN 1.21E-12
HHO h-value 1 0 0 1 1 0 0 1
z-value -6.734 NaN NaN -6.733 -7.104 NaN NaN -7.104
p-value 1.20E-12 1.21E-12 1.21E-12 1.20E-12 1.21E-12 1.21E-12 1.68E-14 1.21E-12
MVO h-value 1 1 1 1 1 1 1 1
z-value -7.1044 -7.104 -7.1041 -7.1044 -7.1041 -7.1041 -7.672 -7.1040
SMA p-value 6.55E-05 NaN NaN 1.21E-12 1.21E-12 NaN NaN 1.21E-12
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TABLE 23. (Continued.) Results of wilcoxon’s rank-sum test on 32 benchmark functions.

h-value 1 0 [1} 1 1 0 0 1
z-value -3.992 NaN NaN -7.104 -7.104 NaN NaN -7.104
p-value 1.21E-12 1.21E-12 NaN 1.21E-12 1.21E-12  1.21E-12  1.68E-14 1.21E12
SCA h-value 1 1 0 1 1 1 1 1
z-value -7.104 -7.104 NaN -7.104 -7.104 -7.104 -7.672 -7.104
p-value 1.65E-11 NaN NaN 1.21E-12 1.21E-12 NaN 4.57E-12 1.21E-12
SOA h-value 1 0 0 1 1 0 1 1
z-value -6.733 NaN NaN -7.104 -7.104 NaN -6.918 -7.104
p-value 1.25E-07 NaN NaN 1.21E-12  1.21E-12 NaN 3.33E-01 1.21E-12
WOA h-value 1 0 0 1 1 0 0 1
z-value -5.284 NaN NaN -7.104 -7.104 NaN -0.9666 -7.104
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 5.35E-09 NaN
TAPSO h-value 0 1 0 0 0 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.104 5.835 NaN
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 1.16E-13 NaN
MPSO h-value (1} 1 0 0 (1} 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.104 7.420 NaN
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 5.18E-07 NaN
IPSO h-value 0 1 [1} 0 0 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.104 5.019 NaN
p-value NaN NaN NaN NaN NaN NaN NaN 1.21E-12
I-GWO h-value (1} 0 (1} 0 (1} 0 0 1
z-value NaN NaN NaN NaN NaN NaN NaN -7.104
Advanced
algorithms p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 1.16E-13 NaN
AGPSO1 h-value 0 1 0 0 0 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.1041 7.420 NaN
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 1.68E-14 NaN
AGPSO2 h-value 0 1 (1} 0 (1} 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.104 7.672 NaN
p-value NaN 1.21E-12 NaN NaN NaN 1.21E-12 7.15E-13 NaN
AGPSO3 h-value (1} 1 0 0 0 1 1 0
z-value NaN -7.104 NaN NaN NaN -7.104 7.176 NaN
p-value NaN NaN NaN 1.21E-12 1.21E-12 NaN NaN 1.21E-12
GWOCS h-value (1} 0 (1} 1 1 0 (1} 1
z-value NaN NaN NaN -7.104 -7.104 NaN NaN -7.104
TABLE 24. Results of friedman test of 32 benchmark functions.
Algorithms CMSRAS PSO CS DA GWO MFO HHO MVO SMA SCA
Avg. 4.45 11.09 7.86 17.16 11.50 13.56 8.92 15.25 7.36 16.11
Rank 1 13 4 19 14 15 6 17 3 18
Algorithms SOA WOA TAPSO  MPSO IPSO IGWO AGPSOl AGPSO2 AGPSO3 GWOCS
Avg. 13.59 10.95 8.92 9.81 9.02 6.19 9.69 9.48 8.45 10.63
Rank 16 12 6 10 7 2 9 8 5 11
(2) Stiffness constraint shown in (19) and (20).
The mid-span deflection of the main beam shall be less
than its allowable deflection, as shown in (18). g X) = 2 _ 60 <0 (19)
X.
x
F$3 g4 (X)=——-160<0 (20)
82 (X) = -— <0 (13) x3

1.68 x 108 (3x2xyxs + x3x3) 700

(3) Stability constraint

In order to ensure the local stability of the flange plate
of the main girder without the need for stiffening plate and
reduce the manufacturing cost and avoid the stress concentra-
tion caused by too many welds during the processing of the
main girder, a longitudinal stiffened plate should be added to
the web. Therefore, local stability conditions are satisfied as
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(4) Geometric constraint

In order to reduce the complexity of the welding process,
the thickness of the plate should be less than 5 mm. Therefore,
the geometric size should meet the geometric constraints,
as shown in (21) and (22).

g5(X)=5-x3<0 @21)
g6(X)=5-x4<0 (22)
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TABLE 25. The average time-consumingof algorithms on 32 benchmark functions.

1D CMSRAS SRA PSO CS DA GWO MFO HHO MVO SMA WOA IPSO IGWO
F1 1.902 0.0369  0.295 1.24 81.864 0.63 1.924 0.599 0.778 3.872 0.363 0.323 3.151
F2 1.939 0.037 0.307 1.267  90.076 0.56 1.947 0.479 0.752 3.868 0.387 0.345 3.118
F3 3.13 0.0559 0.89 2.57 105.01 1.181 2.545 2.121 1.344 4.604 1.067 0.937 4.441
F4 1.913 0.0369  0.304 1.246  85.747  0.669 1.945 0.559 0.808 3.92 0.381 0.359 3.092
F5 1.953 0.0329 0312 1.39 105.35  0.622 1.92 0.646 0.681 3.949 0.356 0.338 3.008
F6 1.94 0.0379  0.302 1.24 80.469  0.651 1.905 0.649 0.778 3.95 0.374 0.332 3.054
F7 3.109 0.049 0.619 1.978  81.574  0.873 2.267 1.324 1.111 4.295 0.689 0.658 3.996
F8 2.441 0.0439  0.396 1.577 104.74  0.699 2.021 0.89 0.706 4.254 0.477 0.413 3.326
F9 2.047 0.036 0.36 1.379  89.061 0.687 1.982 0.738 0.848 3.883 0.377 0.41 3.173
F10 2.037 0.039 0.359 1.418  80.562  0.621 1.99 0.787 0.883 3.976 0.39 0.388 3.178
F11 2.175 0.041 0.404 1.438  84.422  0.678 2.027 0.893 0.926 4.077 0.453 0.425 3.297
F12 4.116 0.076 1.277 3.26 80.703 1.544 2.956 3.238 1.916 5.524 1.439 1.391 5.742
F13 4.087 0.0739 1.261 3.259  80.289 1.553 2.885 3.016 1.749 4.962 1.349 1.293 5.26
F14 4.284 0.0889 1.948 4.292  45.031 1.935 2.151 4.928 2.186 2.976 2.176 1.948 6.172
F15 1.023 0.025 0.195 1.007  76.443  0.276 0.559 0.664 0.458 1.52 0.34 0.231 2.754
F16 0.802 0.024 0.17 0903 43375 0216 0.429 0.583 0.381 1.257 0.302 0.196 2.424
F17 0.872 0.0229  0.139 0.792  47.187  0.195 0.366 0.529 0.399 1.25 0.289 0.182 2.414
F18 0.781 0.022 0.144 0.791 43492  0.183 0.379 0.501 0.359 1.224 0.277 0.157 2.363
F19 0.935 0.028 0.205 0932  51.043  0.248 0.492 0.655 0.413 1.399 0.338 0.242 2.565
F20 1.056 0.0289  0.226 0.995 74.03 0.291 0.654 0.661 0.427 1.649 0.341 0.257 2.653
F21 1.457 0.0333 0307 1.182 59.16 0.359 0.667 0.886 0.537 1.757 0.448 0.319 3.136
F22 1.55 0.03 0.361 1.271 57379  0.405 0.702 1.026 0.584 1.794 0.504 0.384 3.291
F23 1.62 0.034 0.419 1.415 55.009  0.475 0.777 1.184 0.645 1.858 0.576 0.454 3.463
F24 0.852 0.023 0.147 0.801 44.794  0.192 0.355 0.515 0.366 1.211 0.278 0.173 2.405
F25 0.924 0.025 0.145 0.781 45.347 0.19 0.36 0.52 0.364 1.621 0.274 0.191 2.556
F26 0.842 0.023 0.163 0.815  41.862  0.207 0.374 0.515 0.388 1.235 0.309 0.181 2.611
F27 0.888 0.024 0.149 0.781 12969  0.187 0.342 0.519 0.375 1.194 0.282 0.182 2.436
F28 0.799 0.024 0.151 0.799 47232  0.197 0.389 0.538 0.369 1.231 0.284 0.191 2.415
F29 0.76 0.021 0.143 0.774  46.649  0.186 0.349 0.524 0.364 1.203 0.269 0.182 2.36
F30 0.786 0.024 0.139 0.774  45.734  0.193 0.352 0.483 0.352 1.208 0.284 0.174 2.647
F31 0.747 0.024 0.137 0.776 45943  0.187 0.359 0.504 0.355 1.219 0.277 0.184 2.436
F32 0.792 0.024 0.152 0.789  76.308  0.194 0.371 0.571 0.357 1.208 0.281 0.184 2413
TABLE 26. Design parameters of the crane box girder. nan v : ! ! ' ! !
Parameters Definition Value range 6080 1k
£ Wheel pressure on the crane 12x10°N o 6060 -
box girder ]
£ uniform load on the crane box Lax10°N E:ﬁ{).u)
girder g
N Span of the crane box girder 10.5m 2 020
X Height of the crane box girder 760mm 5
X2 Width of the crane box girder 340mm é 6000 ¥
X3 Thickness of the Web plate 6mm =
X4 Thickness of the flange plate 10mm é 5980 4&&
;ﬁ 5960 't:‘
where 700 mm< x; < 800 mm, 350 mm< x; < 400 mm, £ - f*#_
5 mm< x3 <10 mm, 5 mm< x4 <10 mm. CMSRAS x%h
algorithm code is compiled by the MATLAB R2019a, and SR b
set the population number as 10, the number of iterations as i ... ; e
0 20 40 60 80 100 120 140 160 180 200

500, and independently calculation times as 20, respectively.
The statistical optimization results of the crane box girder are
obtained, as shown in Table 27. The results show that the opti-
mal cross-section area, average cross-section area and worst
cross-section area of the crane box girder is 5903.30929 mm?,
5903.3094 mm?, 5903.3435 mm?, respectively. In addition,
from the standard deviation and the average iteration time,
it shows that the CMSRAS algorithm can efficiently and
stably obtain the reasonable optimal design parameters of the
crane box girder.

Compared with other methods in literatures, the results
of before and after optimization is described as shown
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FIGURE 26. Optimal convergence curve of the crane box girder.

in Table 28, and optimal convergence curve of the crane
box girder is shown in Fig. 26. These results indicate that
CMSRAS algorithm can obtain the best solutions in this engi-
neering problem, reflecting the applicability of CMSRAS to
engineering problems.

B. CASE I
The case Il is an optimization design problem for a cylindrical
pressure vessel with mixed variables (discrete and continuous
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TABLE 27. Statistical optimization results of the crane box girder.

Best value Mean value Worst value Standard deviation Number of lteration Average time
mirrors number (s)
5903.30929 5903.3094 5903.3435 0.0062 10 500 0.088
TABLE 28. Comparison and analysis of the best solutions with other references.
Value of design variable (unit: mm) Value of
Name objective
Xy X2 X3 X4 function f{X)
(unit: mm?)
Before
S 760 340 6 10 7960
optimization
CMSRAS 772.3285 350 5.000 5.8333 5903.30929
Error -1.62% -2.94% 16.67% 41.67% 25.84%
CGA [69] 799.0784  350.2652 5.021 5.8796 6071.6127
Error -5.14% -3.02% 1.63% 41.20% 23.72%
GA-AN2 [70] 791.968 320.440 5.000 6.627 6113.396
Error -4.21% -5.75% 16.67% 33.73% 23.20%
Normal way [71] 790 310 5.0 8 6430
Error -3.95% -8.82% 16.67% 20% 19.22%
6400
y 02 0 6300
! R R 6200
E’ 6100
:‘,:;ﬁooo
E
b
| / 2 5900

FIGURE 27. Simplified model of cylindrical pressure vessel.

variables), The simplified model of cylindrical pressure ves-
sel is shown in Fig. 27 and Table 29, respectively. It is
made of rolled steel plate to form a cylinder. Both ends of
the cylinder are sealed by welding two forged hemispherical
heads. The design requirements for cylindrical pressure ves-
sels with operating pressure of 3000 psi and minimum volume
of 750 ft> must be in accordance with ASME specifications
for boilers and pressure vessels.

The optimization design goal is to minimize the manu-
facturing cost of cylindrical pressure vessels. The objective
function and relevant constraints are determined in Ref. [72].
The objective function of the optimal design of cylindrical
pressure vessels is shown in (23) and the constraints are
shown in (24) ~ (27).

minf (11, 2, R, ) = 0.6224t,Rl + 1.77816,R?

+3.1661121 +19.8413R  (23)
S.t.
g1 =—11+0.0193R <0 (24)
g2 = —12 + 0.00954R < 0 (25)
g3 = —7R% — grrR3 +1296x10°<0  (26)
g4 =1-240<0 (27)
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FIGURE 28. Optimal convergence curve of cylindrical pressure vessel.

TABLE 29. Definition and value range of design parameters.

Parameters Definition Value range (unit: mm)
5 Thlcknessshcglspherlcal 1%0.0625<1,<99x0.0625
t Thickness of ball head 1x0.0625<t,<99x0.0625
R Radius of spherical 10<R<200
shell
/ Length of spherical 10</<240
shell

Note: t;and #, can only take discrete values which are integer multiples

0f 0.0625 in, respectively; R and / are continuous variables, respectively.

CMSRAS algorithm code is compiled by the MATLAB
R2019a, and set the population number as 50, the number of
iterations as 1000, and independently calculation times as 20,
respectively. The statistical analysis of optimization results
is shown in Table 30 and the iterative convergence curve
of the objective function is shown in Fig. 28. Comparison
and analysis of the best solutions with other references is
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TABLE 30. Statistical results of the MSRAS optimization runs executed for cylindrical pressure vessel.

Best value Mean value Worst value Standard deviation Number of Iteration Average time (s)
mirrors number
5671.48635 5792.2 6097.82401 124.5258 50 1000 1.93266897
TABLE 31. Comparison and analysis of the best solutions with other references.
Methods 4 t R 1 Best value Mean value Worst value Star}dgrd Iteration
deviation number

Ref.[73]  0.8125 0.4375 42.09844611 176.63658942 6059.71427196  6090.52614259  6064.33605261 11.28785324 50000
Ref. [74] 0.8125 0.4375 40.3239 200.0000 6288.7445 - - - 900000
Ref. [75] 0.8125 0.4375 41.9768 182.2845 6171.0 - - - 20000
Ref. [76] 0.8125 0.4375 42.09754674 176.64838674 6059.83905683 6823.60245024 6149.72760669 210.77 20000
Pvrf(ffl?t 0.8125 04375  42.09844147 176.777242 5671.486345 5792.2 6097.82401 124.5258 1000

shown in Table 31. The results show that the best solution
of CMSRAS algorithm is better than other references and
CMSRAS algorithm has high efficiency and stability to solve
the optimization problem of cylindrical pressure vessel.

Therefore, through the above two cases, the results show
that the CMSRAS algorithm can better deal with the continu-
ous and discrete nonlinear constrained optimization problems
of complex structures. It is an efficient and stable swarm intel-
ligence optimization algorithm, and has a broad application
prospects in the optimization design of complex mechanical
structures.

VIl. CONCLUSION

In this paper, in order to improve the performance of basic
SRA algorithm, a chaotic multi-specular reflection optimiza-
tion algorithm considering shared nodes (CMSRAS) is pro-
posed on the combination of population strategy with shared
nodes, improved Tent chaos strategy and Gaussian mutation
strategy.

Initially, the influence rule and sensitivity analysis of the
performance of CMSRAS algorithm are obtained by the
combination of the Sobol’s method and RSM method. These
results indicated that ¢y, D and n are more sensitive to the
performance of CMSRAS algorithm. In addition, to compre-
hensively evaluate the performance of CMSRAS algorithm,
the qualitative analysis of CMSRAS was implemented. Then,
32 benchmark functions were used to evaluate the perfor-
mance of CMSRAS algorithm, and Wilcoxon sign-rank test
and Freidman test were applied to estimate the effectiveness
of CMSRAS algorithm more scientifically and reasonably.
The experimental results indicate that CMSRAS can main-
tain a superior balance between exploitation and exploration.
From the statistical analysis results, CMSRAS is superior to
other optimization algorithms. Two mechanical constrained
engineering problems were applied to demonstrate the abil-
ity to solve real-world problems. The results show that the
CMSRAS algorithm can effectively solve real-world opti-
mization problems.
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The proposed CMSRAS algorithm can have better perfor-
mance attributed to the following viewpoints:

(a) The sharing mechanism was introduced into population
strategy to enrich the population diversity and improve the
searching efficiency.

(b) The search mechanism can be made more stable by
introducing shared nodes into the mirror reflection ring.

(c) Both the improved Tent chaos strategy and Gaussian
mutation strategy can alleviate the stagnation problems of the
basic SRA to improve the performance of basic SRA.

In future works, on the one hand, CMSRAS algo-
rithm can be extended to multi-objective version to solve
multi-objective optimization problems. On the other hand,
it also can hybridize with other intelligent optimization
algorithms.
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