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ABSTRACT In this paper, an 8-element Ultra-wideband Multiple-Input-Multiple-Output (UWB-MIMO)
antenna system is proposed. This MIMO system has novel miniaturized antenna elements that are evolved
from a conventional monopole patch antenna. These antennas incorporate various impedance matching
features including but are not limited to smoothly tapered fed lines, split and truncated ground configuration,
semi-circles arches, and inverted p-shaped slots. The antenna pairs are arranged in the cuboidal form to
achieve a 3D-arrangement whereas customized decoupling structures achieve the desired isolation levels for
three configurations including side-by-side, orthogonal, and across. These three distinct isolationmechanism
offers isolation ranges from 20–30 dB for the proposed configurations. More importantly, a diamond eye
structure (DES) as a parasitic element is also designed and optimized to improve the impedance matching
owing to the lossy nature of isolation structures. The proposed antenna system has compact dimensions
of 26.9 × 26 × 26.9 mm3 and its investigated MIMO performance proves its suitability for communication
devices operating in the whole UWB spectrum of 3.1–10.6 GHz.

INDEX TERMS Frequency selective surfaces (FSS), multiple-input-multiple-output (MIMO), mutual
coupling, ultra-wideband (UWB) antennas.

I. INTRODUCTION
Wideband wireless technologies are imminent to catch up
with the demands of current and future communication
requirements. Acknowledging the fact, the Federal Commu-
nication Commission (FCC) has allowed the usage of an
unlicensed spectrum of more than 7 GHz for UltraWide-band
(UWB) applications. This band ranges from 3.1 GHz to
10.6 GHz [1]. In order to protect the existing frequency
bands in this range, a power spectral density restriction
of 41 dBm/MHz has been imposed. This UWB spectrum has
gained huge attraction for its potential applications in remote
sensing, radars, geo-location, medical imaging, and wireless
communications [2], [3].

Although the bandwidth available is very large, the gigabit
data rate is still very challenging to achieve owing to the
limitation on power spectral density. Multiple Input Multiple
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Output (MIMO) systems are another exceptional technology
that uses multiple antenna elements on both receiving and
transmitting ends to enhance the data rate by exploiting the
multipath characteristics of a channel [4].

MIMO and UWB technology together have shown some
promising results for short-range high-speed communica-
tions like in Wireless Personal Area Network (WPAN) [5].
The diversity characteristics of UWB-MIMO technology
have been investigated meticulously in the last decade by
reporting various designs on spatial, pattern, and polarization
diversity. Themain challenge associatedwith spatial diversity
techniques is the footprint of the antenna element since the
radiating elements are physically separated to exploit multi-
path propagation hence compactness remains a problem [6].

In a recent research work reported in [7], a pair of eye-
shaped monopole planar antennas with a T-shaped decou-
pling structure in the ground plane is proposed. The reported
design achieves isolation of 20 dB with overall dimensions
of 18 × 36 mm2. In another study, a pair of circular shaped
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monopole antennas are presented [8]. The design achieves its
decoupling through a Y shape stub on the rear side along with
multi-section slits in the feeding lines. The design measuring
25 × 32 mm2 offers a mutual coupling of less than 20 dB
in the whole UWB band. Similarly, an orthogonally placed
four-element UWB MIMO antenna is presented in [9]. The
design incorporates a staircase-shaped decoupling mecha-
nism along with multiple slits and slots to improve the iso-
lation up to 22 dB with an overall size of 39 × 39 mm2.
A two-element planar monopole UWB MIMO antenna sys-
tem has been proposed in [10] The design has sinusoidal
slots and rectangular slits in the ground plane to achieve
the desired isolation. The design is 30 × 50.5 mm2 in size
with an isolation level of above 20 dB in the whole band.
In [11], a quad-port planar circular monopole antenna hav-
ing rectangular shaped parasitic elements is placed orthogo-
nally with an elliptical slotted square ground. This reported
design achieves 20 dB isolation with much larger dimen-
sions of 94.2 × 94.2 mm2. In another article, a two-port
semicircular monopole radiator with a fence-type decou-
pling structure has been reported in [12]. The decoupling
structure contains 16 slits and an L-shaped parasitic struc-
ture introduced in the ground plane. The design offers
isolation of 20 dB in the whole band with dimensions
of 50 × 35 mm2. A dual-port UWB-MIMO Vivaldi antenna
is reported in [13]. The reported design comprises four Split-
Ring Resonators (SRRs) and a T-shaped slot etches in the
ground plane to achieve limited isolation of 16 dB whilst
having dimensions of 26 × 26 mm2. In [14], a planar
quad element circular polarized UWB antenna system has
been proposed with a wide axial bandwidth. The decou-
pling is achieved by introducing protruding hexagonal stubs
in the ground plane. The design provides 18 dB isolation
with the dimensions of 45 × 45 mm2. Likewise, four-port
semi-elliptical self-complementary monopole radiators with
modified grounds are reported in [15]. This design com-
prises L-shape slits and a Complementary Split Ring Res-
onator (CSRR) in the antenna radiator to attain band notching
and isolation of 16 dB with comparatively larger dimensions
of 63 × 63 mm2.
Most of the literature available on UWBMIMO comprises

planar designs. These designs are helpful in consumer elec-
tronics at receiving ends, however, in other scenarios where
an off-device antenna mounting is possible it is best to use 3D
antennas which can radiate in all directions hence ensuring
best connectivity and highest data rates by maximum utiliza-
tion of multipath effect in rich scattering indoor or outdoor
environments. In this regards a few research papers have
been proposed like in [16] a dual-port 3D MIMO antenna
consisting of rectangular patches with an inverted U shape
and an F shape decoupling elements are presented. The design
provides isolation of 20 dB and a size of 40 × 36 mm2.
In [17], a dual-port tapered rectangular antenna with the mod-
ified ground is presented. This design makes the 3D struc-
ture by placing antennas in a side-by-side and back-to-back
arrangement. Four C-shaped strips and three rectangular

vertical stubs are introduced in the ground to improve iso-
lation up to 20 dB with a size of 40 × 37.5 mm2. Another
dual-port 3D MIMO antenna having improved rectangular
radiators are reported in [18]. The design comprises grid-like
interdigital FSS structures with the modified ground to pro-
vide better isolation. The design consisted of a T-shaped
slot etched from the radiator that improved impedance
matching in both orthogonal and back-to-back arrangements
and achieved the isolation of 20 dB with the dimensions
of 40 × 35 mm2.
In this paper, an eight-element non-planar UWB-MIMO

antenna system is proposed. The antenna elements are
mounted on a cubic polystyrene block and each of the four
sides consists of an antenna pair having feeding ports in the
opposite directions. Owing to 3D composition, the elements
naturally develop high mutual coupling among side-by-side,
orthogonal, and back-to-back or across elements. A decou-
pling structure having meander lines and spiral-shaped FSS
has been proposed to minimize the mutual coupling. The
decoupling mechanism offers more than 20 dB isolation over
the whole band of UWB in all configurations. All MIMO
performance parameters have been investigated and are found
to be within acceptable limits.

The rest of the paper is organized as follows. In Section II,
the geometrical configuration of the proposed antenna sys-
tem, decoupling mechanism, and parasitic structure is dis-
cussed. Simulated and measured results including return loss,
isolation, surface current distribution, radiation characteris-
tics, and MIMO performance parameters are presented in
Section III. A detailed discussion and comparison with the
existing literature with the proposed system is presented in
Section IV. Finally, Section V concludes the paper.

II. GEOMETRICAL CONFIGURATION
A. UWB MIMO ANTENNA CONFIGURATION
The proposed antenna pair is designed on a low cost 1.6 mm
thick FR-4 substrate having dimensions of 26× 26mm2. The
employed laminate has a relative permittivity εr = 4.4 and
dielectric loss tangent tanδ = 0.02. This antenna design
comprises step-by-step evolution from circular monopole
antennas to an optimized design incorporating Defected
Ground Structures (DGS). The design evolution is summa-
rized in 5 steps as shown in Fig. 1.

The MIMO geometry is evolved from a conventional cir-
cular monopole patch antenna with a square ground plane
and rectangular feed line. These monopoles have a resonant
response at 8 GHz with very limited bandwidth. The antenna
bandwidth is improved by employing various bandwidth
enhancement mechanisms in the following steps.

In the second step, the feed lines and radiators are modified
by reshaping them, feed lines are made tapered at the feeding
edge and the circular radiator is transformed into the mickey
mouse shape geometry. This modification is necessary to
improve the impedance matching at lower frequency bands
which are caused by the larger physical area of the radiator.
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FIGURE 1. Step by step antenna configuration from step 1-5: (a)-(e) and antenna variations from step1-5 (f)S11 and (g) S22.

In follow-up step 3, the radiators are further modified
by etching semi-circles along their edges to introduce
current perturbation. The ground plane is also cham-
fered on the top edges to enhance impedance bandwidth.
These modifications further improve the performance at a
lower frequency band. The feeding line is made zigzag
to address the matching issues at the higher frequency
spectrum.

The radiators offer optimummatching for lower and higher
bands however the middle band around 7 GHz needs further
improvement. Therefore an inverted P shape slots are intro-
duced to the radiators near the feeding edge and triangles are
added on top edges of the ground plane. This improves the
impedance in the middle frequency band.

In the final variation, the ground plane is modified by
further perturbing the current path by introducing various
defects along the edges and also the radiator’s sharp edges are
smoothened to achieve better current flow over the antenna
as shown in Fig 2 (e). All these changes ensemble help in
achieving the desired impedance matching over the whole
UWB band. The scattering parameters of these variations are
shown in Fig 2(f) and (g).

B. DECOUPLING STRUCTURE CONFIGURATION
The design develops coupling in three sensitive areas, first
one is the pair of antenna arranged side-by-side on a sin-
gle substrate. There is a strong mutual coupling between
these antennas and to suppress it, a vertical decoupling
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FIGURE 2. Compact antenna: (a) non SGP; (b) SGP and (c) fabricated view.

transmission line resonant structure is introduced. Initially,
it was designed by employing a microstrip line calculated at
middle frequency i.e. 6.5 GHzwith characteristics impedance
Z0 =50� [19]. The initial approximated length and width
l1 × l4 are found to be (12.6× 2) mm× 3.1 mm respectively.
Region l2 is then designed to join these lengths to make the
vertical structure between side-by-side placed antenna pairs.
The overall isolation performance is then tuned by optimizing
the shape and dimensions of this structure including cutting
circular and rectangular slits from the resonant section.

The second major source of mutual coupling originates
between orthogonal antenna pairs having a common edge.
To address this source of mutual coupling an FSS based
rectangular chained strip structure is introduced on both sides
of the substrate. Finally, the antennas which are in back-
to-back or across configuration are decoupled with the help
of a meander line stub extended from ground planes with
parasitic spiral strips in the gaps. A rectangular slit is added to
show the connected ground also the proposed design shares
a single/common ground as Fig. 2 shows the 3-D view in
which all grounds are connected. The effect of this connected
ground plane is clearly observed in Fig 6. and 7. The pro-
posed three distinct decoupling structures for each of the
configurations are illustrated in Fig. 3. All the dimensions
for the proposed antenna and decoupling structures are listed
in Table 1 and II respectively. The non-planar arrangement
including non-connected grounds and shared ground plane
configuration (SGP) and along with the finalized fabricated
design is presented in Fig. 2

C. ANALYSIS AND OPTIMIZATION OF DECOUPLING
The analysis and optimization of the FSS based spi-
ral enclosed meander line (SEM) and rectangular chained

FIGURE 3. Geometrical configuration of antennas: (a) Top layer; (b)
Bottom layer; (c) Spirals enclosed meander line decoupling structure.

decoupling structures are shown in Fig. 4(a) and (b) respec-
tively. The analysis is performed by using a 3D full-wave
electromagnetic simulator (Ansys HFSS). The SEM is simu-
lated by placing it in an airbox with PEC and PMC boundary
conditions along with the wave port excitation from orthog-
onal sides. However, the rectangular chain FSS structure is
a periodic structure it is simulated with a one-dimensional
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TABLE 1. Optimization of proposed antenna.

FIGURE 4. FSS analysis: (a) Analysis setup of SEM; (b) Analysis setup of
chained structure; (c) Transmission loss.

periodic boundary condition as illustrated in Fig 4. These
structures suppress transmission up to 20 dB enabling them

TABLE 2. Optimization of proposed decoupling structures.

FIGURE 5. Parametric optimization of DES.

to be used as decoupling structures. Once these decoupling
structures are introduced the impedance bandwidth is reduced
as FSS based isolating structures are lossy in nature. Hence
to enhance impedance bandwidth, compact parasitic elements
are designed, optimized and introduced on the flip side of the
substrate. These parasitic elements are referred to as diamond
eyed structures (DES). It has rectangular slits on both sides.
The dimensions of DES are also listed in Table 2.

D. PARAMETRIC OPTIMIZATION OF DES The FSS
based isolating structures are lossy in nature and once these
decoupling structures are introduced, the impedance band-
width is reduced. Hence the DES structure is added to regain
the bandwidth. The parametric analysis of the DES structure
is given in Fig 5. Four combinations of ‘Pw’ and ‘P5’ are
simulated and presented in the figure, Overall, the optimized
impedance matching over the whole band is achieved when
Pw = 4.5mm and P5 =1mm. The rest of the parameters are
also optimized through the EM simulator.

III. RESULTS AND DISCUSSIONS
Once the design optimization was completed through para-
metric analysis the structure was fabricated through a milling
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FIGURE 6. Simulated and measured S-parameters for; with and without
decoupling, SGP and DES: (a)-(h) Antenna 1-8.

machine on a 1.6 mm thick FR 4 substrate. The antenna
elements were arranged in a 3D configuration around a
polystyrene foam and measured through a PNA-X (Agilent
N5242A) network analyzer followed by radiation pattern
measurement in a fully anechoic chamber. The results dis-
cussion is presented in the following subsections.

A. REFLECTION COEFFICIENT
The measured and simulated results of the S-parameter
are presented in Fig. 6. The results reveal that the pro-
posed system achieves more than 10 dB impedance band-
width over the whole UWB band. Notably, improvement in
impedance matching is observed at lower and prominently at
higher frequencies when decoupling structures and DES are
deployed alongside. The proposed DES has strong resonant
characteristics at higher frequencies. While the polystyrene
block is inserted to support the overall 3-D formation.
More importantly, the antenna impedance performance with

FIGURE 7. Simulated and measured mutual coupling for all
configurations with and without decoupling, polystyrene, SGP and DES:
(a)-(d) Side-by-side configuration; (e)-(h) Orthogonal configuration;
(i)-(j) Across configuration.

SGP is also investigated. The results reveal that impedance
matching at middle and higher frequencies tends to distort
but remains within acceptable limits.

B. MUTUAL COUPLING
The proposed combination of isolation structures offers
mutual coupling suppression amongst all combinations of
the radiating elements. The graphs are reported for simulated
and measured results with and without decoupling structures,
polystyrene block and SGP. The side-by-side arrangement
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FIGURE 8. Surface current distribution: (a)-(b) at 4 and 10 GHz without decoupling; (c)-(d) at 4 and 10 GHz with decoupling.

of antenna pair on the substrate surface undergoes mutual
coupling suppression of more than 20 dB with the help of
transmission line resonator as shown in Fig. 7 (a)-(d). The
FSS based rectangular chained strips and meander line with
spirals achieve mutual coupling reduction of 22 dB and 30 dB
over the whole band as depicted in Fig. 7 (e)-(h), and Fig. 7
(i)-(j) respectively. The enhanced isolation for the across
configuration may be observed at lower frequencies owing to
the intrinsic dielectric losses of polystyrene block. In addition
to this, SGP configuration is also analyzed to check the
performance of the proposed decoupling structures. It can be
inferred from the results in Fig. 7 that, isolation performances
of these structures are minimally affected owing to connected
grounds. The isolation suppression of at least 16 dB, 17 dB
and 22 dB is observed for side-by-side, orthogonal and across
placed antennas. Overall, this SGP configuration undermines
the isolation performance of the system by an average of 6 dB.

C. SURFACE CURRENT DISTRIBUTION
The surface current distribution with and without decoupling
structure of the proposed antenna system is shown in Fig. 8.

This distribution reveals that surface currents are induced
at the feedline, ground plane, and vertical decoupling strip.
Owing to very limited space constraints the vertical decou-
pling structures are optimized in such a way that they don’t
couple with the transmission line and the resonator. The
suppression of surface currents can be observed at radiators
and decoupling structures.

D. RADIATION CHARACTERISTICS
The E and H planes are shown in Fig. 9, both E and H
plane results shown that the antenna is radiating in all direc-
tions owing to the omnidirectional nature of partial ground
monopoles. The results showed some distortion as the pro-
posed design is non-planar. Moreover, fabrication imperfec-
tions lead to some extent of pattern distortion.

E. MIMO PERFORMANCE PARAMETERS
The diversity performance of the proposed MIMO system
is investigated by calculating various MIMO parameters i.e.
Envelope Correlation Coefficient (ECC), Channel Capacity
Loss (CCL), Total Active Reflection Coefficient (TARC),
Directivity Gain (DG), and Mean Effective Gain (MEG).
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TABLE 3. Comparison with existing work.

FIGURE 9. Radiation patterns: (a),(c), (e) E-plane at 4 GHz, 7 GHz and
10 GHz; (b), (d), (f) H-plane at 4 GHz, 7 GHz and 10 GHz.

ECC and CCL should be less than 0.5, TARC, DG, and MEG
should be less than 0 dB, 9-10 dB, and 3dB respectively [20].
The general formulas for these parameters are expressed in

(1), (2), (3), (4), and (5) [21]–[25].

ρe =

∣∣∣∫∫4π [EEi (θ, φ)× EEj (θ, φ)] d�∣∣∣2∫∫
4π

∣∣∣EEi (θ, ϕ)∣∣∣2 d� ∫∫4π ∣∣∣EEj (θ, ϕ)∣∣∣2 d�. (1)

C(loss) = −log2(detψ
R), (2)

where,

ψR
=

[
ρ11 ρ12
ρ21 ρ22

]
, ρii = 1−

(
|Sii|2 +

∣∣Sij∣∣2)
and

ρij = −
(
S∗iiSij + S

∗
jiSij

)
fori, j = 1 or 2.

TARC =

√∣∣∑
n=8 S1n

∣∣2 + . . .+ ∣∣∑n=8 S8n
∣∣2

8
. (3)

DG = 10
√
1− |ρe|2. (4)

MEGithport = 0.5
(
1−

∑N=numberofantennas

i=portnumber

∣∣Sij∣∣2) . (5)

For the proposed MIMO antenna system each parameter
is calculated for all configurations including side-by-side,
orthogonal, and across are shown in Fig. 10. Overall the pro-
posed design achieved ECC < 0.08, CCL < 0.35, TARC <
−12 dB, DG> 9.88 dB and MEG< 3dB in all configuration
as shown in Fig. 10 (a)-(e). s

IV. COMPARISON WITH EXISTING WORK
Several UWB-MIMO antenna systems are reported in the
literature. However, the proposed MIMO system is compact,
provides improved isolation, and flexibility of configurations.
This non-planar system consists of 8-antenna elements in a
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FIGURE 10. MIMO performance parameters: (a) ECC; (b) CCL; (c) TARC;
(d) DG; (e) MEG.

cuboidal form suitable for high bandwidth system-in-package
applications with a small footprint that is highly competi-
tive as compared to the existing both planar and non-planar
designs. Additionally, the performance parameters are in a
well acceptable range. A detailed comparison with the exist-
ing work is listed in Table 3.

V. CONCLUSION
In this work, a compact and non-planar 8-element UWB
MIMO antenna system is presented. This system assures its
suitability for 3D system-in-package applications owing to
a compact non-planar arrangement. The designing approach
leads to antenna configuration by applying several tech-
niques including but are not limited to beveling, chamfering,
defected ground structures and, parasitic structures. More-
over, three distinct isolation mechanisms are developed to
isolate the proposed configurations. The isolation mecha-
nism mainly involves an FSS based analysis and approach
to strengthen the isolation in this proximity system. Vertical
strip rectangular chained strips, FSS employed meander line
with spirals decoupling structure achieves overall isolation of
not less than 20 dB and as high as 30 dB. Yet to improve
and regain the impedance, DES is implemented as a parasitic
structure. Notably, improved MIMO performance parame-
ters prove this system relevance for portable communication
devices for UWB applications.
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