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ABSTRACT Massive multiple-input multiple-output (M-MIMO) is a significant pillar in fifth generation
(5G) networks where a large number of antennas is deployed. It provides massive advantages to modern
communication systems in data rate, spectral efficiency, number of users serviced simultaneously, energy
efficiency, and quality of service (QoS). However, it requires advanced signal processing for data detection.
The growing MIMO size leads to complicated scenarios, which makes the detector design a knotty problem.
The problem is also becoming more complicated when high-order modulation schemes are exploited and
more users are multiplexed. Therefore, it is not practical to employ the maximum likelihood (ML) detector
despite the excellent performance. Linear detectors are alternative solutions and relatively simple. Unfortu-
nately, they still need an exact matrix inversion computation, which bears to a significant high complexity.
Therefore, several iterative methods are utilized to approximate or evade the matrix inversion rather than
computing it. This paper studies the pros and cons of iterative matrix inversion methods where the number
of computations and bit-error-rate (BER) are considered to compare between the methods. The comparison
is conducted in several scenarios such as different ratio between the number of base station (BS) antennas and
user terminal (UT) antennas (β), the number of iterations (n), and the relaxation parameter (ω). This paper
also studies the impact of ω in the performance of Richardson (RI) and the successive over-relaxation (SOR)
methods. Numerical results show that the conjugate gradient (CG) and optimized coordinate descent (OCD)
methods exhibit the lowest complexity with an acceptable performance. In addition, the Gauss-Seidel (GS)
method outperforms all other detectors with a trivial complexity increment. It is also noticed that the
performance is not improved with every iteration. It is also shown that ω has a great impact and a significant
role in achieving a satisfactory performance in both RI and SOR based detectors. From implementation point
of view, detectors based on RI, OCD, and CG methods have achieved the highest hardware efficiency (HE)
while Jacobi (JA) based detector has obtained the lowest HE. Recent research advances of detection methods
are also presented in the open research direction with a potential impact of linear detection methods in
initialization and pre-processing.

INDEX TERMS 5G, M-MIMO, detection, relaxation parameter, hardware efficiency, performance, Jacobi,
conjugate gradient, Gaus-Seidel, optimized coordinate descent, Richardson, Neumann series.

I. INTRODUCTION
The number of mobile devices and mobile data traffic are
tremendously growing year over year. It is anticipated that
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the number of mobile devices will approach 12.3 billion
in 2022 while it was 7.6 billion in 2015 [1]. Sequen-
tially, the mobile data rate will grow more than twenty-fold
between 2015 and 2023 [17]–[19]. However, mobile carri-
ers are requested to provide higher data rates, better spec-
tral efficiency, and larger network capacity. Fifth generation
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(5G) networks are officially implemented by several mobile
companies (i.e., Nokia and Erickson) to achieve the user
demands resulted from billions of mobile devices [85]. It
is also noteworthy that more than 422 million units will be
on 5G networks and nearly 12% of an international mobile
traffic will be generated by 5G capable devices by 2022
[17]–[19]. By 2024, more than 1.5 billion subscriptions
will be exploited on 5G networks [1]. The research is also
propelled to beyond 5G (B5G) and sixth generation (6G)
communication systems. In 5G networks, several efficient
technologies are utilized such as the optical wireless commu-
nication (OWC), the internet of things (IoT), the millimeter
wave (mmWave), the device-to-device (D2D) technology,
the spectrum sharing (SS), ultra dense networks (UDNs),
and the massive multiple-input multiple-output (M-MIMO).
Since the third generation (3G), the conventional MIMO
technology was deployed successfully to improve the perfor-
mance of transmitters and receivers. It is also a promising
candidate to achieve low latency and energy consumption.
In [48], it is shown that the M-MIMO technology is a
promising technology to support the massive industrial IoT
(IIoT). However, multiple interference signals affect the data
being transmitted from and to several antennas. Therefore,
detection methods are required at the M-MIMO receiver
to estimate and extract the transmitted data from received
signal vector. Although the optimum bit-error-rate (BER)
performance is obtained by the maximum-likelihood (ML),
it is not suitable for MIMO system due to a high complex-
ity [4]. In case ofM-MIMOnetworks, the scenario of utilizing
the ML detector is becoming more complicated due to a
deployment of a large number of antennas. Therefore, theML
detection is prohibited in large-scale MIMO networks. In
contrast, linear detectors are simpler than the ML detectors
but they involve an unfavourable computation of a matrix
inversion and multiplications [77]. It is well known that the
matrix inversion complexity of linear detectors is O

(
K 3
)
.

However, for zero forcing (ZF) and minimum mean square
error (MMSE) detector, the total complexity in terms of
complex multiplications is K 3

+ 2(K 2)N , where K is the
number of users and N is the number of antennas at the
BS. As for M-MIMO, N � K , then N is significative
for complexity analysis. To this end, several free-matrix-
inversion detection methods were proposed for the M-MIMO
UL systems. The research aimed to achieve a detector with
a low number of computations (low complexity) and a near
optimal BER (high performance). The main idea behind pro-
posed methods was either the utilization of iterative methods
to approximate the matrix inversion or to evade the com-
putation of exact matrix. This paper presents the pros and
cons of each free-matrix-inversion methods: the Neumann
series (NS), the successive overrelaxation (SOR), the Gauss-
Seidel (GS), the Jacobi (JA), the conjugate gradient (CG),
the optimized coordinate descent (OCD), and the Richardson
(RI). A comparison between the performance and complexity
profile of detectors is also conducted in several scenarios
such as different ratio between the number of BS antennas

and user terminals (UTs) antennas (β), and different number
of iterations (n). Relaxation parameter (ω) of the RI and
SORmethods is also comprehensively discussed. In addition,
the normalized resource consumption (NRC) and hardware
efficiency (HE) of detectors based on iterative methods are
also presented.

Two survey papers related to data detection in M-MIMO
systems were published [4], [98]. Although these papers were
comprehensive, none of them have presented the numerical
results of performance-complexity profile of each detector.
In [98], a comprehensive review of fifty years of MIMO
detection was provided. Authors have provided an overview
and milestones in the development of MIMO detection.
The impact of co-channel interference, MIMO channels,
and dispersive MIMO channels were comprehensively dis-
cussed. However, the article was focused onMIMOnetworks.
In addition, methods to alleviate the matrix inverse com-
putation in data detection were not illustrated. In addition,
this paper was also discussed the impact of a comparable
number of active users to the number of BS antennas in
large-scale MIMO networks. In addition, the applicability of
small-scaleMIMOdetection techniques in large-scaleMIMO
is also demonstrated. A survey dated on 2019 [4] presented
a detailed clarification of the M-MIMO detection fundamen-
tals. It also provides an extensive overview and milestones
in the development of optimal detectors. However, it is not
presenting the results in terms of performance and complexity
to compare the precision-complexity profile of linear iterative
methods. In addition, the HE and NRC were not presented.
In other words, there is a paucity of numerical results and
comparisons. Furthermore, effects of β, n, and ω were not
investigated. The impact of precoding and channel estimation
techniques were also presented in the context of data detec-
tion for M-MIMO. In [111], a comparison between detectors
based on the CG, SOR, NS, and RI was provided when the
M-MIMO size is 16 × 128. However, a comparison with JA,
GS, OCD based detectors were not presented. In addition, the
impact of β, n, and ω were not presented. In addition, the HE
and NRC were not demonstrated. In [5], we exploited the
SOR, GS, and JA methods to in pre-processing stage to
initialize a detector based on an approximate message passing
(AMP). In comparisonwith the traditional AMP, it was shown
that the proposed hybrid detectors achieved a significant
performance improvement and complexity reduction. How-
ever, hardware implementation was not illustrated. In [80],
a comparison between data detection methods based on the
NS, CG, and JAwas demonstrated. In [41], in order to achieve
a high convergence rate and a satisfactory performance, a stair
matrix is exploited in iterative free-matrix data detection
algorithms. Table 1 summarizes the differences between this
work and prior relevant articles.

This paper is organized as follows: Section II presents
an overview of the M-MIMO detection. Section III presents
the fundamentals of linear detectors such as the MMSE and
the impact of matrix inversion in data detection. Section IV
demonstrates the iterative methods to avoid/approximate
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TABLE 1. Prior Relevant Articles.

matrix inversionmethods. Section V provides a detailed com-
plexity analysis in real multiplications and additions. In addi-
tion, the HE, NRC, and implementation comparison are also
demonstrated. In Section VI, the results and discussion are
presented. Section VII concludes the paper and presents the
future research directions.

II. OVERVIEW
Unlike the conventional small scale MIMO, the BS is occu-
pied by a large number of antennas to avail many users in
M-MIMO networks. The number of UTs is usually smaller
than the number of BS antennas. The growing MIMO size
enhances the channel capacity and the link reliability because
of a high multiplexing diversity.

The massive number of active antenna elements at the
BS and cohere transceiver processing provide tremendous
advantages in high data rate, satisfactory throughput, high
spectral efficiency, high power efficiency, and a good QoS
[10], [62]. The large data volume that could be generated
using M-MIMO arrays call for employing advanced opti-
mization algorithms to eliminate the interference effects,
the fast fading, and the uncorrelated noise. In addition,
the transmit power is notably reduced and the throughput
is increased without increasing the transmit power when the
number of transmit antennas grows [66]. However, channel
estimation is one of the main challenges inM-MIMO systems
where pilot contamination effect has a great impact. Across
the transmitters, the channel state information (CSI) has to
be exchanged very quickly (extremely low latency) [103].
It is also pivotal to address the transmit precoding challenge
to focus each signal at destined receiver, especially in a
non line of sight (LOS) scenario. In addition, the number
of computations associated with the reliable signal detec-
tion at the BS is one of the crucial issues in transceivers
design. It is noteworthy that a precise and instantaneous CSI
is required at the BS to perform uplink (UL) data detec-
tion and down-link beamforming [95]. Matched filter (MF)
achieves a good performance when the number of active users
is small and rich scattering channels are utilized. In vast
majority of M-MIMO literature, the propagation channels are
assumed uncorrelated to simplify the process. In practical
scenario, propagation channels are generally spatially cor-
related. Therefore, there is a need for advanced data detec-
tion algorithms. Due to a high number of computations of
the ML detector, sub-optimal linear detection methods are
proposed. Table 4 presents the up-to-date detection methods
where linear and nonlinear algorithms have been utilized.

Nonlinear detectors are not competitive in real applica-
tions. For example, expectation propagation detection (EPD)
method suffers from a complex low-parallelism iterations.
Nonlinear detectors such as the successive interference can-
cellation (SIC), lattice reduction-aided (LRA) algorithms,
and SD are utilized in a small scale MIMO. However, they
become non-competitive when utilized in M-MIMO systems
because a matrix inversion, QR-decomposition, or Choleskey
decomposition are required in which the computational com-
plexity is proportional to the number of antenna elements.
In the SIC, the BER performance is usually influenced by
the first detected signal [54]. In the SD, radius selection is
required for each layer and increased gradually. This process
aims to pruning more nodes. Thus, a considerable pruning
may need to restart the radius selection algorithm several
times, which brings additional computational complexity and
energy consumption [21]. For instance, the sphere decoding
(SD), require additional hardware in order to compute the
sub-optimal solution [83], [96], [107]. Moreover, it is not
very hardware friendly because of a variable complexity
with various signals and channels which leads to a non-fixed
detection throughput which is not competent in real time
applications [4]. Detectors based on linear methods are rel-
atively easy to implement and has a simple structure. The
MMSE detection is one of the most popular and efficient
methods in reducing the number of computations. However,
MMSE based detector consists of a matrix inverse and suffers
from a remarkable losses in highly loaded and ill-conditioned
environments. Therefore, it is not the favourite solution in
a real time applications [4]. A pleasant balance between the
BER performance and the number of computations of linear
M-MIMO UL detector can be achieved by employing two
well-known scenarios [87]. The first scenario includes the
NS and the Newton iteration (NI) methods where the matrix
inversion is approximated, rather than the exact calculation
[42], [65], [84]. If the expansion order is greater than 2,
complexity of the NS method is almost O

(
K 3
)
. The second

scenario aims to solve the linear equations by avoiding the
matrix inversion using the iterative methods. The SOR [76],
[109], the CG [39], [100], [112], the GS [22], [92], the JA
[57], [65], [75], the RI [56], and the OCD [13], [87] methods
are examples of such iterative methods. Iterative methods
replace matrix-matrix multiplications by matrix-vector prod-
ucts. Therefore, the solution of linear equations using the
iterative methods requires a small number of computations
compared with the first scenario. In addition, the convergence
rate in NS and NI methods is slow when β ≈ 1. The number
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TABLE 2. Detection methods for M-MIMO systems.

of computations in M-MIMO detection methods is crucially
affected by the systems’ size and the matrix by matrix mul-
tiplication. In addition, inverse of the Gram matrix is one of
the major hindrances in detectors design. Thus, the researcher
community attention is attracted to utilize iterative meth-
ods in the design of high performance and low complexity
detectors.

III. SYSTEM MODEL
In M-MIMO UL system, K users are served by N antennas
at the BS, where K � N . Each UT transmits a data symbol
x = [x1, x2, . . . .., xK ]T to the BS where xK ∈ C and C is
the modulation alphabet. A vector y = [y1, y2, . . . .., yN ]T

is received at the BS. Entries of the channel matrix (H)
are feigned to be i.i.d Gaussian random variables with
unit variance. The model of M-MIMO based detector is
always illustrated in Fig. 1 and presented mathematically
as

y = Hx+ n, (1)

FIGURE 1. A block diagram of M-MIMO system.

where n refers to a noise vector. The ML detector obtains
the best performance but the number of computations is
extremely high. In the MMSE detector, the signal can be
detected by diminishing the mean-square error (MSE) as

AH
MMSE = arg minH∈CN×K E‖x−HHy‖2

=

[
HHH+

K
SNR

I
]−1

HH , (2)

where I is the identity matrix. The MMSE estimated signal is

x̂MMSE = AH
MMSEy. (3)
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It is not a trivial task to build a practical detector forM-MIMO
systems. However, linear detector would attain a satisfactory
performance in UL M-MIMO, but they include unfavourable
matrix inversions. The channel matrix in the M-MIMO sys-
tem will be determined by the number of antennas. More
antennas require robust hardware chips in the physical layer.
Therefore, matrix inversion is not very hardware friendly
where it is the most dominant component in the computa-
tional complexity. It also becomes a hard challenge when the
system is ill-conditioned and/or the channel matrix is nearly
singular. In such scenario, the matrix inversion will not be
efficient to equalize the signal. Therefore, linear detectors
with iterative methods become substantial to defeat the noise
enhancement with a low complexity.

IV. ITERATIVE METHODS
In eighteenth century, iterative JA and GS methods were
proposed to avoid the exact matrix computation. However,
such methods were rarely used to solve small dimension
systems due to a time consumption. In other words, when
the system size is small, the required time to compute the
exact matrix inverse could be less than the required timewhen
iterative methods are utilized [47]. However, several iterative
methods are very useful in storage, area, and computation
when the system size is large. In M-MIMO, the problem
of matrix inverse increases when the system size is large.
The problem is also increased when ill-conditioned system or
singular channel matrix are used. In this scenario, the perfor-
mance of simple detectors is extremely deteriorated. There-
fore, advanced signal processing techniques are required to
overcome the inherent noise enhancement. In this section,
we demonstrate the concepts of several iterative methods
to avoid the direct matrix inversion in data detection for
M-MIMO. The number of iterations (n), the system’s size,
and the convergence rate are crucial to obtain a near opti-
mal low-complexity detector [29]. The spectral radius of a
channel matrix ρ (H) plays a crucial role in the convergence
rate [41]. It is defined as

ρ (H) = max |λ| , (4)

where λ is an eigenvalue of H. However, ρ (H) is closely
related to the norm of a matrix. In order to accelerate conver-
gence, a method whose associated matrix has minimal ρ (H)
is selected. This section presents several low-complexity
detectors based on iterative methods to approximate or avoid
the matrix inversion.

A. NEUMANN SERIES
It is a well-known iterative method to approximate the
large-scale matrix inversion where the polynomial expansion
concept is applied. A sum of infinite number of elements
are utilized to express the matrix inversion. It is noteworthy
that the matrix inversion is replaced by either matrix-matrix
multiplications and \ or matrix-vector multiplications. For
MMSE detector, the Gram matrix is G = HHH + K

SNR I.
In the NS method, the diagonally dominant Gram matrix is

decomposed into the main diagonal matrix (D) and hollow
matrix (E), where G = D + E [107]. The elements of D
are considerably higher than the entries of E. The accuracy is
improved gradually to approximate the inversion of (G) as

G−1 =
∞∑
i=0

(
−D−1E

)i
D−1, (5)

where the condition

lim
i→∞

(
−D−1E

)
= 0, (6)

is satisfied. In practical applications, a well-identified n is
conducted based on a sum of finite terms (i) as shown in (5).
The accuracy of the matrix inversion and the number of
computations are highly affected by n. However, the NS
method incurs a considerable loss when β ≈ 1. It is also
noteworthy that not every iteration could improve the per-
formance. However, every extra iteration could increase the
complexity. Therefore, a trade-off between the near optimum
performance and the low number of computations is required.
In [25], a weighted NS-steepest descent iterative method is
proposed to achieve low complexity and satisfactory conver-
gence rate.

B. GAUSS-SEIDEL
The GS is exploited to settle a group of linear equations by
computing the solution in an iterative behavior where the
Hermitian positive semi-definite matrix (A) of the regular-
ized G is decomposed into strictly lower triangular entries
(L), strictly upper triangular elements (U), and the diagonal
entries (D) [31]. In other words, the matrix A is presented as

A = D+ L+ U. (7)

Therefore, x is estimated based on the output of matched filter
(x̂MF ) as

x̂(n) = [D+ L]−1
[
x̂MF − Ux̂(n−1)

]
, n = 1, 2, · · · . (8)

where x̂(n) is the estimated signal and is refined repeatedly
through each iteration. However, if a prior knowledge of
the initial solution (x̂(0)) is not available, a zero vector can
be utilized [3]. The initial solution is refined during the
iterations [92]. Unfortunately, internal sequential iterations
structure is utilized in the GS method and it is not fitting the
parallel computation. However, the performance of the GS
method is better than the NSmethod [104]. In [12], a detector
using the GS method with acceleration and preconditioning
refinement is proposed. In addition, JA method is exploited
in the matrix initialization.

C. SUCCESSIVE OVER-RELAXATION
The SOR is an iterative method to avert the large-dimension
matrix inversion. It improves the accuracy of GS method by
utilizing a relaxation parameter (ω) [63], [99]. The signal is
estimated as

x̂(n)=
[
1
ω
D+L

]−1 [
x̂MF+

[[
1
ω
−1
]
D−U

]
x̂[n−1]

]
. (9)
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Convergence of the SOR method was demonstrated in [28]
and it is greatly affected by the relaxation parameter (ω).
In the SOR, G is pre-determined and utilized as an input
which increases the number of computations.

In the MIMO system, the convergence rate of the SOR
method is usually satisfactory when 0 < ω < 2 [28].
The uncertain or improper selection of ω could lead to a
performance deterioration or a high complexity of SOR based
detector. It is also noteworthy that the pre-computation of
G could lead to a high computational complexity. In [102],
non-adaptive SOR (NA-SOR) detector with fixedω and adap-
tive SOR (A-SOR) with iteratively changed ω are proposed.
In highly correlated channels, it is shown that the A-SOR
detector obtains better performance. However, the NA-SOR
detector is more firm to ω. Compared with existing meth-
ods, the implementation results show that the A-SOR and
NA-SOR achieve better throughput.

D. JACOBI
It is another iterative methods where the solution is estimated
as

x̂(n) = D−1
[
x̂MF + [D− A] x̂(n−1)

]
, (10)

which holds if:

lim
n→∞

(
I− D−1A

)n
= 0. (11)

The initial values can be selected as

x̂(0) = D−1x̂MF . (12)

The JA based detector attains an acceptable performance
when β is small. However, it suffers from slow convergence
rate [40], and thus, implying high latency. In addition, it is not
obtaining a quasi-optimal accuracy when β ≈ 1. In general,
computational complexity of the JA, SOR, and GS is very
close. It is also noteworthy that the first iteration in JAmethod
is a multiplication free which decreases the number of com-
putations. However, the SOR and GS methods can achieve
higher hardware efficiency.

E. CONJUGATE GRADIENT
The CG method is another method to solve linear equations
such as (2 and is advocated by [39] where the signal can be
estimated as

x̂(n+1) = x̂(n) + α(n)p(n), (13)

where p(n) is the conjugate direction taking into account the
matrix A, i.e.,(

p(n)
)H

Ap(j) = 0, for n 6= j, (14)

where p(n) and other scalar parameters were comprehensively
demonstrated in [39]. In the CG method, the solution is
refined iteratively where the search is performed in the con-
jugate direction with a movement towards the best solution.
However, the step size and the direction are identified first

and the solution is updated by moving a step in the search
direction next. The CG method obtains better performance
and lower number of computations in comparison with the
NS based detector [100]. The convergence rate of CGmethod
reduces rabidly when β ≈ 1. It also could achieve a good
performance with low complexity as compared with the SOR,
GS, JA, and RI methods. In [51], a modified CG method
is proposed to avoid the strong data dependency between
iterations and elements.

F. RICHARDSON
In RI based method, symmetric matrices are utilized. The
positive semi-definite property of regularized G is exploited
to perform iterative iterationswhere the signal can be detected
accordingly. The convergence rate is very sensitive to a selec-
tion of relaxation parameter (ω) where 0 < ω ≤ 2

λ
and λ

is the largest eigenvalue of the symmetric positive definite
matrix H [44]. The estimated signal is obtained as

x(n+1) = x(n) + ω
[
y−Hx(n)

]
n = 0, 1, 2, · · · . (15)

If a prior knowledge of x(0) is missing, a zero vector can be
considered without loss of generality. It can also be selected
as x̂(0) = D−1x̂MF and iteratively refined. The accuracy
and the number of computations are highly affected by the
value of ω. In [45], a CG method is exploited to enhance
the performance of second-order RI method. Moreover, ω is
selected based on eigenvalues to speed up the convergence
rate.

G. OPTIMIZED COORDINATE DESCENT
In the CD method, the line search step size is determined
by the knowledge of channel gains values. It can be used
to solve over-determined linear systems where a series of
coordinate-wise updates are utilized to achieve the near opti-
mal solution of a convex optimization problem [50]. The
estimated signal obtained as

x̂k =
[
‖hk‖2 + N0

]−1
hHk

y−∑
j6=k

hjxj

 , (16)

where No is the noise variance.
In the OCD method, a pre-processing and restructuring

are needed to reduce the operations during each iteration.
The CD based detector is a high throughput estimation
system. A low complexity OCD detector can be imple-
mented in a high-throughput FPGA design for M-MIMO
systems [87]. This detector refines the estimated signals for
each user in a sequential pattern. Therefore, it affords a high
latency [70].

V. COMPLEXITY ANALYSIS AND HARDWARE EFFICIENCY
In this section, the complexity analysis is presented based on
the number of real multiplications and additions required to
estimate the signal. In addition, a comparison on system level
deployment is also provided. The computational complexity
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TABLE 3. Computational complexity.

TABLE 4. Implementation comparison On XILINX VIRTEX-7 FPGA WITH 128 BS antennas and 64QAM.

FIGURE 2. Hardware efficiency (HE) of data detection methods.

FIGURE 3. BER performances vs. relaxation parameter (ω) for 64 ×
256 MIMO when SNR = 16dB, RI method.

of the NS method is O
(
K 3
)
. For the RI, SOR, GS, CG, and

JAmethods, the computational complexity isO
(
NK 2

)
. How-

ever, the complexity analysis based on the O does not show
the differences. Therefore, Table 3 presents the number of real

FIGURE 4. BER performances vs. relaxation parameter (ω) for 64 ×
256 MIMO when SNR = 16dB, SOR method.

multiplications and additions required by several detection
methods. TheNS based detector requires a large n to achieve a
satisfactory performance, hence, the computational complex-
ity of the NS based detector is presented when n ≥ 3.

Table 4 demonstrates the key implementation results of
data detection methods on Xilinx Virtex-7 FPGA platform.
Detectors consist of pre-processing and computations of the
Gram matrix. Therefore, the normalized resource consump-
tion (NRC), or normalized area, is presented in [14] as

NRC = LUTs+ FFs+ DSPs× 280, (17)

where LUTs, FFs, andDSPs are look-up table, flip-flops, and
digital signal processing units, respectively. Detectors based
on the RI and JA have obtained the lowest latency while
NS based architecture has the highest latency. The hardware
efficiency (HE) is illustrated as [82]

HE =
Throughput

NRC
. (18)

45746 VOLUME 9, 2021



M. A. Albreem et al.: Low Complexity Linear Detectors for Massive MIMO: Comparative Study

FIGURE 5. BER performance vs. SNR for 16× 16 M-MIMO where n = 5.

Figure 2 shows that the RI based detector has achieved
the highest HE, followed by OCD and CG based detectors.
Detectors based on the GS and JA have obtained the lowest
HE. It is also noteworthy that the architecture based on the
NS method has achieved higher HE than the SOR based
architecture.

VI. SIMULATION AND DISCUSSION
In this section, the BER performance and the computational
complexity are presented for different detection techniques

(the NS, GS, SOR, JA, RI, OCD, and CG). Comparison
among iterative methods is presented in BER performance
and number of real multiplications. In order to draw useful
insights, we consider i.i.d complex Gaussian random vari-
ables with zeo mean and unitary variance, various β and
M-MIMO environments, i.e., 16 × 16, 16 × 256, 32 × 256,
64 × 256, and 64QAM. The simulations are carried out in
MATLAB to present the relationship between the BER and
the average SNR.

Selection of ω is crucial to attain a near optimum BER
performance of the RI and SOR detectors. Figure 3 shows
the BER performance of the MMSE signal detection using
the RI method versus ω at SNR = 16dB. The performance
improves when ω increases and the best performance is
achieved when the value of ω = 2

λ
where λ is the largest

eigenvalue of H. Then, the performance is decreased when
ω > 2

λ
. Figure 4 illustrates the BER performance of the

MMSE signal detection utilizing the SOR method versus ω
at SNR= 16dB. A satisfactory BER performance is achieved
when 0 < ω < 2. At ω = 0.8, the best BER performance
is achieved. In the research, the best value of ω is extracted
from Figs. 3 and 4 and utilized in the following RI and SOR
simulations.

Figure 5 demonstrates the BER performance of the MMSE
using several iterative matrix inversion methods in 16 ×
16 M-MIMO system. The performance is deteriorated even
when n is large because the ratio between number of BS
antennas and UTs antennas is β = 1. In other words, iter-
ative matrix inversion methods are not suitable to achieve

FIGURE 6. BER performance vs. SNR for 32× 256 M-MIMO and 64QAM.
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FIGURE 7. BER performance vs. SNR for 16× 256 M-MIMO and 64QAM.

FIGURE 8. BER performance vs. SNR for 32× 64 M-MIMO and 64QAM.

ML performance when the general M-MIMO assumption
(N � K ) is not applied. When N = K , the classical MMSE
detector is preferred.

Figure 6 till Fig. 9 show the performance of detectors
based on several approximate matrix inversion methods at
different MIMO sizes. It is clear that the performance profile
of detectors based on approximate matrix inversion methods

converges to the MMSE performance when β is smaller
than 1. The detector based on the GSmethod achieves the best
BER performance when n = 1 and 2. When β is large (close
to 1), detectors based on the NS and JA methods suffer from
a considerable performance loss and the performance does
not improve through iterations. It is also clear that a detector
based on CG, NS, and JA methods requires a high number of
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FIGURE 9. BER performance vs. SNR for 64× 256 M-MIMO and 64QAM.

FIGURE 10. Performance vs. complexity to attain BER = 10−2 in 32× 256 MIMO.

FIGURE 11. Number of real multiplications and BER in 32× 256 MIMO,
SNR = 12dB.

iterations to obtain a satisfactory BER performance. The RI
detector outperforms the NS and JA based detectors. How-
ever, RI detector requires a large n to achieve the optimum

performance. In Fig. 7, the ML concept for data detection
is compared with other data detection methods. It is clear
that the OCD based detector has achieved a quasi-optimum
performance when n = 1 while other methods require extra
iterations.

Figure 10 presents the number of iterations (n) and the
required SNR to obtain a BER = 10−2 in 32 × 256
MIMO. Obviously, the required performance is achieved at
SNR = 14dB using detectors based on the GS, SOR and
OCD methods. However, the detector based on GS and SOR
suffer from a high computational complexity while the detec-
tor based on OCD method has the lowest computational
complexity. Figure 11 shows the comparison between several
detection methods in terms of the number of real multipli-
cations in n = 2, 4, and 6 as mentioned in Table 3. It also
shows the BER above each bar at SNR= 12dB. It is clear that
the CG and OCD based detectors obtain the lowest number
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of real multiplications and a satisfactory BER performance.
However, they need a high number of iterations to attain a
good BER performance. Complexity of the detector based on
NSmethod is lower than the complexity of the detector based
on GS, JA, RI and SOR methods.

VII. CONCLUSION AND OPEN RESEARCH
In this paper, crucial issues of data detection in M-MIMO
UL systems are presented. This paper studies the
performance-complexity profile of various detectors based
on several iterative methods at different MIMO sizes and
different iteration levels. It is shown that the GS detector
perform better than other detectors when β is small. In addi-
tion, all detectors have obtained a considerable performance
loss when β = 1. Optimum values of ω are presented for
both the RI and SOR methods. Unlike the practical scenario,
a plethora of M-MIMO literature assumes that the propaga-
tion channels are spatially uncorrelated which could lead to
misleading conclusions. The detector based on RI, OCD, and
CG methods can achieve a high HE in correlated channels.
Furthermore, this paper illustrates that the OCD detector has
the lowest complexity.

Since 2017, there is a substantial trend in a research com-
munity to exploit the machine learning in data detection.
For instance, deep networks in M-MIMO detector’s design
based on a projected gradient descent method is utilized in
[68]. A modified DetNet is proposed where a relatively small
number of parameters is required to optimize [69]. Unfor-
tunately, the training is unstable for realistic and correlated
channels. In addition, scalability of the DetNet algorithm is
poor because of a relatively large number of training param-
eters. In 2018-2020, there is a notable trend in a research
community to exploit the DL to build a robust M-MIMO
detector. A model-driven DL network is proposed based
on the orthogonal approximate message passing network
(OAMP-Net) [38]. Although the existing detection methods
achieve a near optimal performance, there is still an open
room for further research work. For instance, the utilization
of iterative free matrix inversion methods with deep learning
in detector’s design should be investigated where efficient
initialization could impact greatly the performance and the
computational complexity.
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