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ABSTRACT PnP problem is well researched in many fields, such as computer vision. It is considered the
fundamental method to solve the key problems of robot SLAM. However, in pedestrian visual localization,
uncalibrated PnP (UPnP), specifically PnP with unknown focal length (PnPf) is more suitable for solving
the problem. Recently, a few researchers proposed some methods to alleviate this problem. However,
the localization accuracy of the existing methods is not satisfied when image pixel noise is larger. In other
words, RANSAC should be running before solving the PnPf problem to get less noisy input, which means
the localization delay increases inevitably. In this paper, we propose a more robust method for solving the
PnPf problem without the help of RANSAC based on Grobner basis and convex optimization. We build
a Grobner basis solver on the offline stage with one instance in the prime field. Then, we substitute the
coefficients with real value and find multiple solutions on the online stage. Finally, we construct a convex
optimization program to seek the final robust solution to PnPf problem. The other purpose of this paper is to
provide a second-level localization experience for the end-user. The simulation result shows that our method
can give a localization solution, which is more reliable than benchmark methods by both synthetic and real

data verified.

INDEX TERMS UPnP, PnPf, visual localization, Grébner basis, convex optimization.

I. INTRODUCTION
Indoor localization is a hot branch of localization in recent
years, which compares with the concept of outdoor posi-
tioning. It is in the stage of rapid development with chal-
lenges and opportunities. Various technologies emerge with
their competing and unique characters, such as WiFi [1],
visible-light [2], UWB [3], WSN [37], [38], image [39],
etc. For other new technologies, please refer to [40]. Visual
localization gets the attention of the researchers due to its
low cost and no additional device requirement. It has been
applied in many well-known areas, such as robot localization
and vehicle navigation. More recently, with the rise of the
Internet of Video Things (IoVT) [41], visual localization will
also play an important role in the system.

In addition to the applications mentioned above, visual
localization also knows as a prospective solution for the last
kilometer of pedestrian positioning problems in the indoor
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environment. To solve the problem, a visual map database
firstly constructs by a site scanning method, such as [4], [5].
With the database, one can locate himself even in a par-
ticular indoor area without wireless signal coverage. The
main process of localization can be summarized as follows.
The user uses his/her smartphone to take an image in the
interested area. Then, the image feature will extract by algo-
rithms like SURF [6]. It proved more efficient even in some
feature-barren environments [7]. With the feature in the query
image and its correspondence in the visual map database,
the relationship could map by algorithms, such as [8]-[10].
Finally, the correspondences will be used as a known con-
dition to solve the PnP problem, whose solution is a fine
localization result for the querying user.

The very challenging part in visual localization is mainly
Perspective-n-Point (PnP), which solves the camera extrinsic
matrix with several 2D-3D correspondences. It can cluster
into three categories. The first one under this classification
is that the camera intrinsic matrix is fully unknown. It is
a rare situation in real applications due to the development
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of the digital camera. The other one is that the camera
intrinsic matrix is completely known. Typically, it obtains
by camera calibration [11], this category has always been
the mainstream research direction in computer vision, and
many scholars have made significant research contributions,
such as EPnP [12], RPnP [13], OPnP [14], ASPnP [15], etc.
These algorithms have been optimally implemented in many
applications, especially in Robot SLAM. One simple version
of this kind is called 2DTriPnP [16], which could apply in
the vehicle or pedestrian visual localization in 2D space.
However, camera calibration is a requirement, which is hard
to force every pedestrian to do this at the very beginning.

The last category is that the camera intrinsic matrix is par-
tially known. The unknown element of the matrix is typically
one or two of focal length, screw factor, and principal point.
Since both the machine is customized and its camera has
been calibrated by the researchers, this kind of algorithm is
not usual in computer vision. However, in pedestrian visual
localization, the camera used on the phone is most likely
uncalibrated. On the other hand, the element in the intrin-
sic matrix could estimate by the common assumption. For
instance, the principal point is in the middle of the image,
the screw factor is zero, focal length could read from the
EXIF tag of the JPEG file. Among these three parameters,
we believe the estimation of the focal length is with a larger
error than that of principal point, screw factor [17], [18].
Therefore, we call this kind of PnP problem partially known.
One of the most studied branches is PnPf, which donates the
focal length information is unknown in the camera intrinsic
matrix. Some scholars have paid attention to this problem,
and they have proposed some works, which will introduce
with details in Section II.

As stated before, the assumption of the principal point and
screw factor is very close to the real value. More impor-
tantly, it will minimize the cost of online computing in the
image-based localization system. Above all, in consideration
of the characteristics of pedestrian visual localization, we will
focus on the PnPf problem in this paper.

According to the number of 2D-3D point pairs used in
the PnP equations, there are two research directions. One
aims to find the solutions of PnP equations with the least
2D-3D point pairs. It usually defines as a minimal solver. For
instance, the PnPf problem solved with four pairs of 2D-3D
correspondence is called P4P. The core of this minimal solver
is the Grobner basis method, whose more details are given
in [19]. It should be noted that the method is not finding a
Grobner basis for the initial equations by Buchberger [20]
or F4 [21] algorithm since it not only costs too expensive
in the real field but also will lead to numerical instability.
As an efficient alternative, researchers find the leading mono-
mials of the corresponding Grobner basis are the same as
the monomials in the basis of the quotient ring. By this
property, Z. Kukelova et al. propose an automatic generator
of this minimal case solver in [22]. Many solvers of the PnP
problem with coefficients uncorrelated could generate by this
tool without losing accuracy performance. However, not all
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the PnP problems are directly suitable to this automatic tool.
The researchers may sometimes build the solver by hand.
The main difference between these solvers is the size of the
elimination template, which is mainly due to the different
simplification of PnP equations. The size of the elimination
template proposed in [23] is 154 x 180, which is further down
to 53 x 63 in [24]. As far as we know, the least is 20 x 30,
which proposes in [25].

The other one tries to use all pairs to solve the problem,
which will reduce the sensitivity of minimal solver to noise
transition. A representative algorithm was proposed in [26].
It was well known as UPnP, whose idea borrowed from
EPnP. Later, E. Kanaeva et al. proposed a regularized distance
constraints method for finding a more accurate solution for
the UPnP equation in [35]. Be different from the methods
[26], [35], the PnPf problem with all point correspondences
can also solve by Grobner basis solver. Y. Zheng et al. pro-
posed a 36 x 52 elimination template in [27] for solving
the equations generated from all 2D-3D correspondences. A
versatile approach was proposed by G. Nakano in [36], which
provided a novel solution for the least square PnPf problem.
However, its improvement in solution accuracy was limited
when comparing to [27]. More recently, a 130 x 251 template
was built in [28] to improve the accuracy. Although these
algorithms could alleviate the unstable solution generated by
the minimal solver. Unfortunately, the state-of-art algorithms
[26], [28] still depend on RANSAC for selecting inlier cor-
respondences to attain the accuracy requirements when more
noise exists in the real image. The application of RANSAC
on the online visual localization step will inevitably increase
the computational cost. Thus, the main purpose of this paper
is to propose a robust solution for the PnPf problem without
the help of online RANSAC when larger image pixel noise
exists. The main contributions of this paper are in three folds:

1). A modified minimal solver proposes in this paper.
We derive the solver more rigorously and show the entire
back substitution process, the solver can obtain more accurate
results by the constraints of unchanged rigid body distance
than P3.5P, although the single running time is slightly longer.

2). A convex optimization-based method proposes in this
paper for extracting a more accurate solution from our min-
imal solver. It could promote the accuracy performance of
the minimal solver efficiently when the noise is larger in the
image pixel coordinate. Compared to the state-of-art PnPf
algorithm, our method is more robust to combat the noise
without RANSAC, which proves by synthetic and real data
simulation results.

3). The computation complexity of our proposed method
is low, which approximates to O(n). In this way, the proposed
overall system model can provide a second-level of experi-
ence for pedestrian, who uses the image-based localization.
Therefore, this will be more practical in real applications.

The rest of this paper organizes as follows. In Section II,
some related works will discuss. Section III describes the
PnPf problem in pedestrian visual localization and presents
the system model. In Section IV, we propose our method
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based on a Grobner basis and convex optimization. Section V
provides the simulation results, and the conclusion draws in
Section VI.

Il. RALATED WORKS

Although the main purpose of this paper is to propose a robust
visual localization method with an unknown focal length
camera, we need to introduce the most widely used algorithm
EPnP [12], which is classical for its O(n) complexity with
known camera internal parameters. The algorithm utilizes
the linearization and re-linearization method for solving the
weight of a linear combination of a matrix eigenvector, which
is derived from 3D-2D correspondences. With these weights,
the camera coordinates of the 3D point can be calculated.
Then, with the help of SVD for solving the matrix maximum
trace problem, the rotation matrix and the translation vector
can be decomposed. Further, a more accurate result will
achieve by setting the closed-form solution as the initial input
of the Gauss-Newton scheme. As an alternative to RANSAC
[29], which is time-consuming and unsuited for online com-
putation, the standard scheme for none-convex optimization
can see as a refinement of the solutions. Most recently, a more
advantageous polishing algorithm is proposed in [30], which
is called HARD-PnP. These two algorithms could also embed
in our framework as the final refinement.

Inspired by EPnP, UPnP proposes in [26]. The algorithm
takes the focal length as the denominator and the z-axis coor-
dinate of the virtual control point as the numerator to form a
whole new variable. With this synthetic variable, the solution
architecture could be nearly unchanged comparing to EPnP.
The solution could solve by linearization, relinearization, and
exhaustive linearization consecutively, and the process could
terminate whenever the solution generated from one of these
methods is within a threshold of reprojection error. When the
solutions from all these three methods are over the threshold,
the solution with the least reprojection error will rank as
the best one. Alternatively, a regularized distance constraint
method substitutes for the method mentioned above in [35].
However, the regularization coefficient needs to adjust
dynamically to achieve a balance between accuracy and time.
Therefore, the method proposed in [35] is not chosen as
the benchmark for comparison in our paper. Be similar to
EPnP, the final solution of UPnP could also polish by the
Gauss-Newton scheme, which always defines as UPnP-GN.

The linearization method used in the algorithms described
above is an approximate solution of the polynomial equation.
Naturally, the result contains some errors. Thus, the Grobner
basis method with the more accurate result applies in the
state-of-the-art minimal solver [25], which is named P3.5P.
Beyond this method, an Euler angle with none-unit quater-
nion representation for a rotation matrix is very important
for its success. Another common trick for elimination by
rank deficient matrix and SVD for recovery also embeds into
our minimal solver to improve the performance. It should be
noted that the main purpose of the solver proposed in [25]
is to find the least pairs of 2D-3D correspondence for solving
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the PnPf problem, while our goal is trying to reduce the influ-
ence of noise on the solution without RANSAC. The P3.5P
minimal solver is not embedded in our framework, the reason
is the parameterization and back substitution process are still
improvable. It inspires us to propose a modified minimal
solver instead of using P3.5P directly in this paper.

As the state-of-the-art none-minimal solver for the PnPf
problem, the expression of the rotation matrix in [25] also
uses in [28]. However, be different from [25], the basic
idea is to construct a proper objective function after vari-
able elimination. Two equations generate from the derivation
of an objective function. By the Grobner basis method, all
the stationary points solve. Then, one of the solutions is
ranked, which will minimize the objective function. Finally,
all unknowns find by back substitution. As far as we know,
this method is the latest one for solving the PnPf problem
with all 2D-3D correspondences. It is partly due to the special
acknowledgments and skills for the Grobner basis method.
The advantage of this algorithm over the minimal ones is
balancing the contribution from each 2D-3D correspondence.
However, it is better to treat each equation differently than this
balanced approach when the noise distribution is unbalanced.
Without loss of generality, it can assume as Gaussian distri-
bution. Therefore, we propose an algorithm based on Grobner
basis minimal solver and convex optimization for solving the
solution of the PnPf problem, which could weigh equations
from combinations of 2D-3D correspondence.

IIl. SYSTEM MODEL

A. PROBLEM STATEMENT

A diagram shows in Fig. 1, which can describe the UPnP
problem encountered in the pedestrian visual localization.
The localization equipment is only the mobile phone holding
by the querying user. Typically, it is assumed that the intrinsic
matrix of the camera embedded in the phone is unknown.
It means that the camera is uncalibrated mostly. The camera
rotates at some angle around the x-axis, y-axis, and z-axis,
respectively. After the rigid body rotation, a world point
and image pixel feature could form a mapping relationship.
It defines as 2D-3D correspondence. With such correspon-
dences, the extrinsic matrix (rotation matrix and translation
vector) and the intrinsic matrix will be recovered from the
solution of UPnP solvers. Further, the principal point, aspect

FIGURE 1. UPnP in the pedestrian visual localization.
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ratio, and screw factor in the intrinsic matrix could be esti-
mated quite approximately to the ground-truth value. It makes
sense that the UPnP problem turns into a PnPf problem
eventually in the image-based localization system.

However, most existing solvers including the state of the
arts perform well on the prerequisites of treating inlier 2D-3D
correspondences as their inputs. When the filtering algorithm
is operated by the user terminal on the online localization
stage, it is impossible to complete the positioning process in
a very short time in consideration of time requirements from
other algorithms running in the system. It is why RANSAC
only applies for refining the correspondences on the offline
stage in the image-based localization system, such as [16].
Without the aid of RANSAC, that means the correspondences
may contain outliers. In such conditions, the accuracy of the
solver reduced significantly comparing to inlier inputs. Thus,
this dilemma inspires us to devise a new approach, which
could provide better performance in the presence of outliers.

B. RESEARCH FRAMEWORK

To show the relationship among different parts of the system,
a brief illustration of the overall indoor image-based local-
ization provides in Fig. 2. The whole system can divide into
two stages, which is an offline and online stage, respectively.
On the offline stage, two independent parts need to be done.
One is collecting visual fingerprint samples at the interested
place and generating a visual map database by an automatic
fingerprinting method. The time consumed by this procedure
is mainly due to the area of the indoor environment. The other
part is exploiting the Grobner basis solver from particular
polynomial equations with Prime field coefficients, which
will take several minutes to complete the entire process.

Scan Imageand ~ Construct 2D&3D Construct Variabl Build Equations
Pose Information—  Visual Map Grobner Basis Elimina lif)n from Pinhole
by AVF Database Solver Camera Model
Offline Stage
o e e —— — e T ——— . — — —
- Online Stage
Querylmage | 'p.c . iTmage | Find2D-3D Call Grdbner CHBI
with or without —> —— v Basis Solv Solution by Convex
Intrinsic Matrix P ASIS SOLVEE Optimization
L' Find Reliable _J
Bounds by Coarse

Localization

FIGURE 2. Overall framework of indoor image-based localization system.

As shown in Fig. 2, we expect the entire online localization
process to finish within one second according to our proposed
system model, which is very promising and attractive for
indoor image-based localization applications. On the other
hand, each step is continuous on the online stage. From
the very beginning, one will take a shot anywhere in the
indoor environment with a calibrated or uncalibrated camera.
From the perspective of the application, we can assume most
cameras are uncalibrated. Secondly, image information trans-
forms into 2D features. With these 2D features, a matching
algorithm applies for finding reliable 2D-3D or 2D-2D-3D
correspondences. Moreover, a coarse localization result could
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calculate in this step at a lower cost. As the input parameters
of the Grobner basis minimal solver, these 2D-3D correspon-
dences without filtering by RANSAC are used to recover the
intrinsic and extrinsic parameters of the camera. In consider-
ation of the noise, several quadruple 2D-3D correspondences
test to find reliable solutions. Different solutions from the
solver with reasonable bounds will form a QCQP problem,
which is a convex optimization problem. It will give the final
optimal solution to our PnPf problem.

The main research content of this paper is limited to the
blue block diagram. We will explain the projection model and
show how it parameterizes in Section IV-A. Then, the vari-
able elimination procedure details in Section IV-B. Next,
we present the complete back substitution process, which will
find the solution of all variables in Section IV-C. Section IV-D
describes the construction details of the Grobner basis solver
as the final step on the offline stage. Finally, on the online
stage, the core block fuses different outputs of the minimal
solver, a final solution closer to the real value is obtained
by solving the constructed QCQP problem. It will deduce
in Section IV-E. In Section IV-F, we give the computational
complexity analysis.

IV. PROBLEM FORMULATION

A. PARAMETERIZATION

Be similar to most literature in computer vision and visual
localization, the pinhole camera model is used here to repre-
sent relationships between the pixel and world coordinates.
The famous model can express as

Ui X;
Ai | vi =K<R Y; +t>, (D
1 Z;

where [X;, Y;, Z;]7 is the world coordinate of the ith point,
u; and v; is the corresponding coordinate in pixel system
respectively, A; donates the depth factor of the ith point, K is
the intrinsic matrix of the camera, R is the rotation matrix, ¢ is
the translation vector. Usually, R and ¢ are defined as external
parameters, which are more concerned by the image-based
localization system. K defines as

fov w
K=|0 f vo |, )
0O O 1

where f is the focal length, y is the screw factor, ug and vy is
the principal point of the image plane. And for most cameras,
the assumption of y = 0, the focal length aspect ratio is 1,
and ug, vg is in the middle of the image are valid.

By taking advantage of unit-norm quaternion ¢ =
[gw, Gx, gy, qz]T, the expression of R is consistent with [25],
[28], which is

GAG—G—4 20:4y—2qwq:  29x9:+2qway
R=| 2q:qy+2qwq: Gu—ai+43 -4 24y —24wdx
20:0:—2qwqy  24yq:+2qwax  Go—aF— 4 +q>

(3)
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According to Hamilton product of quaternions, R can be
further uniquely decomposed into R = R{R;, where R
and R; could express by the quaternion [g,,, 0, 0, ¢;]” and
(L, (Gwqx + 959/ Gy, + 42): (Gway — 9x42)/ Gy, + 42), 01"
when qfv + q% # (. Meanwhile, the other decomposition
proves to be not unique when ¢,, = g, = 0. Due to its rarity
in practice, the former decomposition of R adopts. Thus,
according to (3), R could express as

01 -0 0
Ri=k|02 01 0], 4)
0 0 1

where k = g3 + 2, Q1 = (g5 — gD)/k, Q2 = 2qug:/k.
Obviously, it also has a nice property between Q; and Q»,
which is 07 + Q3 = 1. It should be noted that this is
different from the parameterization in [25]. Also, the recovery
process is different, which details in section IV-C. As for
R», corresponding to the initial quaternion a new parameter
quaternion [1, g1, q2, O]T redefines as

1+qi—q3 2q1 ¢ 24>
Ry=| 2qq 1—ql+q3 “2q1 |. 5
—2q; 2q, 1—qi—q3

Before variable elimination, (4) and (5) are substituted
into (1), which could deform as

u; i —H u]|[R) R
Mlvil=k|fh A w||R|Xi+1, (6)
1 o o0 1R

where f1 = f01, o = fO», t = Kt, Ré is the ith row vector
of matrix R, X; is the column vector of the ith point world
coordinate. The number of unknowns is 10 in (6).

B. VARIABLES ELIMINATION

To construct more robust and efficient polynomial equations,
variables are eliminated in this subsection. The depth factor
A; is first substituted from (6). Since k # 0, two equations
from one 2D-3D correspondence could represent as

wiRXi+tu; = fIRA X —HRIXi+uoR3Xi+1  (Ta)
ViRIXi+13vi = HRIXi+fiIRXi+voR3Xi+E,  (7b)

where 7 = f1/k, b = t/k, and i3 = #3/k. Note that
equations in (7) are from one 2D-3D correspondence. It can
be assumed there are n correspondences, hence 2n equations
can be generated by (7). A natural idea of eliminating 7; and
f is to take the sum of each equation in (7) and get an average
of the sum respectively, which is referred to in [18], [28].

Consequently, we subtract each equation in (7) from its
average. Two denormalized equations will reform, from
which 73 can be obtained by

I
B=) silfi.foqr @)+ hilfifr g1 g2 (®)
i=1

n ~D ~2\ ~ 1 n ~
where s = > I (U + Vi), = up — ) Ui Vi =
Vi — % " 1 Vi, & and h; are the polynomial function with
42900

parameters fi, f>, g1, g2. Since s must be bigger than 0, 73 is
known when f1, f>, g1, g2 are solved. Once #3 is obtained, 7|
and 7, can be calculated by (7). Otherwise, we can eliminate
f3 by the two denormalized equations, which are different
from [28]. An equation from one 2D-3D correspondence with
four unknowns is finally deformed as

viGi(fi, 12, q1, q2) — wiH;(f1, f>, q1,q2) =0, 9

Note that there will be n equations rather than 2n equations
in [28]. Since there still exists 4 unknowns, 4 pairs of 2D-3D
correspondences are needed for solving (9). For the sake of
efficient computation on the online localization stage, a gen-
eral trick is to express the equations in linear algebra form.
An equivalent expression shows as

By [i £ 1] =0, (10)

where polynomial matrix B is 4 x 3. To find the none-trivial
solutions, the rank of each 3 x 3 submatrices of B must be 2.
Thus, we have det(B3x3) = 0. It should be noted that any 2
of 4 polynomial equations from the determinant equation
could use for finding the solutions, although there are some
false ones. In summary, the final polynomial equations have
2 unknowns ¢q1, g» with the highest degree 6, these polyno-
mials will support the implementation of the overall online
localization algorithms proposed in this paper.

C. BACK SUBSTITUTION

In this subsection, we will find the values of all variables
in (1). With the real solutions of g1 and ¢, fi and f> can
recover by SVD of matrix B in (10). Consequently, the focal
length f could solve by

f=\rE+r (11)

It should be noted that the filtering of the final solution
depends on the ground truth value of f, in P3.5P [25], which
is contradictory to the condition. Thus, we use f, instead
of f,. It is a reference value, which could estimate from the
image information. 73 can be calculated by (5) and (8). Then,
71 and 7, are reached by equations in (7), respectively. Since
the points are rigid, the distance of any two points from the
world coordinates system to the camera coordinates system
will remain unchanged. k could calculate by

i#i (12)

where X; and X; are world coordinates of two independent
points. We can have 6 solutions of k from 4 point coordinates
in the solver. To reduce the impact of noise, the mean value
takes. The translation vector ¢ could obtain by

|RiR(X; = X, = [[Xi = X

t = K k7. (13)

With all recovery unknowns, the focal length f, rotation
matrix R, and translation vector ¢ could solve as one tuple
solution of one particular PnPf problem.
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D. GROBNER BASIS SOLVER

In this subsection, the goal is to find the solutions of two
polynomial equations with the 6 highest degrees. Several
methods can be applied, such as the hidden variable method
with "polyeig’ in Matlab. However, the Grobner basis method
outperforms others in terms of accuracy, which will be called
GB solver for simplicity in the rest of this paper.

Thus, we also choose this standard method for computing
the two polynomial equations with the 6 highest degrees,
which deforms from (10). The other advantage is the solver
itself can be computed on the offline stage with the coefficient
chosen from finite Prime Field Z,, which is time-consuming
compared with the online computing requirement by the
solver. With the help of software, such as Maple or
Macaulay?2 [31], the solution number of the initial polyno-
mial equations and the basis of the quotient ring could be
obtained. Then, an Elimination Template is generated, which
will record the monomial eliminated path. With this crucial
elimination template, a final Action Matrix can be used to
find the solution by the eigenvalue decomposition method,
such as “eig’ provided in Matlab. By simulating one instance
from synthetic data, integer coefficients are used to design
this GB solver with a 36 x 70 elimination template and a
34 x 34 Action Matrix, respectively. For a full description
of the calculation process please refers to [22].

E. CONVEX OPTIMIZATION PROGRAMMING

With the estimated intrinsic and extrinsic camera matrix,
we can evaluate the accuracy by a golden standard, which is
called Reprojection Error. It shows as

n
&P =" ui —uf, . (14)
i=1

where u; donates the ith vector of reprojected pixel coor-
dinates from the world coordinates, u; is the corresponding
primitive vector in the image plane. Unfortunately, the solu-
tions given by the GB solver are unstable due to the different
noise from 4 randomly chosen pairs of 2D-3D correspon-
dence. However, the solver is fast enough to allow dozens
to hundreds of repetitions on the online localization stage
according to the computation platform. Typically, RANSAC
is used to filter out the solutions with larger deviations from
the real value, yet it is not suited for online computing with
its time-consuming characteristic.

Since most literature has proved that PnPf is non-convex,
we need to transform it into a convex problem for solving
efficiently on the online stage. Now, we revisited equation (1)
and turned it into

Xi/f = (ruXi+ r2Yi + ri3Zi + t)/u; (15a)
Xilf = (raXi+ rnYi+ r3Zi+ t,)/v (15b)
Ao =131 Xi + Y+ 1332 4+t (15¢)

where r;; is the ith row and jth column element of the rotation
matrix, u; = u; — uo, v; = v; — vo. For each solution of
GB solver, we have the numeric solution of each equation.
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Suppose the GB solver can provide N sets of solutions, we use
equations (15) for building the optimization problem as

N
. 2
min E willx —cill;
n=1

st llx — cill3 <e,
X < x < xy, (16)

where ¢; is a vector calculated from the ith solution of GB
solver in the right side of equation (15), € is the tolerance, x is
the optimization variable, x; and x,, is the reliable lower and
upper bound of the final solution provided by coarse local-
ization, w is the weight vector. Each w; could be calculated
simply by w; = 1/€Reproj before normalization. Note that
the optimization variable is only the element of the rotation
matrix and the translation vector. The least-square solution of
the focal length could deduce easily after solving the variables
in (16). Equations in (15) could simplify as

e =70,

fY ic = Zicvg’
where X[, Y{, Z{ is the coordinate of the ith point in the
camera system. The problem in (16) is a standard QCQP form
according to [32]. With the interior point method, the global
optimal solution could be calculated efficiently by discipline
convex optimization software, such as cvx [33]. Since our
proposed method mainly bases on Grobner basis solver and

convex optimization, we name it as gcPnPf. The proposed
method summarizes in Algorithm 1.

(17a)
(17b)

Algorithm 1 The Proposed gcPnPf Method

Input: u, X, €, €, fr, ny, x1, xy

Output: 7, o, B, v, f

1: fori=1;i<n;i++ do

2: Put the randomly chosen 4 pairs of « and X into the

GB solver in section IV.D

3 Calculate x, = [1p, ap, Bp, Vp. fp]
4: if €Reproj < € && |fy — fr| < €7 then
5
6

Save x, within the threshold

: Put x, and its correlated weight w with x,, and x; into the
convex optimization solver in section IV.E
7: Calculate the final result by interior point algorithm
8: returnz, o, B, y,f

F. COMPUTATIONAL COMPLEXITY

Given the online localization is more important for the appli-
cation, we analyze the time complexity of our proposed
algorithm on the online stage. According to Section IV.D
and IV.E, the core of our algorithm is the eigenvalue decom-
position of matrix and interior point method in convex opti-
mization. The time complexity of eigenvalue decomposition
is O(ng), where n, is the dimension of the action matrix. The
lower complexity bound and the upper bound of finding an
e-solution are O(1)n,M In(1/€) and O(I)no(ng + M)in(1/e),
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respectively, where n, is the dimension of the optimization
problem, M is the iteration number of arithmetic operation,
€ is the error tolerance. These prerequisites enable us to
show the time complexity of the proposed algorithm clearly.
Supposed that the loop number of GB solver is n;, the lower
bound and the upper bound of our proposed algorithm are
n0m) + O(n,M In(1/€) and mOn3) + O()n,(n3 +
M)in(1/€). Therefore, the computation complexity of our
proposed algorithm approximates to O(n).

V. IMPLEMENTATION AND PERFORMANCE ANALYSIS

A. SYNTHETIC DATA

First of all, the experiment conducts with synthetic data for
convenience. Be similar to [25]—-[28], the camera coordinates
of 3D points are generated randomly within a box of [-2, 2] x
[—2, 2] x [4, 9] for the general case. Then, the pixel coordi-
nate projects by pinhole camera model with an initial point
(320, 240) and focal length around 1000. For the coplanar
case, we set the same z-axis value of the dataset. The x-axis,
y-axis, and z-axis angles randomly choose from 0° — 30°,
which defines as «, B, and y. Meanwhile, the translation
vector distributes from 0 — 3. We will show each element of
this vector in our simulation figures, specifically #1, f>, and #3.
With the rotation matrix and translation vector, the world
coordinates of the 3D points generate. The results of each set
calculate from 100 random repetition groups. Some param-
eters of our proposed method are listed in Table 1. It should
be noted that f, is the reference focal length, which is only
used to evaluate the accuracy of the solution. In real data

simulation, f, = (fy +£,)/2.

TABLE 1. Parameters used in the simulation.

Parameter Symbol Value for Value for
synthetic data  real data
Loop number of
GB solver ng 300 300
Reprojection error
threshold €t 100 200
Focal length error
threshold €f 50 100
Reference value of the
focal length fr 1000 1378.8
Tolerance in
the constraint € 0.01 0.1

Since our proposed algorithm composes of GB solver and
convex optimization, we define it as gcPnPf for short in
the simulation figures. To compare our proposed algorithm
with the benchmark thoroughly, we divided the synthetic
data simulation results into four parts. The first, second, and
third parts are general point cases, which are non-coplanar,
while the fourth part is the coplanar case. Different parameter
variation applies in the general point case.

The first part of the comparative results is with the con-
figuration of focal length f = 1000, aspect ratio 1, 20 2D-3D
correspondences, which shows in Fig. 3. Zero-mean Gaussian
noise with standard deviation oy, = 5 is added to the image
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FIGURE 3. Results with image Gaussian noise ojpg = 5.

feature coordinates. Under this setting, the cumulative error
probability density uses for evaluating the accuracy among
algorithms, which shows more details than the mean-error or
median-error curve. More specifically, rotation and transla-
tion of x-axis, y-axis, z-axis, focal length, and localization
error evaluate separately. The localization error defines as
the Euclidean distance of the translation vector between real
value and estimated value. To compare with the real data,
the localization error and translation error are limited to meter
level, which is original dimensionless. Otherwise, we use the
absolute error to evaluate the results, which is more intuitive
than relative error under a particular setting for a localization
system.

|- UPnP[26] —UPnP-GN[26] ~-DLSPnPf[28] ~—gcPnPf
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FIGURE 4. Focal length and localization results with different image
Gaussian noise ojpg = 5 — 10.

Next, the mean relative focal length and the mean local-
ization error show in Fig. 4. Different image Gaussian noise
Oimg 1is varied from 5 to 10. From Fig. 3 and Fig. 4, it is
almost certain that DLSPnPf and our proposed gcPnPf out-
performs UPnP and its enhanced version UPnP-GN in terms
of accuracy. The fundamental reason is that the method is
different for solving polynomial equations. Further, gcPnPf
shows better results than DLSPnPf in most comparisons.
This reveals that our global convex optimization solver is
more robust than the direct least-square objective function
in [28]. In addition, Table 2 gives a summary of different
localization statistical errors under image Gaussian noise ojyg
varied from 5 to 10.
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TABLE 2. Different statistical error of localization.

Gaussian Noise €Emazx €min €Emean €std
5 0.3157 0.0047 0.1311  0.0947
6 0.3174  0.0136  0.1092 0.0914
7 0.8717  0.0016 0.103 0.1881
8 0.5720 0.0324 0.2111  0.1521
9 0.6271  0.0039 0.2699 0.2114
10 1.369 0.003 0.1938  0.2988
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FIGURE 5. Results with 100 2D-3D correspondences.

The second part of the results are from focal length f =
1000 and image Gaussian noise 0y, = 10, which show
in Fig. 5. The number of 2D-3D correspondences is 100.
It describes the performance of different algorithms compar-
ing to the former part, whose 2D-3D correspondences number
is particularly 20. From Fig. 5, the performance of accuracy
is promoted compared to that of the former setting.

[~-UPnP[26] —UPnP-GN[26] < DLSPnPf[28] —gcPnP{|
30

ES

w
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-
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Focal length error(%)
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o

o

0 0
20 100 200 300 400 20 100 200 300 400
2D-3D correspondence number 2D-3D correspondence number

FIGURE 6. Focal length and localization results with different 2D-3D
correspondences 20-400.

Fig. 6 shows the curve of the mean relative focal length
error and the mean localization error w.r.t. the number of 2D-
3D correspondences. Our proposed method shows better
results under a different number of 2D-3D correspondences.
Although the accuracy performance of UPnP approaches the
other two algorithms with more 2D-3D correspondences,
the computation cost dramatically increases. Numerically,
the time cost of UPnP changes from 0.03s to 7.5s, while it
changes slightly in DLSPnPf and our proposed method.
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FIGURE 7. Results with o5 = 20.
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FIGURE 8. Focal length and localization results from o5 = 0 to 5 = 200.

The third part of the results is with image Gaussian noise
Oimg = 5, 2D-3D correspondences number 20. The focal
length f; and f, are chosen differently around 1000 with stan-
dard deviation oy, whose value is 20 in Fig. 7. Fig. 8 shows
the relationships between the mean error and the focal length
deviation variation. From these results, the error introduced
by the difference between the pinhole camera model proposed
in this paper and the one in the practical application is shown.
More specifically, the aspect ratio is not equal to 1. Since the
model in [26], [28], and this paper treats that the focal length
has a square aspect ratio, the focal length error evaluates by
f from the x-axis. According to Fig. 8, the performance of
our proposed algorithm is better than the other benchmark
algorithms under this variation.

We also compare the accuracy performance of our pro-
posed GB solver with P3.5P, which shows in Table 3. The
configuration is o, = 5, n = 20, f = 1000 in non-planar
case from 500 trials.

TABLE 3. Accuracy comparison(mean).

Rotation Error ~ Translation Error ~ Focal Length

Solver (degree) (cm) Error
Our proposed
GB solver 4.7 0.2 214
P3.5P 6.4 0.35 259

The fourth part is from the coplanar case comparing to
the former general one, which is with 20 2D-3D corre-
spondences, image Gaussian noise 0, = 8, f = 1000.
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FIGURE 9. Results with coplanar case.

The simulation results show in Fig. 9. Note that the error
of translation and rotation angle from all algorithms will
significantly increase when oy, > 8. UPnP degenerates
more seriously than DLSPnPf and gcPnPf, partially due to its
combination of translation in the z-axis and focal length into a
variable. In terms of localization error, the performance of our
proposed algorithm is better than the other benchmarks. The
improvement can be done by reformulating the PnP equation
under this coplanar case, which is beyond the scope of this
paper. From the simulation results under the variation of
different parameters, the accuracy of our proposed algorithm
is better than the other benchmarks. The simulation results of
synthetic data can summarize as follows.

(1) When oy, increases, the accuracy will reduce on the
overall trend.

(2) The accuracy will promote by increasing the number
of 2D-3D correspondences.

(3) The accuracy will decrease by increasing the focal
length deviation.

(4) The accuracy degenerates seriously in the coplanar case
than the general case.

As mentioned in Section III, our goal is to provide a
one-second level localization experience for a pedestrian.
Since the implementation of each benchmark is different,
we will not compare the computation time totally among
different algorithms. Instead, we list the average latency in
our proposed scheme, which shows in Table 4. Although the
running time of our proposed GB solver is slightly slower
than P3.5P [25], whose average computational time on our
simulation platform with Intel Core CPU @2.67GHz and
8GB memory is 0.5ms. It also should be noted that the
latency performance influences by the different implemen-
tation of matrix simplest form and eigenvalue decomposition
algorithm.

TABLE 4. Computational time(milliseconds).

Latency Total Latency
Step (mean) Loop Number (mean)
GB solver 0.7 300 210
QCQP solver 306 1 306
Total 516
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B. REAL DATASET

The 2D-3D correspondences calculate by algorithms pro-
posed in [6], [9]. An open-access dataset TumIndoor [34]
uses for the sake of fairness. It is used commonly in visual
localization for verifying the performance of different algo-
rithms. TumIndoor 1st Floor dataset is one of the biggest
subsets, which chose as a real dataset in this paper. It provides
3146 DLSR images, a 59.7M points cloud, and 42 x 6 query
images. The shooting positions of the querying image snap
off the reference image track. In this paper, to evaluate the
performance of our proposed algorithm in the real applica-
tion, we only use the 42 x 6 query images as the query instead
of choosing from the 3146 DLSR images. Some samples in
TUMI1 show in Fig. 10.

FIGURE 10. Sample images from TUM1.

Although this dataset provides a 3D points cloud with
location information, it loses descriptive information of each
point. We use the SURF descriptor to identify each point in
our simulation and regenerate the point cloud by the common
SFM technique. Then, the matching algorithm proposed in
[9] is applied to calculate the 2D-3D correspondences, which
finally import into the minimal solver proposed in this paper.
The bound of localization is provided by KNN algorithms,
which is also proposed in [9].

The localization result shows in Fig. 11. The outcome is
from 149 images of 252 queries, which donates the suc-
cess ratio is 59.13%. The reason is that the matching algo-
rithm fails to provide enough points for the PnP localization
problem. Since the dataset does not provide the rotation

1 -
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('8
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£0.4r ~DLSPnPf[28]
w ——gcPnPf
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Localization error[m]
FIGURE 11. Results from 149 of 252 images in real data from TUM1.
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matrix of the queries, we set the reliable bound of Eular angle
at the range of —90°-90°, and the bound of translation vector
is within 3 meters from the ground truth, which is the mean
result of coarse localization.

The other real dataset achieves from our research center,
which is in the Science Park of Harbin Institute of Technol-
ogy. It covers a whole floor in building #12, whose area is
close to 260m?. The dataset is with 242 reference images,
whose resolution is 1280 x 720. It also contains 100 test
images, which are shot at the different locations with the ref-
erence images. Some samples in the dataset present in Fig. 12.
We name it HIT-B12.

FIGURE 12. Sample images from HIT-B12.
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FIGURE 13. Results from 100 images in real data from HIT-B12.

The other setups of the experiment keep the same. The
CDF of the localization error shows in Fig. 13. Since the
environment of HIT-B12 is smaller than TUM1, the preorder
algorithm of visual localization provides a 100% success
ratio. Therefore, the results are achieved from all the test
images. Our proposed algorithm still shows better accuracy
than the benchmarks.

VI. CONCLUSION

In this paper, we propose an algorithm for solving the PnPf
problem in an indoor image-based system based on Grob-
ner basis minimal solver jointed with convex optimization,
which expects to provide a robust solution without running
RANSAC on the online localization stage when outliers exist.
Also, the solver aims at calculating the optimal results in
a second-level time when one is locating himself by our
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proposed overall system. The proposed GB solver can obtain
more accurate results by the constraints of unchanged rigid
body distance comparing to the state-of-the-art solver. The
entire procedure could complete within 0.6 seconds. In this
way, together with the other parts of the image-based local-
ization system, a second-level positioning experience could
present. The simulation results achieve thoroughly from syn-
thetic data by various configurations. Besides, two real exper-
iments apply to test the performance comparing to synthetic
data. In summary, our proposed algorithm can provide more
reliable results than the benchmarks within the delay require-
ments, due to the proposed scheme in this paper. Future
research will dedicate to find optimal quadruple 2D-3D
correspondences, which will further reduce the repetitions of
the minimal solver.
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