
Received February 12, 2021, accepted March 8, 2021, date of publication March 15, 2021, date of current version March 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066100

Service Improvements in Real-Time Uniprocessor
Scheduling With Single Errors
ROBERT SCHMIDT , (Graduate Student Member, IEEE),
AND ALBERTO GARCÍA-ORTIZ , (Senior Member, IEEE)
Institute of Electrodynamics and Microelectronics, University of Bremen, 28359 Bremen, Germany

Corresponding author: Robert Schmidt (rschmidt@uni-bremen.de)

ABSTRACT Mixed-criticality scheduling in modern deeply embedded mission and safety-critical systems
needs to consider delivered service, that is, the runtime in low criticality mode. If the change into a higher
criticality mode is triggered by the first overrunning job, the service is severely reduced. With earliest
deadline first with virtual deadlines for single errors (EDF-VD-SE) we show how to reserve additional
time to tolerate a single overrunning job by formulating and solving an optimization problem, and that
EDF-VD-SE is feasible without assumptions about error probabilities for safety guarantees. We conduct
extensive simulation experiments to report on average doubled service figures, and show how EDF-VD-SE
results in a nearly constant acceptance rate of random task systems.

INDEX TERMS Real-time systems, scheduling algorithms, system recovery.

I. INTRODUCTION
To meet non-functional requirements of embedded systems
in the avionics and automotive sector, components of differ-
ent criticality, or required level of assurance against failure,
are integrated onto a common hardware platform [1], [2],
resulting in mixed-criticality systems [3].

For mixed-criticality real-time control systems, like
on-board flight computers, a criticality is assigned to each
task, or reoccurring computation. Computations, or jobs,
need to finish prior to their deadline to meet the timing
requirements of the system, and share the processor with
other jobs. If job arrival times and their execution times are
not known in advance, it is to decide during system run-time
on a schedule when jobs are allowed to access the proces-
sor. This makes schedulability verification prior to system
deployment a necessity. For schedulability verification, jobs’
worst case execution times (WCETs) are modeled as constant
upper bounds, which are impossible or hard to derive in a
safe and precise manner [4], and tend to increase with the
criticality [5]. In specifying multiple estimates for a job’s
execution time, mixed-criticality scheduling approaches are
able to provide different levels of assurance, increasing the
chance to verify the schedulability of the system.

For a preemptive uniprocessor, scheduling jobs from inde-
pendent, sporadic, implicit deadline tasks, mixed-criticality

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai .

scheduling approaches like earliest deadline first with vir-
tual deadlines (EDF-VD) guarantee that all high criticality
tasks finish prior to their deadline, irrespective of the low
criticality tasks [6]. This guarantee is achieved among other
things by separating the run-time in modes, where change
from the initial low criticality mode into the higher criticality
mode, executing only high criticality tasks, is triggered by
a high criticality job executing longer than accounted for.
But abandoning low criticality tasks, or rather the service
they implement, is not sensible [7], [8] if the system is
expected to experience an actual mode change [9]. Espe-
cially in modern fault-tolerant hard real-time systems, where
scheduling is not deterministic [10], mode change needs to be
considered. Therefore holistic approaches need to go beyond
scheduling guarantees for high criticality tasks, and strive to
provide as much service as possible to low criticality tasks
as well.

To extend the service of low criticality tasks, the change
from low to high criticality mode should be delayed as long
as possible [11]. Changing modes is tied to a particular event
which is integral to the approach’s schedulability check. For
approaches like EDF-VD, the event is the overrun of a single
high criticality job, which happens if the job’s computation
takes longer than anticipated by its low criticality budget.

We propose to reserve additional time during system
design to accommodate for a single overrun, which results
in a delayed or even prevented change into high criticality
mode. With our approach, called EDF-VD-SE, we show

43540 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1342-6292
https://orcid.org/0000-0002-6461-3864
https://orcid.org/0000-0003-1494-1138


R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

• how to find and reserve additional time by virtual
deadlines using sequential least squares programming
(SLSQP) (Section IV-C);

• that our adaptive approach results in a nearly constant
acceptance rate of random task systems (Section V-A);
and

• how this approach improves the quality of service by
effectively doubling the run-time on average in low
criticality mode (Section V-B).

II. PRELIMINARIES
In the following subsections we introduce the reader to
our notation, and the basics of earliest deadline first (EDF)
scheduling for mixed-criticality task systems. Once major
terms are defined, we review how task systems are randomly
generated in a controlled manner, which is important to
ensure reproducible experiments.

A. NOTATION
We consider independent, sporadic, implicit deadline
dual-criticality task systems, scheduled on a preemptive
uniprocessor. The processor is the only shared resource,
and the overhead of scheduler operation and context switch
can be bounded by a constant. We adopt the standard
dual-criticality task system model [9], [12], [13]: Each task
τi in a dual-criticality sporadic task set τ = {τ1, . . . , τn} is
characterized by
• a criticality level χi ∈ {1, 2}, often referred to by
symbolic names low L = 1 and high H = 2;

• execution time budgets in both criticality modes
ci(1), ci(2);

• a relative deadline di of the jobs of τi; and
• the minimum interarrival time, or period pi between two
jobs of τi.

Execution time budgets are estimates of the time it takes to
execute a task’s job on the uniprocessor. They summarize the
distribution of actual execution times by an upper limit. With
multiple execution time budgets the distribution is sliced into
multiple parts, which allows to differentiate an average case,
and further pessimistic cases. In dual-criticality tasks we use
up to two execution time budgets ci(1), ci(2) to differentiate
the average- and worst case. A constant is added to all execu-
tion time budgets to account for scheduler and context switch
overhead.

Furthermore, the execution time budgets, deadlines, and
periods are constrained to obtain an implicit deadline system:

∀τi ∈ τ : ci(1) ≤ ci(2) ≤ di = pi (1)

Tasks generate an unbounded sequence of jobs, where jobs
are characterized by their arrival time αij, actual execution
time γij, and absolute deadline dij = αij + di. At run-
time, high criticality jobs might execute longer than ci(1), but
never exceed their WCET ci(2). Low criticality jobs are con-
strained to never execute longer than ci(1). The task system
is mixed-criticality schedulable if every high criticality job
can receive execution time γij during [αij, dij), to meet their
deadline [14].

At system level k a single task τi has a utilization of ui(k) =
ci(k)/pi. We can summarize the utilization in low- and high
criticality mode for a dual-criticality system with K = 2 as
follows [14]:

Ul(k) ≡
∑
i:χi=l

ci(k)
pi

l = 1, . . . ,K , k = 1, . . . , l (2)

For the reader’s convenience we refer to the criticality lev-
els by their symbolic names with the following notation:
U1(1) = UL ,U2(1) = UL

H ,U2(2) = UH
H . Moreover for a low

criticality task τi the WCET is ci and the task’s utilization is
ui. For high criticality tasks τi the WCETs are cLi , c

H
i and the

task’s utilizations are uLi , u
H
i .

B. EARLIEST DEADLINE FIRST WITH VIRTUAL DEADLINES
EDF-VD is a preemptive uniprocessor dynamic scheduling
approach for mixed-criticality task systems. It is an extension
of EDF scheduling to mixed-criticality task systems by intro-
ducing earlier, virtual deadlines. As in EDF, the priority of a
job is defined by its deadline [15]. The closer the deadline,
the higher the priority of the job. The job with the highest
priority is granted access to the processor, and can preempt
a currently running job, which returns to the scheduler’s job
queue.

In contrast to EDF scheduling, EDF-VD introduces the
concepts of criticalities and modes, which separates the sys-
tem’s run-time into two modes: In the first mode, jobs from
all tasks are scheduled. Once a job from a high criticality
task requires more computation than anticipated (γij > cLi ),
the system changes to the second mode, where only jobs from
high criticality tasks are scheduled.

To guarantee that all high criticality jobs have enough time
to finish prior to their deadlines, EDF-VD introduces earlier,
virtual deadlines which reserve time necessary for a success-
ful mode change. These earlier deadlines increase the priority
of the task’s jobs. Once the switch to high criticality mode is
triggered, jobs from high criticality tasks are scheduled with
their original deadline.

We can interpret the scheduling in both modes as regular
EDF scheduling with different sets of tasks. If both modes
satisfy the constraints of regular EDF scheduling, with the
transitional phase taken care of by earlier deadlines, the sys-
tem is guaranteed to never miss a deadline [14].

C. RANDOM TASK SYSTEM GENERATION
It is interesting to knowwhich, or howmany, task systems are
deemed schedulable by a given algorithm. With a fixed set of
task systems, the fraction of task systems deemed schedulable
can be compared between algorithms as an indication of their
practical applicability. If an algorithm is able to schedule
a larger fraction of task systems, it seems more practical,
because the likelihood of scheduling a specific task system
increases. Comparing algorithms in this regard requires a
large set of task systems, hence randomly-generated synthetic
task systems are used.

VOLUME 9, 2021 43541



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

FIGURE 1. UUnifast algorithm [16]. The algorithm computes each task’s
utilization ui iteratively by nested splitting of U between i tasks. Each
iteration, a utilization ui is calculated by inverse transform sampling a
CDF of the sum of i uniform random variables limited to the iteratively
decreasing remaining utilization s.

The random generation is controlled by several parameters,
which can affect results and bias the judgment about algo-
rithms [16]. Amajor parameter is the task system’s utilization
U , because the difficulty increases withU . The distribution of
U over all tasks in a system needs to be controlled to avoid any
bias. It is favorable to have uniform distributed task utilization
ui; the UUnifast algorithm provides a controlled way of
distributing U over n tasks in a system [16].

To calculate uniformly distributed task utilizations ui in
linear time the UUnifast algorithm splits U iteratively into
n slices, as shown in Fig. 2. Given a CDF Fi(x) of the sum of
i independent uniform distributed random variables and their
sum limited to s, the algorithm draws a random value x ≤ s by
inverse transform sampling from Fi(x). The difference s−x is
the remaining utilization which needs to be split up between
n− 1 tasks. This procedure, formalized in Fig. 1, is repeated
for the remaining n− 1 tasks.

The CDF Fi(x) is derived from the probability density
function (PDF) fi(x) of the sum of independent, uniformly
distributed random variables in [0, b]:

fi(x) = fU1+U2+···+Ui (x) =
(
fU1 ∗ fU2 ∗ · · · ∗ fUi

)
(x) (3)

fi(x) =


1
b
x i−1, x ∈ [0, b]

0, else
(4)

Fi(x) =


0, x ≤ 0(x
b

)i
, 0 < x ≤ b

1, x > b

(5)

The sampling of random values from Fi(x) requires the
inverse function F−1(x), which is used in line six of the
UUnifast algorithm in Fig. 1 in case 0 < x ≤ b:

Fi
(
F−1(x)

)
= x (6)(

F−1(x)
b

)i
= x (7)

F−1(x) = b i
√
x = bu1/i (8)

TABLE 1. Example of executing UUnifast algorithm for U = 1 and n = 4.

FIGURE 2. Example slicing of U = 1 by the UUnifast algorithm with
n = 4 tasks.

As an example considerU = 1 and n = 4, which can result
in u = (0.243, 0.105, 0.399, 0.253) as shown in Table 1.
The slices are iteratively calculated, where v ∈ U(0, 1) is a
uniform distributed random variable:

s(0) = U snext(0) = U · v1/3 (9)

s(1) = snext(0) snext(1) = snext(0) · v1/2 (10)

s(2) = snext(1) snext(2) = snext(1) · v (11)

The task’s actual utilizations are the differences between two
slices, except the last one:

u0 = s(0)− snext(0) (12)

u1 = s(1)− snext(1) (13)

u2 = s(2)− snext(2) (14)

u3 = snext(2) (15)

The remaining parameters in the task system generation
are the limits of uniform random distributions for the task’s
period, deadline-to-period ratio, and factor between low- and
high level utilization. Usually one can assume task periods
within typical ranges, for example between pl = 200ms
and ph = 5000ms depending on the kind of application. A
uniform distribution U(pl, pu) is justified for general compar-
isons of algorithms, but other distributions can be considered
if the applications of interest have a bias towards shorter or
larger periods in a task system. For non-implicit-deadline
tasks the deadline of each task is a multiple of the period,
di = εipi with a deadline-to-period factor drawn uniformly
εi ∈ U(εl, εu). Implicit-deadline task systems are generated
with εl = εh = 1. The execution time budget of each task
is the product of the task’s utilization ui and period pi ∈
U(pl, pu): cL = uipi.
For our experiments we generate synthetic task systems,

and convert them into dual-criticality task systems. A uni-
formly distributed factor zi ∈ U(zl, zu) determines the higher
level execution time budget cH = zicL [17], if by random
chance of p = 0.5 the task is of high criticality. The factor
zi describes the pessimism in estimating the task’s WCET

43542 VOLUME 9, 2021



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

FIGURE 3. Mode switch in EDF-VD and EDF-VD-SE. With EDF-VD-SE we
can tolerate a single overrun without abandoning low criticality tasks.
With the second overrun, low criticality tasks are abandoned in favor of
high criticality tasks. EDF-VD represents the mode switch behavior of
classic dual-criticality mode switch schemes. Compared to classic
dual-criticality mode switching, EDF-VD-SE has an intermediate mode
labeled ‘‘SO’’ (single overrun).

with cH . Moreover, by selecting zl = zh = z ∈ {x ∈
Z : x > 1} we can model different software error correc-
tion approaches where jobs are repeated, which we describe
in more detail in Section IV. Resulting dual-criticality task
systems have different utilizations UL ,UH in low- and high
criticality mode, with UH > UL due to increased pessimism
in estimating the task’s WCET. During random generation,
the utilization in low criticality mode is chosen, which influ-
ences the utilization of low criticality tasks in low criticality
mode UL

L and of high criticality task in low criticality mode
UH
L :

U = UL = UL
L + U

L
H (16)

This parameterized random generation approach is used to
reproduce task system sets used in the literature and allows
to investigate a schedulability test under explicit parameters
and task system properties.

III. OVERVIEW OF EDF-VD-SE
The general idea of EDF-VD-SE is to delay the mode change
in EDF-VD to high criticality mode as shown in Fig. 3. The
delay is achieved by tolerating a single overrun of execution
time budget for a high criticality task, under the assumption
that overruns are possible, but rare. In EDF-VD the scheduler
would kill all low criticality tasks and serve only high critical-
ity tasks after the first overrun. But with EDF-VD-SE, we can
continue to service jobs from low criticality tasks, resulting
in a better quality of service (QoS) for them.

With EDF-VD-SE, we consider both the schedulability of
high criticality tasks, and the QoS for low criticality tasks dur-
ing system operation. Compared to analysis-only approaches
like EDF-VD, whose scope is the schedulability of high
criticality tasks, EDF-VD-SE is motivated from a different
perspective on the problem: how to guarantee schedulabil-
ity of high criticality tasks and improve the QoS for low
criticality tasks. We deem this perspective more appropriate

for safety-critical systems, and EDF-VD-SE as a holistic
approach to solve the problem.

By reserving additional time during system design,
EDF-VD-SE can tolerate an overrun of a high criticality
task. The additional time is sourced from static slack, or by
reducing the utilization of low criticality tasks. The question
remains how much time do we need to reserve, and how to
ensure that the approach works with the task system at hand.
We adopt the idea of virtual, earlier deadlines as in EDF-VD
to reserve time for the tolerated overrun. We formulate the
question as an optimization problem and solve it with SLSQP
to acquire a suitable virtual deadline scaling parameter and
the maximum allowed utilization of low criticality tasks.
Comparing with the task system at hand, we might find out
that we can even add further low criticality tasks, which is
valuable information for the system designer.

To derive a suitable virtual deadline scaling parameter for
a task system with n high criticality tasks, we create for each
high criticality task a virtual task system where the task’s
execution time budget in low criticality mode is equal to
the budget in high criticality mode. If we can find a virtual
deadline scaling parameter x suitable for all n virtual task
systems, we can use this x to create the virtual deadlines
d̂i = xdi in the original task system, and schedule the original
task system with confidence that one overrun is tolerable.

IV. MODEL
Our approach works well for modern fault-tolerant hard
real-time systems build from commercial off-the-shelf
(COTS) components. Ensuring the continuous correct ser-
vice of such a system and thus making it reliable requires
addressing faults during system design and operation. Faults
are classified based on whether their duration is permanent
or transient, their extend is local or distributed, and their
value is determinate or indeterminate [18]. Once a fault is
activated, the system deviates from its correct service state.
This deviation is an error. If the error affects the delivered
service a failure occurs [19]. Fault tolerance techniques are
used to prevent system failure and differ in which class of
fault they are able to tolerate.

Therefore our model, which we introduce in the follow-
ing sections, can describe systems where error detection
and correction is used to ensure the service of high crit-
icality tasks, but not exclusively. First, we introduce the
aspects of our model which are relevant during system oper-
ation, including mode change, application of virtual dead-
lines, and implications for the scheduler implementation
(Section IV-A). Motivated by the system operation, we con-
tinue with the static aspects of our model which cover
error modeling and the schedulability check (Sections IV-B
and IV-C).

A. SYSTEM OPERATION
The standard mode change scheme [9], [12], [14] for mode
switched EDF scheduling of dual-criticality task systems
separates the run-time in modes, with the system starting in

VOLUME 9, 2021 43543



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

low criticality mode, where all jobs are scheduled according
to their execution time budget ci or cLi . Low criticality jobs
are prevented to execute longer than ci, but high criticality
tasks can overrun their budget up to cHi . As soon as a high
criticality tasks executes longer than cLi , the system changes
into the high criticality mode, where only jobs from high
criticality tasks are scheduled. Once the system enters high
criticality mode, low criticality tasks, or rather the service
they implement, are abandoned.

The mode change scheme in EDF-VD-SE is an expansion
of the standard mode change scheme as shown in Fig. 3.
The additional intermediate mode between high- and low
criticality mode accounts for the single tolerable error, and
allows to continue servicing jobs from low criticality tasks.
Once the second error is detected, the system changes into
high criticality mode, which is identical to the standard mode
change scheme.

In EDF-VD-SE the deadlines of high criticality jobs are
scaled by x. When the system starts, jobs are EDF scheduled
according to their earlier, virtual deadlines from the scaling.
In case of a single error, which results in a job from a high
criticality task τi to execute longer than cLi , the system records
the error and continues to service all tasks. If a second error
happens, all low criticality tasks and their jobs are removed
from the system, and jobs from high criticality tasks are
scheduled according to their original deadlines. Therefore the
run-time operation is similar to EDF-VD except the addi-
tional flag to record the first error and to delay the mode
change.

B. ERROR MODEL
In EDF-VD-SE, we model the error detection and correction
techniques used to ensure the service of high criticality tasks
with execution time budgets. During error-free operation,
protected high criticality tasks don’t exceed their low mode
execution time budget. Once errors are detected, the error
correction requires additional time, which is reflected in the
high mode execution time budget.

Execution time budget overrun is a powerful abstraction
for transient errors in embedded systems because a lot of soft-
and hardware errorsmanifest as delays or errors in timing. For
example, a single energetic particle strike causing a voltage
spike at a node in an integrated circuit can result in a single
event upset (SEU) [20]. Such an SEU might flip a bit in a
central processing unit (CPU) register which holds a loop
counter, or a calculated result gets corrupted and needs to
be recalculated. These longer run-times are considered in the
high mode execution time budget cHi . To model a task with
error correction, we consider cHi = zicLi as a multiple of cLi ,
where zi ∈ {x ∈ Z : x > 1} captures the pessimism in
estimating the task’s WCET for error correction approaches
where jobs are repeated.

C. SCHEDULABILITY CONDITIONS
To account for the unforeseen switch to high criticality mode,
approaches like EDF-VD reserve processor capacity by

introducing earlier, virtual deadlines d̂i = xdi for high crit-
icality tasks. Therefore virtual deadlines should be chosen
in such a way that they ensure schedulability during the
mode switch, or transitional phase, under the assumptions of
the implemented mode switch scheme. For a dual-criticality
system, the necessary conditions to ensure steady-state
schedulability under EDF-VD are [6]:

UL
L +

UL
H

x
≤ 1 (17)

xUL
L + U

H
H ≤ 1 (18)

In Eq. (17) the termUL
H/x accounts for the utilization increase

of high criticality tasks from earlier virtual deadlines. We
replace this term with ÛL

H , which reserves time for a single
high criticality task τj in low criticality mode to tolerate an
overrun without switching modes:

ÛL
H =

cHj
dj
+

∑
i∈τH
i 6=j

cLi
xdi

(19)

The resulting schedulability condition for the low criticality
mode considering τj is:

UL
L +

cHj
dj
+

∑
i∈τH
i 6=j

cLi
xdi
≤ 1 (20)

To account for a single error in all tasks we check if the task
system is still schedulable if any high criticality task requires
more time. This increases the number of equations we need
to consider from two to n + 1 with n as the number of high
criticality tasks in τ :

∀j UL
L +

cHj
dj
+

∑
i∈τH
i 6=j

cLi
xdi
≤ 1 (21)

The schedulability condition for the high criticality mode is
unchanged.

In EDF-VD-SE, we seek a numerical solution of which
deadline scaling parameter x of our task system with n high
criticality tasks allows to schedule the task system while
supporting the maximum amount of low criticality work UL

L .
Our vector of variables is y =

[
x UL

L

]
, our objective function

is f (y) = UL
L , and we can formulate our search as an

optimization problem, with the constraints stemming from
the schedulability conditions in low- and high criticalitymode
for each high criticality task j:

maximize
y

UL
L

subject to ∀j 1− UL
L − u

H
j −

∑
i∈τH
i 6=j

uLi
x
≥ 0

1− xUL
L − U

H
H ≥ 0 (22)

The resulting optimization problem has a scalar objective
function and n + 1 nonlinear inequality constraints, and can

43544 VOLUME 9, 2021



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

TABLE 2. Example task system with two high criticality tasks and two low
criticality tasks. The task system is schedulable with EDF-VD-SE,
as demonstrated in Section IV-C1. The virtual deadline scaling parameter
for all high criticality tasks τj is x = 4/5.

FIGURE 4. Visualization of both high criticality tasks from the example
task system in Table 2. The length of each bar is equal to the task’s period
pi and deadline di , with ratio of bar length to filled length as utilization.
The black part of each bar is equal to the task’s execution time budget in
low criticality mode cL

i . In high criticality mode, the execution time
budget of each task is larger. The difference between low- and high
criticality execution time budget is shown in red. Deadline scaling with x
results in earlier deadlines, with the difference between original and
virtual deadline indicated by the green part of the bar.

be solved by nonlinear programming (NLP). Because the
objective function and constraints are twice continuously
differentiable we can solve the problem with SLSQP [21],
[22] to calculate the maximum utilization of low criticality
tasks in low criticality modeUm

L and working virtual deadline
scaling parameter x. If the optimization succeeds, and UL

L of
the task system is below or equal to Um

L , the task system is
schedulable. The optimization is done prior to target system
operation, during system design, and the results are fixed and
valid for the whole system operation time. Therefore there is
no overhead from optimization during operation.

1) EXAMPLE
As an example let us consider the task system in Table 2. The
task system has two high criticality tasks τ1, τ2, and two low
criticality tasks. As it stands, the utilization of low criticality
tasks in low criticality mode is UL

L = 4/20. Solving the
optimization problem Eq. (22) results in Um

L = 1/4 and
x = 4/5. Because Um

L ≥ UL
L the task system is schedulable

by EDF-VD-SE.
The example’s deadline scaling is visualized in Fig. 4,

which shows how earlier deadlines reserve time for the mode
change. Despite earlier, virtual deadlines the period is not
changed, and the mode is changed once one of the high
criticality tasks executes longer than cLi .

2) MODIFICATION OF UL
L

Solving the optimization problem Eq. (22) can results in 1) a
schedulable task system Um

L ≥ UL
L ; or 2) a non-schedulable

task system Um
L < UL

L . Contrary to EDF-VD, we can use
the additional information of Um

L to modify our task system
in both cases: 1) Um

L ≥ UL
L allows us to add additional

low criticality tasks to our task system until UL
L = Um

L ;

and 2) Um
L < UL

L guides us in removal of tasks until
UL
L = Um

L . In both cases, a difference in utilization 1UL
L =

Um
L − UL

L of zero indicates the maximum load for the pro-
cessor. We investigate how modification of UL

L by 1UL
L

can help to improve the acceptance rate for EDF-VD-SE in
Section V-A.

V. EXPERIMENTS
To understand the usefulness of EDF-VD-SE, we investi-
gate how many task systems are actually schedulable with
EDF-VD-SE. For this we generate a set of random task
systems and apply the schedulability check described in
Section IV-C, noting which task systems are schedulable and
which not.

Moreover, we want to know the benefit in QoS, or addi-
tional system run-time beyond the first error. We use
Thready [23] to simulate a large set of random task systems
to investigate the run-time until the first- and second error.

A. ACCEPTANCE RATE OF UUnifast RANDOM TASK
SYSTEMS FOR DIFFERENT UTILIZATIONS
The acceptance rate is the number of schedulable task sys-
tems divided by the total number of task systems.We generate
random task systems to investigate how many can be sched-
uled by EDF-VD-SE in comparison to EDF-VD. One benefit
of EDF-VD-SE is that we know the maximum allowed uti-
lization by low criticality tasks after the schedulability check.
Therefore we investigate the acceptance rate of EDF-VD-SE
in two ways: First, we compare if the utilization from low
criticality tasks in the random task system is below or equal
to the maximum utilization allowed by EDF-VD-SE. If this is
the case, we count the task system as schedulable. In the sec-
ond investigation we use our knowledge about the maximum
allowed utilization to modify the random task system, and
report if it is schedulable after modification.While we do this,
we take note of the low task utilization delta, which can be
positive, if EDF-VD-SE allows to add further low criticality
tasks to the system, or negative, if EDF-VD-SE requires to
lower the utilization of low criticality tasks. Such a negative
utilization delta can be interpreted as the cost to allow a single
error.

In Fig. 5, we compare the acceptance rate of EDF-VD-SE
to EDF-VD, with and without modification of the random
task system. Each data point is the result of calculating the
acceptance rate of 1024 task systems for a specific utiliza-
tion in low criticality mode UL = UL

L + UL
H . We gener-

ate random task systems with specific UL as described in
Section II-C, following a parameterization for task systems
which are mostly schedulable by EDF-VD [6]: For each task
periods are uniformly drawn between pl = 50 and pu = 200,
and pessimism is uniformly drawn between zl = 1 and
zu = 2.
While EDF-VD shows a superior schedulability for task

systems with utilization UT < 0.9, EDF-VD-SE can use
the knowledge about maximum low criticality task utiliza-
tion to provide a near constant acceptance rate around 0.5.

VOLUME 9, 2021 43545



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

FIGURE 5. Acceptance rate of EDF-VD-SE and EDF-VD for UUnifast
random task system. A higher acceptance rate is better. With increasing
utilization on low criticality mode UL the difficulty to find acceptable
deadline scales increases. The data labeled ‘‘EDF-VD-SE-mod’’ is for
EDF-VD-SE with adjustment to the low criticality task utilization.

FIGURE 6. Acceptance rate for EDF-VD-SE with adjustment to the low
criticality task utilization, described by the average 1UL

L . Arrows indicate
the relevant axis for each data. A higher acceptance rate is better. A
negative 1UL

L requires to decrease the utilization of low criticality tasks,
and a positive value allows to add more.

Moreover, the general decline of the acceptance rate is less
emphasized for EDF-VD-SE without adaption compared to
EDF-VD.

If we adjust our task systems by1UL
L on average, as shown

in Fig. 6, we achieve a near constant acceptance rate. It
is interesting to see how the average 1UL

L is positive for
utilizations UL < 0.85, and turns into a cost for task systems
with higher utilization.

B. QUALITY OF SERVICE COMPARISON BY MODE SWITCH
TIME
Estimating the QoS improvement requires to simulate how
task systems are actually scheduled on a uniprocessor. It is
not sufficient to apply the schedulability check, which only
ensures that the task system is schedulable. To investigate the
increased service for low criticality tasks, we need to measure

how long jobs from such tasks are scheduled, and when the
system changes modes. The general idea is to simulate each
task system multiple times until it switches to high criticality
mode, to cover different job arrival patterns, and to analyze
the scheduling response of the system.

These simulations are random by nature, and allow us to
gather quantitative results. Random decisions during simu-
lation are 1) when jobs from a task arrive at the scheduler;
2) howmuch computation the job requires; and 3) does the job
overrun its execution time budget if it is from a high criticality
task. We control the randomness in these decisions in our
simulation experiment by parameters, which we introduce
prior to the actual simulation results.

1) SIMULATION PARAMETERS
Our simulation setup allows to change several parameters
which influence the random decisions during simulation. The
time between two jobs of the same sporadic task is at least
its period, but by random chance it might be longer. We
assume exponential distributed job inter-arrival times. The
exponential distribution is parameterized with β, with the
CDF as F(x) = 1 − e−x/β for x ≥ 0. The time between two
jobs is pi + eipi. We choose β � 1 to set the time between
two jobs of the same task to its period pi, to demonstrate
our independence of dynamic slack time. In general, longer
job inter-arrival times are beneficial for scheduling, because
it creates dynamic slack time, which can be used to service
jobs that else might have failed to meet their deadline. Our
β � 1 is the worst case assumption in terms of dynamic
slack, because it reduces the accumulation of dynamic slack
to dynamic slack from unused computation budgets.

The environment is reflected in the probability p to have
an error, which is observable by the scheduler as an over-
run in computation when a high criticality job executes for
ci > cL . With p = 0.001 we have a rather harsh environment,
where it is not uncommon to have an error which results
in an overrunning high criticality task. Each job’s overrun
probability is independent and equal to p. It is interesting to
note that choosing a larger p is not influencing the fairness
of the QoS comparison between EDF-VD and EDF-VD-SE.
While a larger p increases the chance to have an error, which
results in EDF-VD dropping the low criticality tasks while
EDF-VD-SE can continue, it increases the chance to have
a second error as well, which limits the QoS improvement
of EDF-VD-SE over EDF-VD too.

The computation for each job from low criticality tasks is
chosen uniformly between 1 and cL . Jobs from high criticality
tasks can overrun. If they overrun, the computation is chosen
uniformly between cL + 1 and cH , else between 1 and cL .
This behavior is identical in both low criticality mode, and
the intermediate ‘‘single overrun’’ mode.

2) SIMULATION RESULTS
We create dual criticality UUnifast random task systems
with generation parameters similar to Baruah et al. [6] which
are schedulable by EDF-VD-SE as described in Section IV-C.

43546 VOLUME 9, 2021



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

FIGURE 7. CDF of EDF-VD-SE QoS improvement. The QoS improvement is
the ratio of time until the second error to first error: QoS = t2/t1. Task
systems are UUnifast random generated with target utilizations of
U = 0.7, U = 0.8, and U = 0.9.

FIGURE 8. System run-time histogram of baseline EDF-VD and improved
EDF-VD-SE.

We use Thready to simulate each EDF-VD-SE schedulable
task system with an error probability of p = 0.001 for
one hour with a millisecond time step resolution. Because
EDF-VD-SE can tolerate a single error, which results in a
single overrunning high criticality task, we record the system
run-time up to the second overrun, where EDF-VD-SE would
switch into high criticality mode and abandon all low criti-
cality tasks. The prolonged run-time is the additional service
for low criticality tasks. We calculate the QoS improvement
as the ratio of time until the second error to first error:
QoS = t2/t1. EDF-VD-SE either achieves the same or better
QoS than EDF-VD, and Fig. 7 show the distribution of all
instances with QoS improvement, excluding improvements
beyond three standard deviations. The steep incline of the
CDF at an improvement of two is the result of a constant
error probability p where on average an error happens every
t1 time steps, effectively doubling the run-time on average in
low criticality mode with EDF-VD-SE.

The CDF of the QoS is independent of the actual value of
p, because p influences both t2 and t1. Nevertheless, a higher
value of p results in earlier t2 and t1, which is interesting to
know for a specific task system in an actual application.

The run-time histogram in Fig. 8 compares the distribu-
tions of system run-time until switch to high criticality mode
between EDF-VD and EDF-VD-SE. For each approach,

FIGURE 9. CDF of EDF-VD-SE QoS improvement for fixed pessimism
factor z . The QoS improvement is the ratio of time until the second error
to first error: QoS = t2/t1. Task systems are UUnifast random generated
with target utilizations of U = 0.7.

FIGURE 10. CDF of EDF-VD-SE QoS improvement for fixed pessimism
factor z . The QoS improvement is the ratio of time until the second error
to first error: QoS = t2/t1. Task systems are UUnifast random generated
with target utilizations of U = 0.8.

the same task systems with utilizations between U = 0.65
and U = 0.95 have been simulated. The distributions look
like Log-normal, which is a result of the independent job
overrun probability p, where the system run-time random
variable is a multiplicative product of many independent
random variables.

If we set the pessimism factor zl = zh = z, we can inves-
tigate how a controlled over-allocation of budgets influences
the QoS. We select z = 2 to model software error correction
approaches where jobs are repeated in case of detected errors.
Larger values of z represent multiple recomputations and pos-
sibly majority voting of results to correct errors in software.
As shown in Figs. 9 to 11, the impact of the pessimism factor
is nearly identical over all shown utilizations U . Looking at
Fig. 12 for U = 0.7, the pessimism factor emphasizes the
improvement of EDF-VD-SE over EDF-VD, asmore systems
increase their run-time with increasing pessimism.

VI. DISCUSSION
EDF-VD-SE can tolerate a single job overrun without drop-
ping jobs or missing deadlines, and represents an approach
which makes a task system fail operational (FO) with a
count of one [24]. Reserving additional time to tolerate an

VOLUME 9, 2021 43547



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

FIGURE 11. CDF of EDF-VD-SE QoS improvement for fixed pessimism
factor z . The QoS improvement is the ratio of time until the second error
to first error: QoS = t2/t1. Task systems are UUnifast random generated
with target utilizations of U = 0.9.

FIGURE 12. System run-time histogram of EDF-VD-SE for different
pessimism factors z . Filled areas show the densities of EDF-VD for the
corresponding EDF-VD-SE results of the same color. Bin size is 10 s, and
the last bin contains the accumulated results of all simulations with
run-times between 1280 s and 3600 s. Increased pessimism emphasizes the
improvement of EDF-VD-SE over EDF-VD, as more systems increase their
run-time. This is shown in the smaller spikes below 200 s, and increased
number of simulations beyond 1280 s.

overrunning task successfully delays or prevents the change
to high criticality mode. On average the QoS doubles, and
some task systems manage to improve QoS by a factor of
more than five. The static approach requires only minimal
extension to the EDF-VD scheduler run-time to record the
single overrun, which is beneficial for deeply embedded
systems.

EDF-VD-SE is limited to handle a single error, multiple
errors can cause utilization spikes which can lead to dead-
line violations depending on the currently available dynamic
slack. Nevertheless tolerating a single error already improves
QoS, and multiple errors during system operation are rare if
the error probability and system run-time are suitable for the
application.

Compared to EDF-VD, the acceptance rate is fair con-
sidering that EDF-VD represents an optimal non-clairvoyant
algorithm [14] which is not designed to tolerate a single error.
Moreover, EDF-VD-SE allows the designer to choose virtual
deadline scaling such that the utilization of low criticality
tasks in low criticality mode is optimized.

VII. RELATED WORK
Mixed criticality scheduling is a major aspect in modern
fault-tolerant hard real-time systems which are built from
COTS components to satisfy size, weight, and power (SWaP)
constraints [3], [25]. Fault tolerance in such systems can be
achieved by hard- and software-based error detection and
correction techniques, as long as the error rate is manageable
by the selected techniques.

Dual modular redundancy [26] and error detection codes
like parity [27] are hardware-based error detection techniques
which exploit spatial redundancy to detect errors. Detec-
tion based on temporal redundancy is possible as well, and
allows to trade performance for reliability and energy savings
[28], [29].

Software solutions for error detection mostly resort to
temporal redundancy by duplicating the execution of instruc-
tions [30], procedures [31], or whole programs [32]. Another
approach to software error detection is to generate two ver-
sions of a program with the same functionality, which are
executed with different input data. Due to the systematic
program generation the results are comparable and errors are
detectable [33], [34]. Executable assertions introduce addi-
tional conditional checks in the program to test the plausibil-
ity of intermediate data, resulting in the detection of errors
during program execution [35], [36].

Scheduling for modern fault-tolerant hard real-time sys-
tems is not deterministic due to the probabilistic nature of
errors [10]. Therefore scheduling approaches can only strive
to extend the system lifetime, or guarantee schedulability for
a limited amount of errors in a given time window [11], [37],
which is again only probabilistic.

Most dynamic priority scheduling approaches for
fault-tolerant mixed criticality systems are related to, or based
on, preemptive uniprocessor EDF scheduling. Preemptive
uniprocessor EDF scheduling is an optimal solution which
can schedule jobs from independent, sporadic, implicit dead-
line tasks [15], [38]. While fault-tolerance extensions of EDF
exist [25], [39], [40], they do not support mixed criticality
systems natively. The extension of EDF to mixed criticality
systems by EDF-VD is an optimal non-clairvoyant algo-
rithm [14] without explicit fault tolerance considerations, and
the basis for EDF-VD-SE.

Regarding EDF-based scheduling approaches, fault toler-
ance can be achieved by reserving additional time, by smarter
mode changes, or by slack management. The elastic mixed
criticality model with variable periods for low criticality
tasks [41] or period scaling [42] provide a way of reducing
the utilization to free additional time, which is exploited in
EDF-VD-SE to tolerate a single fault. Reserving some time
for an overrunning task [43] requires knowledge about the
error probability of each task during system design, which
is at best hard to estimate, and wrong estimates risk over-
loading the system. Contrary EDF-VD-SE is always safe
for a single overrun, no matter the error probability, which
can only reduce the additional service for low criticality
tasks.

43548 VOLUME 9, 2021



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

Assigning low criticality tasks a smaller execution time
budget on higher levels to avoid amode change [44], or letting
a subset of low criticality tasks execute in high mode [45] can
improve QoS for low criticality tasks, similar to EDF-VD-SE.
Contrary to EDF-VD-SE, which is a static approach, service
for low criticality tasks can be adapted dynamically by assum-
ing independence of high criticality tasks and their mode
switches [46]. Transitioning from high criticality mode back
to low criticality mode [47] allows to improve QoS even
further, but is not implemented in EDF-VD-SE yet.

An orthogonal approach is extensive dynamic slack mon-
itoring [48], where opposed to EDF-VD-SE a slack-aware
run time management is mandatory. This is a burden for
deeply embedded systems, which lack additional compu-
tation resources to implement the slack-aware run time
management.

VIII. CONCLUSION
Schedulingmixed-criticality fault-tolerant hard real-time sys-
tems needs to consider the QoS for low criticality tasks.
Our static approach EDF-VD-SE reserves additional time
to tolerate a single error without risking deadline viola-
tions while optimizing the amount of possible low criticality
work, doubling on average the QoS for low criticality tasks.
EDF-VD-SE requires no slack-aware run-time operation,
which is beneficial for deeply embedded systems with lim-
ited computation resources, and no assumptions about error
probabilities for safety guarantees. Therefore EDF-VD-SE
is a viable and certification friendly approach to schedule
tasks in modern deeply embedded mission and safety-critical
systems.

REFERENCES
[1] C. B. Watkins and R. Walter, ‘‘Transitioning from federated avionics

architectures to integrated modular avionics,’’ in Proc. IEEE/AIAA 26th
Digit. Avionics Syst. Conf., Oct. 2007, pp. 2.A.1-1–2.A.1-10.

[2] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, ‘‘From a feder-
ated to an integrated automotive architecture,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 28, no. 7, pp. 956–965, Jul. 2009.

[3] A. Burns and R. I. Davis, ‘‘A survey of research into mixed crit-
icality systems,’’ ACM Comput. Surveys, vol. 50, no. 6, pp. 1–37,
Jan. 2018.

[4] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, ‘‘The worst-case execution-
time problem—Overview of methods and survey of tools,’’ ACM Trans.
Embedded Comput. Syst., vol. 7, no. 3, pp. 1–53, Apr. 2008.

[5] S. Vestal, ‘‘Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance,’’ in Proc. 28th IEEE Int. Real-Time
Syst. Symp. (RTSS), Dec. 2007, pp. 239–243.

[6] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, ‘‘The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,’’ in Proc. 24th
Euromicro Conf. Real-Time Syst., Jul. 2012, pp. 145–154.

[7] T. Fleming and A. Burns, ‘‘Incorporating the notion of importance into
mixed criticality systems,’’ in Proc. 2nd Workshop Mixed Crit. Syst., 2014,
pp. 33–38.

[8] S. Baruah and A. Burns, ‘‘Incorporating robustness and resilience into
mixed-criticality scheduling theory,’’ in Proc. IEEE 22nd Int. Symp. Real-
Time Distrib. Comput. (ISORC), May 2019, pp. 155–162.

[9] A. Burns and S. K. Baruah, ‘‘Towards a more practical model for mixed
criticality systems,’’ in Proc. 1st Int. Workshop Mixed Crit. Syst., 2013,
pp. 1–6.

[10] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright, ‘‘Probabilis-
tic scheduling guarantees for fault-tolerant real-time systems,’’ in Proc.
Dependable Comput. Crit. Appl. 7, Jan. 1999, pp. 361–378.

[11] F. Santy, L. George, P. Thierry, and J. Goossens, ‘‘Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP,’’ in Proc.
24th Euromicro Conf. Real-Time Syst., Jul. 2012, pp. 155–165.

[12] P. Ekberg and W. Yi, ‘‘Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,’’ Real-Time Syst., vol. 50, no. 1,
pp. 48–86, Jun. 2013.

[13] S. Baruah and S. Vestal, ‘‘Schedulability analysis of sporadic tasks with
multiple criticality specifications,’’ in Proc. Euromicro Conf. Real-Time
Syst., Jul. 2008, pp. 147–155.

[14] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, ‘‘Preemptive uniprocessor scheduling of
mixed-criticality sporadic task systems,’’ J. ACM, vol. 62, no. 2, pp. 1–33,
May 2015.

[15] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in aHard-Real-Time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[16] E. Bini and G. C. Buttazzo, ‘‘Measuring the performance of schedulability
tests,’’ Real-Time Syst., vol. 30, nos. 1–2, pp. 129–154, May 2005.

[17] N. Guan, P. Ekberg, M. Stigge, and W. Yi, ‘‘Improving the scheduling of
certifiable mixed-criticality sporadic task systems,’’ Dept. Inf. Technol.,
Uppsala Univ., Uppsala, Sweden, Tech. Rep. 2013-008, Apr. 2013.

[18] A. Avižienis, ‘‘Fault-tolerant systems,’’ IEEE Trans. Comput., vol. C-25,
no. 12, pp. 1304–1312, Dec. 1976.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans. Depend.
Sec. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[20] Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-
Induced Soft Errors in Semiconductor Devices, JEDEC Solid State Tech-
nol. Assoc., Arlington, VA, USA, JEDEC Standard JESD89A, Oct. 2006.

[21] D. Kraft, ‘‘A software package for sequential quadratic programming,’’
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt,
Tech. Rep. DFVLR-FB 88-28, 1988.

[22] P. Virtanen et al., ‘‘SciPy 1.0: Fundamental algorithms for scientific com-
puting in Python,’’ Nature Methods, vol. 17, no. 3, pp. 261–272, 2020.

[23] R. Schmidt and A. Garcia-Ortiz, ‘‘Thready: A fast scheduling simulator
for real-time task systems,’’ in Proc. 9th Int. Conf. Modern Circuits Syst.
Technol. (MOCAST), Sep. 2020, pp. 1–6.

[24] A. Burns, R. I. Davis, S. Baruah, and I. Bate, ‘‘Robust mixed-criticality
systems,’’ IEEE Trans. Comput., vol. 67, no. 10, pp. 1478–1491, Oct. 2018.

[25] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, ‘‘Fault tolerant scheduling
of mixed criticality real-time tasks under error bursts,’’ Procedia Comput.
Sci., vol. 46, pp. 1148–1155, 2015.

[26] D. Brière and P. Traverse, ‘‘AIRBUS A320/A330/A340 electrical flight
controls: A family of fault-tolerant systems,’’ in Proc. 23rd Int. Symp.
Fault-Tolerant Comput., 1993, pp. 616–623.

[27] G. Aydos and G. Fey, ‘‘Exploiting error detection latency for parity-based
soft error detection,’’ in Proc. IEEE 19th Int. Symp. Design Diag. Electron.
Circuits Syst. (DDECS), Apr. 2016, pp. 1–6.

[28] M. Nicolaidis and M. Dimopoulos, ‘‘Advanced double-sampling architec-
tures,’’ in Proc. IEEE 22nd Int. Symp. On-Line Test. Robust Syst. Design
(IOLTS), Jul. 2016, pp. 130–132.

[29] R. Schmidt, A. Garcia-Ortiz, and G. Fey, ‘‘Temporal redundancy latch-
based architecture for soft error mitigation,’’ in Proc. IEEE 23rd Int. Symp.
On-Line Test. Robust Syst. Design (IOLTS), Jul. 2017, pp. 240–243.

[30] N. Oh, P. P. Shirvani, and E. J. McCluskey, ‘‘Error detection by duplicated
instructions in super-scalar processors,’’ IEEE Trans. Rel., vol. 51, no. 1,
pp. 63–75, Mar. 2002.

[31] N. Oh and E. J. McCluskey, ‘‘Error detection by selective procedure call
duplication for low energy consumption,’’ IEEE Trans. Rel., vol. 51, no. 4,
pp. 392–402, Dec. 2002.

[32] S. K. Reinhardt and S. S. Mukherjee, ‘‘Transient fault detection via simul-
taneous multithreading,’’ in Proc. 27th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2000, pp. 25–36.

[33] H. Engel, ‘‘Data flow transformations to detect results which are corrupted
by hardware faults,’’ in Proc. IEEE High-Assurance Syst. Eng. Workshop,
1996, pp. 279–285.

[34] N. Oh, S. Mitra, and E. J. McCluskey, ‘‘ED4I: Error detection by diverse
data and duplicated instructions,’’ IEEE Trans. Comput., vol. 51, no. 2,
p. 180, 2002.

VOLUME 9, 2021 43549



R. Schmidt, A. García-Ortiz: Service Improvements in Real-Time Uniprocessor Scheduling With Single Errors

[35] M. Hiller, ‘‘Executable assertions for detecting data errors in embedded
control systems,’’ in Proc. Int. Conf. Dependable Syst. Netw. (DSN), 2000,
pp. 24–33.

[36] J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson, ‘‘Reducing critical
failures for control algorithms using executable assertions and best effort
recovery,’’ in Proc. Int. Conf. Dependable Syst. Netw., 2001, pp. 347–356.

[37] R. M. Pathan, ‘‘Fault-tolerant and real-time scheduling for mixed-
criticality systems,’’Real-Time Syst., vol. 50, no. 4, pp. 509–547, Jul. 2014.

[38] S. K. Baruah, A. K.Mok, and L. E. Rosier, ‘‘Preemptively scheduling hard-
real-time sporadic tasks on one processor,’’ in Proc. 11th Real-Time Syst.
Symp., Dec. 1990, pp. 182–190.

[39] Q. Han, L. Niu, G. Quan, S. Ren, and S. Ren, ‘‘Energy efficient fault-
tolerant earliest deadline first scheduling for hard real-time systems,’’Real-
Time Syst., vol. 50, nos. 5–6, pp. 592–619, Sep. 2014.

[40] H. Beitollahi, S. G. Miremadi, and G. Deconinck, ‘‘Fault-tolerant earliest-
deadline-first scheduling algorithm,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp., Mar. 2007, pp. 1–6.

[41] H. Su and D. Zhu, ‘‘An elastic mixed-criticality task model and its schedul-
ing algorithm,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2013, pp. 147–152.

[42] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, ‘‘Service adap-
tions for mixed-criticality systems,’’ in Proc. 19th Asia South Pacific
Design Autom. Conf. (ASP-DAC), Jan. 2014, pp. 125–130.

[43] X. Zhao, Y. Wei, and W. Li, ‘‘The improved earliest deadline first with
virtual deadlines mixed-criticality scheduling algorithm,’’ in Proc. IEEE
Int. Symp. Parallel Distrib. Process. Appl. IEEE Int. Conf. Ubiquitous
Comput. Commun. (ISPA/IUCC), Dec. 2017, pp. 444–448.

[44] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi,
‘‘EDF-VD scheduling of mixed-criticality systems with degraded quality
guarantees,’’ in Proc. IEEE Real-Time Syst. Symp. (RTSS), Nov. 2016,
pp. 25–46.

[45] K. Yang and Z. Guo, ‘‘EDF-based mixed-criticality scheduling with grace-
ful degradation by bounded lateness,’’ in Proc. IEEE 25th Int. Conf.
Embedded Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2019, pp. 1–6.

[46] G. Chen, N. Guan, D. Liu, Q. He, K. Huang, T. Stefanov, and
W.Yi, ‘‘Utilization-based scheduling of flexible mixed-criticality real-time
tasks,’’ IEEE Trans. Comput., vol. 67, no. 4, pp. 543–558, Apr. 2018.

[47] H. Su, N. Guan, and D. Zhu, ‘‘Service guarantee exploration for mixed-
criticality systems,’’ in Proc. IEEE 20th Int. Conf. Embedded Real-Time
Comput. Syst. Appl., Aug. 2014, pp. 1–10.

[48] B. Hu, L. Thiele, P. Huang, K. Huang, C. Griesbeck, and A. Knoll,
‘‘FFOB: Efficient online mode-switch procrastination in mixed-criticality
systems,’’ Real-Time Syst., vol. 55, no. 3, pp. 471–513, Dec. 2018.

ROBERT SCHMIDT (Graduate Student Member,
IEEE) received the Diploma degree in electri-
cal engineering from the University of Bremen,
Germany, in 2015.

From 2015 to 2017, he worked as a Research
Associate with the Institute of Space Systems, Ger-
man Aerospace Center. Since 2017, he has been
working as a Research Associate with the Insti-
tute of Electrodynamics and Microelectronics,
University of Bremen.

ALBERTO GARCÍA-ORTIZ (Senior Member,
IEEE) received the Diploma degree in telecommu-
nication systems from the Polytechnic University
of Valencia, Spain, in 1998, and the Ph.D. degree
(summa cum laude) from the Department of Elec-
trical Engineering and Information Technology,
Institute of Microelectronic Systems, Darmstadt
University of Technology, Germany, in 2003. For
two years, he worked with NewLogic, Austria.
From 2003 to 2005, he worked as a Senior Hard-

ware Design Engineer with the IBM Deutschland Research and Develop-
ment, Böblingen. Then, he joined the start-up AnaFocus, Spain, where he
was responsible for the design and integration of AnaFocus’ next generation
Vision Systems-on-Chip. He is currently a Full Professor with the Chair
of Integrated Digital Systems, University of Bremen. His research interests
include low-power design and estimation, communication-centric design,
SoC integration, and variations-aware design. He received the Outstanding
Dissertation Award from the European Design and Automation Association,
in 2004, and the InnovationAward from IBM, in 2005, for his contributions to
leakage estimation, and he holds two issued patents for that work. He serves
as an Editor for JOLPE and a reviewer for several conferences, journals, and
European projects.

43550 VOLUME 9, 2021


