
Received February 27, 2021, accepted March 10, 2021, date of publication March 15, 2021, date of current version April 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3066007

An Automated Model-Based Approach
for Developing Mobile User Interfaces
LASSAAD BEN AMMAR
College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
Department of Computer Science, University of Sfax, Sfax 3029, Tunisia

e-mail: l.benammar@psau.edu.sa

ABSTRACT The ever-increasing number of mobile platforms constitutes a challenge for application
developers, who must develop efficient mobile applications for multiple platforms. Recently, a specific
interest is being taken in the Model Based User Interface Development (MBUID) by Software Engineering
Community. In such paradigm, an application’s user interface is obtained by defining models and transfor-
mations of those models. This paper aim at adopting MBUID paradigm to address the problem of mobile
application development. As such, we propose a new approach and its support system for the automatic
generation of mobile user interfaces. The approach and the system are based on a set of standards and
relevant technologies such as EMF, GMF, ATL, and Xpand. A case study is presented, in the paper, with
the aim of verifying the usefulness of this approach.

INDEX TERMS Mobile application, user interface, model based user interface development, model
transformation.

I. INTRODUCTION
Nowadays, the ubiquity and widespread of mobiles devices
lead to an intensive use of mobile applications that run on dif-
ferent mobile platforms (Android, iOS, Symbian, . . . ). Such
a diversity in mobile platforms makes mobile application
development a difficult task for different reasons. On the
one hand, an important factor that could lead to the suc-
cess of a mobile application is its ability to meet different
platforms’ requirements. On the other hand, developing the
same application for different platform causes a wast of time
and resources. The real challenge that envisage software engi-
neers is cross platform mobile development. A possible solu-
tion for this issue could take the advantages of Model-driven
Engineering (MDE) [1].

In recent years, some research focuses on the adoption
of Model-driven Engineering (MDE) [1] in the development
of cross platform mobile application [2]. Indeed, this field
of software engineering could benefit from MDE that is
known for its ability to automate the generation of source
codes, in any programming language, from conceptual mod-
els. Thanks to MDE, the development process starts by a
set of conceptual models that represent the system indepen-
dently of the target platform. Such an independence from the

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

platform will thereby maximise the reuse of the conceptual
models to generate applications that meet various platforms’
requirements. During an MDE-compliant development pro-
cess, relevant features of the implementation and/or the plat-
form could be introduced using Model-to-Model (M2M) and
Model-to-text (M2T) transformations.

In the context of MDE, Model-Based User Interface
Development (MBUID) [3] addresses the development of
Graphical User Interfaces (GUI) based on conceptual models
and transformations between these models. The interest of
MBUID is focused on GUI since it is a time-consuming task
that could impact the development-cost features. In addition,
GUI is usually the main reason that may lead to the suc-
cess/failure of the software application.

In the literature, several researches focus on the adoption
of MBUID to address GUI development for cross platform
application ( [4]–[7]). The objective is take advantage of
MBUID in terms of model reuse and automatic generation
of application source codes that could meet the requirements
of several platforms.

The present paper aims to delineate with MBUID for
mobile User Interfaces (UI) development. The approach pro-
poses 3 meta-models called Abstract User Interface (AUI),
Concrete User Interface (CUI) and Final User Interface
(FUI). On top of these meta-models, the approach proposes
a set of transformations allowing the automatic generation

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 51573

https://orcid.org/0000-0002-4698-3693
https://orcid.org/0000-0001-9987-5584


L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

of GUI for a mobile application starting from a model that
is conform to the AUI. It is worth mentioning that the
proposed approach enable the generation of GUI for cross
platform mobile application. In terms of technical details,
the proposed approach is supported by a system that is
developed under Eclipse IDE for Java Developers1 and takes
advantage of relevant technologies in the field of MBDUI
such as Eclipse Modeling Framework (EMF)2 and Graphical
Modeling Framework (GMF).3 In terms of programming
languages, the system is developed using ATLAS Transfor-
mation Language (ATL)4 as an M2M transformation lan-
guage and Xpand5 as an M2T transformation language.

The main advantages of our approach with regard to the
state of the art can be summarized in the following:

1) A development process aligned with the principles of
MBUID;

2) A uniform meta-model for each intermediate artifact
reducing thereby the problem of variety of concepts and
terminologies presented by others research works;

3) A full-automated transformation process implemented
using relevant technologies in the field of MBUID such
as MOF, EMF, ATL, and Xpand.

The rest of this paper is organised as follows. Section II
presents an overview of MBUID and discusses some related
works. Section III details the proposed approach for mobile
user interface generation. Section IV illustrates the proposed
approach through a case study. Finally, Section V concludes
the paper and gives some directions for future works.

II. FOUNDATIONS AND RELATED WORKS
This section presents a brief overview of MBUID concepts
as well as the main contributions in the field of mobile user
interface development with model-based approach.

A. MODEL-BASED USER INTERFACE DEVELOPMENT:
MBUID
In the context of MBUID, declarative models can be con-
structed and related, as part of the user interface design
process [8]. The aim was to permit developers to design
and implement user interfaces in a systematic and profes-
sional way. A lot of efforts have been established to capture
conceptually the most important parts of the development
process. These efforts achieved a level of maturity leading
to the development of a reference framework that structures
the development process in four levels of abstraction [3]:
• At the first level of abstraction, the Task & Con-
cepts model of the application is usually proposed to
describe the various user tasks to be carried out and the
domain-oriented concepts required by these tasks.

1www.eclipse.org/downloads/packages.
2https://www.eclipse.org/modeling/emf/
3https://www.eclipse.org/gmf-tooling/
4https://www.eclipse.org/atl/
5https://www.eclipse.org/modeling/m2t/?project=

xpand

• In the second level, the AUI model is specified. At this
level, an abstract definition of the content and the struc-
ture of the user interface is provided.

• In the third level, the CUI model is specified. At this
level, the user interface is modeled using concrete inter-
actors. It defines how the user interface is perceived
and can be manipulated by end users using widgets and
interface navigation. The CIU is modality-dependent,
but implementation technology independent.

• In the last level, the FUI model is specified. It repre-
sents the source code of the user interface in any imple-
mentation technology (programming language like java,
markup language like HTML, etc.)

On top of these abstraction levels, 3 main relationships are
defined. 1) Reification covers the inference process from
high-level abstract descriptions to runtime code; 2) Abstrac-
tion maps a user interface representation from one level of
abstraction to a higher level of abstraction; 3) Translation
transforms a description intended for a particular target into
a description at the same abstraction level but aimed at a
different target.

B. MODEL-BASED APPROACHES FOR MOBILE
APPLICATIONS
This section examines model-driven approaches for the
development of mobile applications with an aim at pro-
viding the potentialities and limitations of the current state
of the art. We consider only those approaches that apply
model-driven techniques to specify mobile user interfaces.
However, approaches that address non functional require-
ments are out of the scope of this paper.

Our literature review reveals that the adoption of model
driven approaches for the development of mobile applica-
tion has gained a special attention by the SE community.
Indeed, in recent years, there are some initiatives focusing
on this research area and providing promising results. How-
ever, more efforts are still required to take the advantages of
Model-driven Engineering in the context of mobile applica-
tion development.

The recent Systematic Literature Reviews (SLR) pre-
sented in [9] and [10] prove the shortage of research works
in this field. In [2], a survey of model-driven approaches
for the development of mobile applications discusses only
13 research works and 4 commercial solutions. These 3 refer-
ences are interesting and helpful to identify the most impor-
tant related works in the context of model-driven mobile
development. The works in this context can be divided
into two different clusters. On the one hand, we consider
researches that apply model driven techniques for the pur-
pose of modelling native app (mobile apps for a spe-
cific operating system). On the other hand, we encounter
some researches dealing with cross-platform app (mobile
apps that work across multiple platforms). In what fol-
low, we present some of the most referenced researches
in the context of model-based development for mobile
applications.

51574 VOLUME 9, 2021

www.eclipse.org/downloads/packages.
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/atl/
https://www.eclipse.org/modeling/m2t/?project=xpand
https://www.eclipse.org/modeling/m2t/?project=xpand


L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

In [11], a model-driven framework is presented for the
development of a cross-platform business applications. The
application is presented independently from the platform
through a textual Domain Specific Language (DSL). Then,
a code generator transforms this representation into source
code for a specific platform. Finally, the developers need to
compile the generated source code using the corresponding
development environment such as the Android Developer
Tools or Xcode.

In [12], the authors propose a model-driven approach for
the development of native mobile applications with a focus
on the data layer. The development process starts by defining
meta-models and Architecture-Specific Model (ASM) pro-
files. Then, a series of transformation are applied to generate
an Android and/or Windows Phone applications allowing the
applications’ functionalities to be tested.

In [13], a model driven approach to automatically gener-
ate mobile applications for various platforms is presented.
In such an approach, UML diagrams are used to model the
applications: use case for the requirements modeling, class
diagram for the structural modeling and state machine for the
behavioral modeling. A UML profile is used to include the
mobile domain specific concepts. The code generator allows
developers to generate the business logic code while the GUI
is developed separately.

In [14], the authors propose an Agile method to transform
an abstract model tree into final code. Applications require-
ments are described in platform independent models using a
textual DSL. Then, they are augmented with structural deci-
sions and refined with other platform-specific elements dur-
ing a multi-phase transformation process to produce source
code for native applications.

Another interesting initiative in this context is presented
in [15] where the application’s business logic is modeled as
a UML class diagram using a graphical tool called JBModel.
Platform specific details may be added via annotation before
executing a model-to-text transformation to generate the code
of each class. This later will be the input for the JustBusi-
ness framework allowing the generation of the user inter-
faces, the persistence code and the application resources.
Developers have to manually implement the method’s
body.

Based on the analysis of the aforementioned research
works, it becomes clear that the development of mobile
applications using model-based approach still an immature
area and many more efforts are needed. In fact, most of
researches are based on their own DSL rather than use an
agreed one. In addition, the variety of terminologies and tools
used by these researchesmake it difficult to select one of them
to adopt/adapt it. We argue that the main objectives of the
future works in this domain should be the unification of the
concepts, terminologies and tools to be used by researchers.
In addition, the conformity to the MDE standard is required
to facilitate the adoption of the approach. This work falls in
this orientation.

III. PROPOSED APPROACH FOR MOBILE USER
INTERFACE DEVELOPMENT
This section presents an overview of the proposed approach
for model-based mobile user interface generation prior to
detailing its different stages.

A. OVERVIEW
As per Figure 1, our approach for model-based mobile user
interface generation is made up of 2 major stages:

1) Meta-models definition: during this stages the
AUI, CUI, and FUI meta-models are defined.
These meta-models cover the different levels of
abstraction required to adopt an MBUID-based
approach. Section III-B discusses these meta-models.

2) Transformation process: during this stage, the trans-
formations from AUI to CUI, CUI to FUI, and FUI
to source code are conducted. These transformations
are aligned with the MBUID paradigm. They allow to
generate a mobile user interface from any model that is
conform to the already defined AUI meta-model. The
different transformations are discussed in Section III-C.

FIGURE 1. Overview of our proposal.

B. META-MODELS DEFINITION
The first stage of our approach is the definition of the required
meta-model. In this context, we define 3 meta-models that
constitute the basis of our approach.

1) ABSTRACT USER INTERFACE META-MODEL
In a previous work [16], we proposed a uniform AUI
meta-model that represents the basic concepts to be used
while specifying a user interface in an abstract way. Accord-
ing to this meta-model, a user interface is usually populated
by Abstract Interaction Object (AIO) and Abstract Relation-
ship as per Figure 2.
AIO represents an abstraction of widgets that can be found

in popular GUI toolkit (e.g. windows, buttons, panels, etc.).
AIO have been classified into two main types:

VOLUME 9, 2021 51575



L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

FIGURE 2. Abstract user interface (AUI) meta-model.

• Abstract containers (AC): called sometimes presenta-
tion unit and represent an entity that may gather other
abstract containers or components. Such interaction
object is intended to support the representation of a logi-
cally/semantically connected tasks. Window, dialog box
and panel are, among others, example of the rendering
of such entity in the concrete level.

• Abstract individual components (AIC): represent an
abstraction of an interaction object that usually populate
an abstract container. This component can be trans-
formed into the concrete level as text field, button, drop
down menu, etc.

Abstract relationships are relationships that can be estab-
lished between abstract interaction objects of all kinds.
They are couples of Source and Target. Abstract Adjacency
and Spatio-temporal are among the most common type of
abstract relationships presented in the literature. Adjacency
specifies an adjacency constraint between 2 AIOs. As for
Spatio-temporal relationship, 2 basic relations are considered
in our approach: sequential and simultaneous.

2) CONCRETE USER INTERFACE META-MODEL
The CUI meta-model presents the basic concepts and ter-
minologies allowing a specification of an appearance and
behavior of a user interface with elements that can be per-
ceived by users. A syntactical uniform process was carried
out in order to omit redundant terminologies/vocabularies
and select those that are largely considered in user interface
modelling literature. Figure 3 illustrates our CUImeta-model.
A CUI model is usually populated by Concrete Interac-
tion Objects (CIO) that can be either Concrete Containers
(CC) or Concrete Interaction Components (CIC).

Concrete Containers are generally window, panel, menu
bar, tabbed dialog box. Concrete Interaction Component,
called sometimes interactors, are usually classified into three
main categories: control, data and multimedia. The control
category is represented by the Button class which gather
divers type of button (button, switch, toggle button, etc.).
The data category is represented by the TextComponent
class which may be plain text, password text, email text,
etc. The multimedia category may represent an image view,
an audio or video component. In the context of mobile appli-
cation, a fourth type of interactor may be useful: Composed-
Component. This class of interactor group more than one
facet. A facet is defined as the function that the component
may endorse in the physical world. Date picker and color
picker are example among others of such component.

3) FINAL USER INTERFACE META-MODEL
The FUI meta-model specifies the main concepts and termi-
nologies needed to render a CUI in a specific technological
platform.

In this paper, the interest is focused on the Android OS.
This choice can be justified by the great adoption of such OS
in the mobile market share worldwide in the last few years;
around 75% [17].

Figure 4 illustrates the proposed meta-model for a GUI
for Android application. An android application is usually
composed of one or more screens defined in the application
as Activities. Each Activity is populated by one or more
containers and one or more widgets. The main container in
a screen is called Layout. Three main type of layout can be
identified in a mobile application: FrameLayout, LinearLay-
out and TableLayout. Each type of layout is described using

51576 VOLUME 9, 2021



L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

FIGURE 3. Concrete user interface (CUI) meta-model.

three main attribute: id, layout_width and layout_height. The
LinearLayoutmay require and additional attribute describing
the orientation (vertical or horizontal). The Widget class rep-
resent all interaction objects that can be presented in a mobile
application such as button, edit text, image view, progress
bar, etc. Each interaction object is described at least by three
main attributes: id, layout_width and layout_height. Some
widgets may need others additional attributes. For example,
the Text class, which represent all possible type of text field
required to input data, use another attribute called InputType
to distinguish the type of data to be entered: password, phone,
email, address, etc.

C. TRANSFORMATION PROCESSES
The second stage of our approach is about a set of transfor-
mations that permit the automatic generation of executable
user interfaces. As has been previously explained, the ATL
and Xpand languages have been used for the implementation
of the transformation processes. ATL was used to imple-
ment Model-to-Model (M2M) transformation: AUI2CUI and
CUI2FUI. The former generates the CUI model from the
abstract model. The latter considers the obtained CUI model
to generate the FUI model. While Xpand, it is used to imple-
ment the Model-to-Text (M2T) transformation that generates
the source code of the FUI.

1) STEP 1. CUI’S AUTOMATIC GENERATOR
In this step, a CUI model is generated via an M2M transfor-
mation from the AUI. This step consists of defining the set
of transformation rules allowing to establish the correspon-
dences between elements from the AUI meta-model (source)
and those from the CUI meta-model (target).

An AUI model is usually structured as a tree. The root and
the intermediate nodes represent abstract containers while the

leaves refer to abstract components. To transform an abstract
model, we opted for a top-down process to traverse its tree
and transform each node: (i) the root node will be rendered
in the target model as a Window; (ii) an intermediate node
will be rendered as a Panel; (iii) a leaf will be rendered as a
Concrete Component among those presented in the concrete
meta-model. As there are various types of concrete compo-
nent, we propose 3 main criteria to guide the selection of the
appropriate one:

1) The Facet: a function that the component may endorse
in the physical world. It may be Input, Output,
Control or Navigation.

2) The UserAction attribute: indicates the user action
that is required for performing the task. For examples,
start and select respectively indicate that an action is
triggered and a selection between multiples items is
required.

3) The TaskItem attribute: refers to the type of the object
on which the action is operated. For example, element
specifies that the item has a single characteristic,
container specifies that the item is an aggregation of
elements.

All the aforementioned transformations are ensured thanks to
a set of transformation rules that we defined based on the AUI
and CUI meta-models. Some of them are presented in what
follow:

Rule 1: the root node, which is usually an abstract con-
tainer, will be transformed into a Window.
Rule 2: each intermediate node, which is also an abstract

container, will be transformed into a Panel.
Rule 3: each abstract component with the Input facet will

be transformed into a TextComponent. The selection of the
appropriate text field’s type (password, email, phone, etc.)

VOLUME 9, 2021 51577



L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

FIGURE 4. Final user interface (FUI) meta-model.

depends on the InputType attribute of the abstract
component.

Rule 4: each abstract component with the Control facet
will be transformed into aButton. The selection of the appro-
priate button’s type (image button, toggle button, radio but-
ton, etc.) depends on theUserAction and TaskItem attributes
of the abstract component.

To better clear up our proposal regarding the selection of
the concrete component, we present afterhere an algorithm
that illustrates the selection of the appropriate concrete com-
ponent for an abstract element form the Input facet.
In terms of technical details, we have implemented the

transformation rules, established during this step, using ATL
language.
Figure 5 shows the ATL code implementing the first 3 rules.

2) STEP 2. FUI’S AUTOMATIC GENERATOR
The second step in the transformation processes takes the
CUI model obtained in Section III-C1 and generates, via
an M2M transformation, the FUI model. This latter is
platform-specific as per MBUID’s levels of abstraction.
Recall that, herein the interest is only focused on the
Android OS.

Algorithm 1 Pseudo-Algorithm for Specifying the Input
Abstract Component

forall the Input(I) do
// Checks whether I aims to select an

item from a set
if isSelectN(I) then

// Checks whether I’s elements are
> 4

if element(I).count() > 4 then
// Create a ComboBox for I
CreateComboBox(I)

else
forall the E: element(I) do

// Create a CheckBox for E
CreateButton( E , ‘‘CheckBox’’)

// rest of code

The generation of the FUI model implies that each com-
ponent from the CUI model is mapped into its correspon-
dent one according to the FUI meta-model terminologies.
Figure 6 depicts 2 examples of transformation rules allowing

51578 VOLUME 9, 2021



L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

FIGURE 5. Excerpt of ATL code.

FIGURE 6. Some examples of the rules that allow selection of the
concrete component and the ATL code that implements them.

to associate some concrete components with their corre-
sponding ones in the target model. It also shows the ATL code
that implements these transformation rules. For instance, each
Button having the type CheckBox in the CUI model is
transformed to a CheckBox in the FUI model.

3) STEP 3. GUI’S SOURCE CODE AUTOMATIC GENERATION
The last step of our approach is the generation of the mobile
UI’s source code, in XML language, from the FUI model.

FIGURE 7. Excerpt of the Xpand templates.

FIGURE 8. Sketch of the graphical user interface of AlMubasher.

The applicability of this step is demonstrated, in this paper,
using the Android OS as platform. We argue that a slight
modification in the generator code will allow to generate
the final code for any others platform such as iOS or Black-
Berry. A set of transformation rules and an-house developed
code generator constitute the main building blocks of this
step. The transformation rules assign the adequate XML tag
to each element in the FUI meta-model. As for the code
generator, it is developed under Eclipse and using Xpand
model-to-text transformation language. Xpand defines

VOLUME 9, 2021 51579



L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

FIGURE 9. Code generation through model transformation.

templates implementing the transformation of each element
in the FUI model to the adequate XML tags. The resulted
XML file defines the source code of the mobile UI. Figure 7
details how activities, widgets, and layout are transformed to
the corresponding XML tags.

IV. CASE STUDY
This section presents a real case study that illustrates the
feasibility and usefulness of our proposed approach. The case
study is about AlMubasher that is among the most used
mobile applications in Saudi Arabia. AlMubasher allows
AlRajhi bank’s customers to access a variety of banking
services such as transfer, payment, accounts management,
insurance, etc. Since the application is too large; we only
consider the login task to illustrate our approach.

Figure 8 presents the current login page of AlMubasher
application. The login page is populated by 2 widgets show-
ing the logo of the bank and available languages as well as
a container. This latter regroups 9 widgets: 2 labels showing
welcome messages, 2 text fields allowing the user to input
his/her name and pass word, and 5 buttons allowing the user
to login to the system, ask the system to remember him/her,
ask for help, register, and open an account.

The main objective of the case study is to apply our
approach in order to create a mobile user interface that is
similar to the user interface presented in Figure 8. Thus,
the latter is considered as a basis during the specification of

our AUI model. As depicted in Figure 9-a, our AUI model
includes 3 input, 1 control, 4 navigation and 3 output. These
elements meet the requirement of the considered mobile user
interface in terms of widgets and containers.

Once the AUI is modeled, it will be injected as input for
the first M2M transformation allowing to obtain the CUI
model. Figure 9-b also shows the generated CUI model.
First of all, a concrete container from the class Window
is associated with the root node from the AUI model. Sec-
ondly, an other container from the class Panel is associated
with the intermediate node. Finally, a set of components are
created and associated with their correspondent in the input
model.

The obtained CUI model is also subject of a M2M trans-
formation allowing the generation of the FUI model. As per
the previousM2M transformation, each component/container
in the CUI model is transformed into the corresponding
component/container according to the platform considered
during the definition of the FUI. In our case, we consid-
ered Android iOS, thus, the component included in the FUI
model are compliant with the Android specification. For
instance, each TextComponent is transformed into an Edit
Text component. Figure 9-c illustrates the obtained FUI
model.

Last but not least, the XML code of the mobile user inter-
face is automatically generated from our FUI model. During
this transformation, each component of the FUI model is

51580 VOLUME 9, 2021



L. Ben Ammar: Automated Model-Based Approach for Developing Mobile User Interfaces

transformed into an XML tag according to the syntax of
Android’s XML vocabulary. 6 Figure 9-d depicts the obtained
XML code of the mobile user interface.

V. CONCLUSION AND FUTURE WORKS
The development of mobile applications has gained a specific
interest in recent year. This is due to the worldwide massive
use of various types of mobile devices. However, the diversity
of mobile devices and their operating systems come-up with
a new challenge that is the development of cross-platform
mobile applications. Indeed, the success of a mobile applica-
tion is closely related to its availability for various platforms.
Hence, mobile application developers need to develop several
versions of the same application that meet the requirements
of the different platforms.

To deal with the aforementioned challenges, the paper
proposes an MBUID approach for developing graphical user
interfaces of mobile applications. The approach is based
on 3 meta-models that fit the different MBUID’ levels of
abstraction. As per the MBUID paradigm, the development
process starts by an abstract specification of the user inter-
face (AUI model) that is transformed into a concrete speci-
fication (CUI model). The later is also transformed into an
operational user interface (FUI model) in a technological
space (e.g., computing platform, programming or markup
language). These 2 transformations are granted thanks to
a set of M2M transformation rules that are implemented
using ATL language and under eclipse platform. Last but
not least, the FUI is transformed to the source code of a
mobile application. This transformation is ensured thanks
to a M2T transformation rules implemented using Xpand
language and under eclipse platform too. To assess the fea-
sibility and usefulness of the proposed approach, the paper
introduces a real case study about AlMubasher mobile
application.

In terms of future works, we plan to develop a graph-
ical editor that supports users during the definition of the
abstract model that constitutes the principal input of the
approach. In addition, we will consider other mobile plat-
forms like iOS through the definition of adequate FUI
meta-models and transformation rules.

REFERENCES
[1] M. Brambilla, J. Cabot, and M. Wimmer, ‘‘Model-driven software engi-

neering in practice: Second edition,’’ Synth. Lectures Softw. Eng., vol. 3,
no. 1, pp. 1–207, Mar. 2017.

[2] E. Umuhoza and M. Brambilla, ‘‘Model driven development approaches
for mobile applications: A survey,’’ in Mobile Web and Intelligent Infor-
mation Systems. Springer, 2016.

[3] G.Meixner and G. Calvary. (Jan. 2014). Introduction toModel-Based User
Interfaces. [Online]. Available: https://www.w3.org/TR/2014/NOTE-
mbui-intro-20140107/

[4] J. Vanderdonckt, ‘‘A MDA-compliant environment for developing user
interfaces of information systems,’’ in Advanced Information Systems
Engineering, O. Pastor and J. F. E. Cunha, Eds. Berlin, Germany: Springer,
2005, pp. 16–31.

6https://developer.android.com/guide/topics/ui/
declaring-layout

[5] G. Meixner, F. Paternò, and J. Vanderdonckt, ‘‘Past, present, and future of
model-based user interface development,’’ I-Com, vol. 10, no. 3, pp. 2–11,
Nov. 2011.

[6] L. Zouhaier, Y. B. Hlaoui, and L. J. B. Ayed, ‘‘Generating accessi-
ble multimodal user interfaces using MDA-based adaptation approach,’’
in Proc. IEEE 38th Annu. Comput. Softw. Appl. Conf., Jul. 2014,
pp. 535–540.

[7] F. Bacha, K. Oliveira, and M. Abed, ‘‘A model driven architecture
approach for user interface generation focused on content personaliza-
tion,’’ in Proc. 5th Int. Conf. Res. Challenges Inf. Sci., May 2011,
pp. 1–6.

[8] P. Pinheiro, ‘‘User interface declarative models and development environ-
ments: A survey,’’ inProc. 7th Int. Conf. Design, Specification, Verification
Interact. Syst., 2001, pp. 207–226.

[9] H. Tufail, F. Azam, M. W. Anwar, and I. Qasim, ‘‘Model-driven develop-
ment ofmobile applications: A systematic literature review,’’ inProc. IEEE
9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON),
Nov. 2018, pp. 1165–1171.

[10] I. Qasim, F. Azam, M. W. Anwar, H. Tufail, and T. Qasim, ‘‘Mobile
user interface development techniques: A systematic literature review,’’
in Proc. IEEE 9th Annu. Inf. Technol., Electron. Mobile Commun. Conf.
(IEMCON), Nov. 2018, pp. 1029–1034.

[11] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, ‘‘Comparing cross-
platform development approaches for mobile applications,’’ in Proc.
WEBIST, 2012, pp. 1–13.

[12] M. Nuñez, D. Bonhaure, M. González, and L. Cernuzzi, ‘‘A model-
driven approach for the development of native mobile applications
focusing on the data layer,’’ J. Syst. Softw., vol. 161, Mar. 2020,
Art. no. 110489.

[13] M. Usman, M. Z. Iqbal, and M. U. Khan, ‘‘A model-driven approach to
generate mobile applications for multiple platforms,’’ in Proc. 21st Asia–
Pacific Softw. Eng. Conf., vol. 1, Dec. 2014, pp. 111–118.

[14] X. Jia and C. Jones, ‘‘Axiom: A model-driven approach to cross-platform
application development,’’ in Proc. 7th Int. Conf. Softw. Paradigm Trends,
vol. 1, 2012, pp. 24–33.

[15] F. Freitas and P. H.M.Maia, ‘‘JustModeling: AnMDE approach to develop
Android business applications,’’ inProc. 6th Brazilian Symp. Comput. Syst.
Eng. (SBESC), Nov. 2016, pp. 48–55.

[16] L. B. Ammar, ‘‘Towards a uniform model transformation process for
abstract user interfaces generation,’’ in Proc. 14th Int. Conf. Eval. Novel
Approaches Softw. Eng., 2019, pp. 533–538.

[17] Mobile Operating System Market Share Worldwide, Statcounter, Dublin,
Ireland, 2021.

LASSAAD BEN AMMAR received the Ph.D.
degree in computer science from the Univer-
sity of Sfax, Tunisia, in 2015. He is currently
an Assistant Professor with Prince Sattam bin
Abdulaziz University, Saudi Arabia. He is the
author or the coauthor of several papers in inter-
national conferences and journals. His current
research interests include model driven engi-
neering for mobile applications and usability
engineering.

VOLUME 9, 2021 51581

https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout

