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ABSTRACT Most current research on pedestrian re-identification (ReID) is focusing on single-person ReID.
However, people are rarely alone and often walk together in groups. Therefore, there is an urgent need to
study the problem of group ReID (G-ReID). G-ReID is challenging because of the difficulties related to
the differences in group appearance caused by changes in the group layout and membership. In this paper,
we have proposed a part-based minus-average relational and arithmetic mean descriptor (PRM) algorithm
to obtain a robust representation of groups. Based on local features, we have designed the arithmetic mean
descriptor and the minus-average relational descriptor to solve the G-ReID problem caused by changes in
the number of group members and their relative positions within the group. Moreover, the minus-average
relational descriptor can also be used to describe the differences in the appearance of group members.
Considering the rarity of G-ReID datasets and the need to improve the applicability of the G-ReID algorithm
in real scenarios, we have collected a new dataset called the Bus Rapid Transit (BRT) G-ReID dataset.
Extensive experimental results demonstrate the effectiveness of the PRM algorithm and indicate that it
outperforms state-of-the-art algorithms by 7.5% for the cumulative matching feature (CMC-1) on the i-LIDS
MCTS group dataset and by 19.4% for the CMC-1 on the Road Group dataset and it outperforms the baseline
by 2.4% for the CMC-1 on the BRT dataset.

INDEX TERMS Group re-identification, relational model, part-based CNN.

I. INTRODUCTION
Person re-identification (ReID) has attracted considerable
attention due to its wide range of applications, such as in
security and surveillance. Existing research has focused on
re-identifying individuals; however, searching for a certain
group of persons has rarely been studied. It is usual for a
group of people to walk along a street together. As illustrated
in Fig. 1, the same group was captured by cameras at different
Bus Rapid Transit (BRT) stations in the city center. In this
paper, the research objects of the pedestrian ReID task are
defined as a group, such as a couple travelling together,
students walking together after school, colleagues who have
the same work schedule and parents walking with children
after school.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

Unlike individual ReID, the aim of group re-identification
(G-ReID) is to associate a certain group with different camera
views. In addition to the traditional challenges of ReID, such
as low resolutions, pose changes, illumination variations and
blurred vision, G-ReID poses some unique challenges [1].
Changes in the number of group members and in the relative
positions of members within the group can cause differences
in the appearance of the group, which is not conducive to
group image matching. Therefore, G-ReID is a more chal-
lenging task because of the deformable characteristics of
groups.

To solve G-ReID, early researchers used traditional man-
ual design methods [2]–[7] to extract group features. Most
existing methods view the input group image as an entire unit
and extract global or semiglobal features. However, it is not
suitable to treat the group as a whole and extract its global
or semiglobal features because the changes in the relative
positions of group members can alter the visual content of
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FIGURE 1. Challenges of G-ReID. In addition to traditional challenges,
such as low resolutions, pose changes, illumination variations and
blurred vision, G-ReID has some unique challenges. Changes in the
number of group members and in the relative positions of members
within the group can cause deformable characteristics of the group
appearance, as shown in Fig. 1. In the figure, there are two groups. One
group consists of two women and the other group consists of three men.
The group image taken at a Friendly Mall site shows that a woman in red
is to the left of another woman in black. The image of the same group
captured by another camera at the site of the Academy of Sciences shows
that the woman in red is on the right side of the woman in black.

the group. Because of the powerful ability of convolutional
neural networks to describe local features, recent studies have
shown excellent performance of some deep learning-based
methods in visual recognition tasks [8], [9]. Inspired by these
works, a large number of deep learning techniques have been
applied to single-pedestrian ReID. tasks [10], [11]. Never-
theless, few works have utilized deep learning methods for
G-ReID.Deep learning can obtain a good feature summary by
gradually summarizing shallow features into deep features.
Shallow features represent the local details of objects and
deep features express high-level semantic information. In
addition, people usually distinguish pedestrians by local fea-
tures. Therefore, considering the strong recognition of local
features and the summary ability of deep features, we use
local deep features to describe the outward appearance of a
group.

Since the appearance of a group is affected by changes in
the number of group members and in the relative positions of
thememberswithin the group, the goal is to construct descrip-
tors that are not affected by these deformable characteristics.
The part-based minus-average relational and arithmetic mean
descriptor (PRM) algorithm are designed for the challenges
of the G-ReID. Based on local features, we have designed the
arithmetic mean descriptor and the minus-average relational
descriptor to solve the G-ReID problem caused by changes
in the number of group members and their relative positions

within the group. Moreover, the minus-average relational
descriptor can also be used to describe the differences in the
appearance of group members. Additionally, we input the
features obtained by the minus-average relational descriptor
and the features obtained by the arithmetic mean descriptor
into the cross-entropy loss function. We then apply the gra-
dient descent algorithm to optimize the objective function
and obtain 12 classifiers to describe group features. Conse-
quently, the PRM algorithm task is formed for group feature
extraction.

The main contributions of this paper include the follow-
ing: 1) We have proposed a PRM algorithm for G-ReID.
2) Considering the rarity of G-ReID datasets and the need
to improve the applicability of the G-ReID algorithm in
real-life scenarios, we have collected a new dataset denoted as
the BRT G-ReID dataset. Our extensive experimental results
demonstrate the effectiveness of the PRM algorithm and indi-
cate that it outperforms state-of-the-art algorithms by 7.5%
for the cumulative matching feature (CMC-1) on the i-LIDS
MCTS group dataset and by 19.4% for the CMC-1 on the
Road Group dataset, and it outperforms the baseline by 2.4%
for the CMC-1 on the BRT dataset.

II. RELATED WORKS
A. GROUP SEMANTICS
1) MULTIDISCIPLINARY USE OF GROUP SEMANTICS
The research on group semantics involves multidisciplinary
fields. Different disciplines that study group semantics have
different research perspectives. The studies on group seman-
tics in social humanities [5] [12]–[17] aim to use existing
group semantic algorithms to analyse social phenomena and
provide technical support for social services. The research
on group semantics in the field of computer vision aims to
innovate the group semantic algorithmmodel. To improve the
accuracy and efficiency of the subtask, these group semantic
models are applied to computer vision subdivision tasks,
such as target detection [18], [19], ReID [20], target tracking
[21]–[26] and G-ReID [2]–[7] .

2) G-ReID USING GROUP SEMANTICS
We summarize the existing G-ReID tasks as follows.
Zheng et al. [4] proposed the center rectangular ring
ratio-occurrence descriptor (CRRRO) and block based
ratio-occurrence descriptor (BRO). Cai et al. [5] proposed a
covariance descriptor for the appearance matching of group
images. The covariance descriptor is a discriminative descrip-
tor that captures both the appearance and statistical properties
of image regions. Zhu et al. [6] formulated G-ReID as a
patch matching task and proposed to learn an ensemble of
‘‘salience channels’’ that are robust to illumination varia-
tions and that can filter out unreliable and noninformative
patch matches. Lisanti et al. [3] proposed a novel encoding
scheme based on dictionary learning to perform G-ReID. To
circumvent the poor detection performance caused by occlu-
sions, Koperski et al. [7] used fixed regions of interest and
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employed codebook-based visual representations. In terms
of the extraction of group features, early researchers used
traditional manual design methods. In addition, most existing
methods view the input group image as an entire unit and
extract global or semiglobal features.

B. LOCAL FEATURE REPRESENTATION
Local features can consider the geometric properties of
data [27], [28]. In addition, local features constitute global
features, thus, local features can effectively represent the
intrinsic structural relationship. Specifically, there is a spatial
relationship between local features. The attribute of consis-
tency of spatial information contributes to feature expression
[29]. Therefore, we want to apply local feature information
to group appearance modeling. Local features include tradi-
tional local features and deep local features.

1) ReID USING LOCAL FEATURES
Pedestrian ReID has been performed with traditional local
features. Gray and Hai [30] presented an algorithm for
performing viewpoint-invariant pedestrian ReID by using
the ensemble of localized features (ELF) representation.
Bak et al. [20] proposed a new appearance model based on
spatial covariance regions extracted from human body parts.
The new spatial pyramid scheme was applied to capture
the relationships between human body parts to obtain a
discriminative human signature. In [20], Farenzenal et al.
proposed features that model three complementary aspects
of the human appearance. Farenzena et al. [31] computed
a simple vector of attributes that consists of the pixel coor-
dinates for each pixel of an image. These local descriptors
are then turned into Fisher vectors that represent the group
image. Ma et al. [32] used a local Fisher discriminant analy-
sis algorithm to achieve pedestrian ReID. Pedagadi et al. [33]
proposed an effective feature representation called local max-
imal occurrence (LOMO) and a subspace and metric learning
algorithm called cross-view quadratic discriminant analysis
(XQDA). Liao et al. [34] proposed a decision function for
verification that can be viewed as a joint model of a dis-
tance metric and a locally adaptive thresholding rule. The
hand-designed descriptors are used in these works to express
pedestrian. Actually, hand-designed descriptors would be dis-
turbed by human factors and less intelligence.

The research on ReID that uses deep local features includes
the following. Chen et al. [35] proposed a polynomial fea-
ture map to describe the matching within each subregion
and injected all the feature maps into a unified framework.
Yao et al. [36] proposed a deep representation learning pro-
cedure named the part loss network (PL-Net) to minimize
both the empirical classification risk and the representation
learning risk. Sun et al. [37] proposed a uniform partition
strategy, namely, a part-based convolutional baseline (PCB),
that achieves competitive results with state-of-the-art algo-
rithms, which validate it as a strong convolutional baseline
for person retrieval. Suh et al. [38] proposed a two-stream
network and a bilinear-pooling layer. Each local feature of

the part-aligned map is obtained by a bilinear mapping of
the corresponding local appearance and body part descriptors.
Sun et al. [39] proposed a visibility-aware part model (VPM)
that learns to perceive the visibility of regions through self-
supervision. The visibility awareness allows the VPM to
extract region-level features and compare two images with a
focus on their shared regions. Researchers use deep learning
technology adaptively learn the local feature weight matrix,
and perform well on the task of ReID.

2) G-ReID USING LOCAL FEATURES
G-ReID works have also involved local region-based
descriptors. Zheng et al. [2] proposed a center rectan-
gular ring ratio-occurrence descriptor and a block-based
ratio-occurrence descriptor. Lisanti et al. [3] divided the
entire group image into uniform small blocks, extracted fea-
tures based on the small blocks and represented the group
image in the form of block sets. However, such methods
extract back information at different scales, which increases
interference information when expressing group appearance.
Moreover, treating the group as a whole and extracting its
global or semiglobal features may not yield good perfor-
mance because changes in the relative positions of group
members can alter the visual content of the group.

Current evaluations show that the performance of tradi-
tional local feature operators is far inferior to the performance
of deep feature operators. The main reason is that deep
learning has good feature summary ability. Deep learning
can gradually summarize shallow features into deep features.
Shallow features represent the local details of objects and
deep features express high-level semantic information. Con-
sidering the above factors, we intend to detect and clip the
members of a group to avoid interference from background
information. Finally, considering the stability of human body
structure information and the advantages of deep learning,
we use the PCB network [40] to implement local feature
localization and local feature extraction.

C. RESEARCH ON TARGET RELATIONALITY
In real-life scenarios, we often observe changes in the relative
positions of group members within a group. We define the
changes in the structure of groupmembers as the relationality.
Deng et al. [41] developed a new model that allows the
encoding of flexible relations between labels. This model
introduced hierarchy and exclusion (HEX) graphs and a new
formalism. Ding et al. [42] proposed the HEXmodel to allow
for soft or probabilistic relations between labels. Inspired
by recent advances in the relational representation learn-
ing of knowledge bases and convolutional object detection
networks, Zhang et al. [43] proposed a visual translation
embedding network (VTransE) for visual relation detection.
Chen et al. [44] learned a novel similarity function that con-
sists of multiple subsimilarity measurements, each of which
is in charge of a subregion. Li et al. [45] designed a multi-
scale context-aware network (MSCAN) to learn the powerful
features of the full body and body parts and to capture local
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context knowledge well by stacking multiscale convolutions
in each layer. Chen et al. [46] proposed an algorithm that
not only improves the learning of global visual features via
a supervision of the overall description but also enforces
semantic consistencies between the local visual and linguis-
tic features, which is achieved by building global and local
image-language associations. Fei et al. [47] proposed a new
saliency learning algorithm based on a three-stream convolu-
tional neural network (CNN) that is first presented to learn the
distinctive features of the upper body, lower body and global
body. Hu et al. [48] proposed an object relation module that
processes a set of objects simultaneously through an interac-
tion between their appearance feature and geometry, which
allows their relations to be modeled. Huang et al. [49], [50]
represented the coupling relations between every two group
members according to the differences in their personal fea-
tures to efficiently signify the co-occurrence of the two mem-
bers with only their discrepancies.

The above studies have achieved target classification and
ReID by enhancing the relationality among the targets.
Inspired by these previous works and the efficient expression
ability of deep convolution, we first detect the members of
a group, clip a single pedestrian according to the detection
frame and extract the local features of the single pedes-
trian. According to the local features of the group members,
the minus-average relational and arithmetic mean descriptors
are constructed to strengthen the relationality among group
members to solve the problem of G-ReID.

III. APPROACH
The proposed framework of this work is shown in Fig. 3 and
Fig. 4. The framework consists of a group feature classifiers
training stage and a group feature matching stage [51]. In the
training stage, based on local feature location and extraction,
we obtain six arithmetic mean features hMj by using the
arithmetic mean descriptor and six minus-average relational
features hRj by using the minus-average relational descriptor.
After dimension reduction, we input these feature vectors
into the softmax multiobjective classification function in
Eq. (3) and Eq. (4) and use the gradient descent algorithm
to optimize the cross-entropy loss function in Eq. (5) and
Eq. (6) to obtain the weight matrix W . In the training stage,
we obtain 12 feature classifiers of the PRM algorithm. In the
matching stage, we extract features from the probe image hGp

and the gallery images hGg via the PRM model and calculate
the distances between the probe feature and the gallery feature
to re-identify the group ID of the probe image according to the
distances. To facilitate reading, we show the notations used in
the PRM algorithm in TABLE 1. Please refer to TABLE 1 for
the notations used throughout the paper.

A. DETECTION OF G-ReID
The G-ReID image of the existing database contains mul-
tiple pedestrians, and a single pedestrian has no detection
frame-labeling information. Therefore, before the G-ReID
can work, we must detect the pedestrians and the quality

TABLE 1. Descriptions of the key notations used in this paper.

of the pedestrian detection directly affects the accuracy of
the G-ReID. The workflow of G-ReID is to first detect the
members of the group, crop a single pedestrian picture based
on the detection bounding box and design the group features
based on the features of the single pedestrian. Considering
the efficiency and accuracy of the detection algorithm, we use
SSD [52] to detect a single pedestrian in a group. To improve
the accuracy of pedestrian detection, we pretrain the SSD
model on the INRIA [53] pedestrian datasets.

B. GROUP FEATURE EXPRESSION
Group feature expression is an important stage of the G-ReID
task. Good group feature expression can effectively improve
the accuracy of G-ReID. G-ReID must solve the problem of
the group appearance changes caused by the layout of group
members and changes in the number of group members.
To solve these problems, we have proposed the PRM algo-
rithm. The PRM algorithm uses the PCB network structure
[40] to implement local feature localization and the extrac-
tion of group members. Subsequently, to solve the unique
problem of G-ReID, we use an arithmetic mean descriptor
andminus-average relational descriptor toworkwith the local
features.

1) LOCAL FEATURE LOCATION AND EXTRACTION
In daily life, people usually distinguish pedestrians by local
features, such as differences in hairstyles, facial contours and
body weight. Therefore, considering the highly discrimina-
tive nature of local features, we use local feature descriptors
to describe group images. PCB is a baseline for the person
retrieval task [40]. p is a parameter in the baseline algo-
rithm, and its specific meaning is the number of horizontally
divided blocks of a detected pedestrian. When p = 6,
the pedestrian retrieval task of the baseline algorithm has the
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FIGURE 2. PCB feature extraction network structure. The size of a single pedestrian picture is unified into an image with an aspect ratio of 3 : 1 and size
of 384× 128. The tensor T is formed after the ResNet50 convolutional network and the T level is divided into 6 bands. The size of the tensor T is
24× 8× 3. Then, by using traditional average pooling, T is changed to a column vector g of 1× 1×2, 048 dimensions and g is transformed into a
1× 1× 256 column vector h by the 1× 1 convolution kernel. The detected single pedestrian is finally expressed as 6 feature column vectors h.

highest accuracy. Therefore, parameter p is also set to 6 in our
research method. Considering the robust performance of the
PCB framework, we use the PCB network structure to realize
the local feature location and extraction of a single pedestrian
in a group. The network structure of PCB is shown in Fig. 2.

2) ARITHMETIC MEAN DESCRIPTOR
The changes in the relative positions of group members lead
to variations in the appearance of the same group. Our algo-
rithm aims to design a consistent appearance representation
of the same group image regardless of the changes in group
member positions. In addition, a change in the number of
group members leads to a change in the group image appear-
ance features, which is not conducive to later group image
feature matching. Therefore, we must find the descriptor of
the group image to solve these problems. The arithmeticmean
descriptor proposed in this paper can solve the G-ReID prob-
lem caused by changes in the number and relative positions
of group members, as shown in Eq. (1).

Based on the location and extraction of local features,
we must find an effective method of expressing group appear-
ance features combined with local features. The number of
members in a group is variable. If the local feature vectors
of the members in a group are simply concatenated, then the
dimensions of feature expression in different groups will be
different, which is not conducive to feature matching between
different groups. If we use the arithmetic mean operator
to calculate group features, then the feature dimensions of
each group image are all the same. The feature dimensions
of different group images are not affected by the number
of members in the group, which is conducive to later-stage
cosine similarity calculations between group images. Addi-
tionally, the group image represented by the arithmetic mean
descriptor can robustly work with differences in the appear-
ance of the group image caused by changes in the relative
positions of group members. Moreover, the dimension of
the group appearance feature hMj obtained by the arithmetic
mean descriptor is fixed and is not related to the change in

the number of pedestrians, thereby avoiding the dimension
disaster caused by the increase in the number of members in
the group.

hMj = M (hj) =

∑m
i=1 hij
m

(1)

3) MINUS-AVERAGE RELATIONAL DESCRIPTOR
We use the minus-average relational descriptor hRj to describe
the differences in the appearance of group members, as
shown in Eq. (2). The algorithm flow of the minus-average
relational descriptor is to subtract the corresponding local
visual features of the group members and calculate the mean.
Therefore, the minus-average relational descriptor can better
describe the appearance differences of the members in a
group, and reflect the relationship between group members.
In addition, the minus-average relational descriptor also can
solve the variation in the group appearance caused by changes
in the number and relative positions of the group members.
The physical mechanism is the same as the arithmetic mean
descriptor’s mechanism because it uses the same mean oper-
ation.

hRj = R(hj) =

∑m
i=1

∑m
k=i+1 |hij − hkj|

C2
m

(2)

Accordingly, the minus-average relational descriptor not only
has the advantages of the arithmetic mean descriptor but also
can describe the appearance differences of group members,
which contribute to the correct judgement of the G-ReID
system.

4) PRM G-ReID ALGORITHM
The PRM algorithm is an integration of the technical
strategies described above. Based on local feature location
and extraction, we obtain six arithmetic mean features hMj
through the arithmeticmean descriptor and sixminus-average
relational features hRj through the minus-average relational
descriptor. We reduce the dimension by using the fully con-
nected layer and obtain the 1 × 200 dimensional vectors ĥRj
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FIGURE 3. Architecture of the PRM algorithm. After entering a group of images, we use the SSD detection algorithm pretrained on the INRIA dataset to
detect the pedestrians. Subsequently, we crop the detected pedestrians, set the image size to 384× 128 and set the image ratio to 3: 1. We place the
detected single pedestrian into the PCB network structure to achieve local feature localization and feature extraction. Specifically, the detected single
pedestrian is divided into an even six blocks and the local feature information for these six blocks is extracted to form six column vectors h with a size of
1× 1× 256. We perform the arithmetic mean and minus-average relational operations on h to obtain the arithmetic mean descriptor hM and the
minus-average relational descriptor hR . We reduce the dimension using the fully connected layer and obtain the 1× 200 dimensional vectors ĥM and ĥR .
Then we input these features into the softmax multiobjective classification functions to obtain 200 probability values. Next, we input these probability
values into the cross-entropy loss function and use the gradient descent algorithm to optimize and obtain the weight matrix W M of the arithmetic mean
descriptor and the weight matrix W R of the minus-average relational descriptor. Finally, the entire process of the PRM algorithm has been completed.

and ĥMj . These feature vectors are subsequently input into
the softmax multiobjective classification function shown in
Eq. (3) and Eq. (4). Next, we input the probability value into
the cross-entropy loss function in Eq. (5) and Eq. (6) and use
the gradient descent algorithm to optimize the cross-entropy
loss function and calculate the weight matrix WR and WM .
Finally, the entire process of the PRM algorithm has been
completed. In the group feature expression step, we train 6
arithmetic mean classifiers and 6 minus-average relational
classifiers to classify group images. In this way, the PRM
algorithm not only solves the problem of the group appear-
ance changes caused by the changes in the number and
relative positions of group members but also describes the
relations among the group members. Fig. 3 illustrates the
architecture of the PRM algorithm.

P(ŷ = k|ĥRj ) =
exp(wk ĥRj + bk )∑c
i=1 exp(wiĥ

R
j + bi)

(3)

P(ŷ = k|ĥMj ) =
exp(wk ĥMj + bk )∑c
i=1 exp(wiĥ

M
j + bi)

(4)

where, ĥRj = 8(hRj ), and ĥ
M
j = 8(hMj ). P(ŷ = k|ĥRj ) is the

probability that the minus-average relational feature ĥRj of the

j-th part of a group image belongs to the k-th category. P(ŷ =
k|ĥMj ) is the probability that the arithmetic mean features ĥMj
of the j-th part of a group image belongs to the k-th category.

L̂Rj (x) = −
c∑

k=1

I(y, k)log(P(ŷ = k|ĥRj )) (5)

L̂Mj (x) = −
c∑

k=1

I(y, k)log(P(ŷ = k|ĥMj )) (6)

Lj(x) =
∑
x∈χ

L̂Rj (x)+
∑
x∈χ

L̂Mj (x) (7)

where, I(y, k). If y = k , then return 1, otherwise, return
0. x is a single group image. χ is the set of all training
sample images. L̂Rj (x) is the loss of the j-th part of one sample
that corresponds to the minus-average relational descriptor.
L̂Mj (x) is the loss of the j-th part of one sample that corre-
sponds to the arithmetic mean descriptor. Lj(x) is the sum of
the total loss of the j-th part of all samples.

C. GROUP FEATURE MATCHING
The research on G-ReID can be divided into two stages.
The first stage is feature extraction and classifier training
and the second stage is feature matching. In the first stage
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FIGURE 4. The architecture of group feature matching. The figure shows the group image matching process of the
G-ReID. For each group of pedestrian data in the BRT test dataset, one image is randomly selected in the gallery set, and
the remaining images are selected as the probe set. We use the PRM model to extract group image features from the
probe set and gallery set. We use the cosine similarity function to calculate the feature distance and sort the calculation
results. Finally, we use CMC as the evaluation index of the PRM model.

of G-ReID, 12 feature classifiers are trained by the PRM
algorithm. In the feature-matching stage of the group image,
we use Eq.(8) to concatenate 12 local feature vectors from
12 classifiers as the overall appearance features of a group
image.

hG = G(ĥRj , ĥ
M
j ) = ĥRj ⊕ ĥ

M
j (8)

where, G(·) represents the global descriptor for the concate-
nation between R and M . ⊕ is the concatenation operator.

The test process is shown in Fig. 4. First, we extract a
picture from each sample in the test set to form the gallery set.
Then, the remaining sample images in the test set constitute
the probe set. In this way, there is only one image of the same
group in the gallery set and several images of the same group
in the probe set. Third, we extract a picture from the probe set
and input it into the PRM model to obtain the feature vector
of the probe set group image. Next, we input all pictures in the
gallery set to the PRMmodel and obtain all the group feature
vectors of the gallery set. The cosine similarity in Eq. (9) is
then used to calculate the distance between the feature vectors
hGp of the probe set image and all the image feature vectors
hGg in the gallery set. Because the cosine similarity considers
the direction of a vector, it is mostly used in the feature
matching of pedestrian ReID. When the cosine similarity is
greater, the similarity between the two images is higher. We
use the cumulative matching feature (CMC) as the evaluation
index of the PRM model. The feature matching process is
shown in Fig. 4.

S =
hGg�hGp

‖hGg‖·‖hGp‖
(9)

IV. BRT DATASET
The BRT dataset is used to assess the G-ReID. Because the
sampling location of the G-ReID dataset is the transfer station
of the city’s BRT system, the G-ReID dataset is denoted as the
BRT dataset. The BRT dataset expands the research scale of
G-ReID research from small-scale extensions of blocks and
schools to large-scale urban centers, which is beneficial for
the spatial visualization of G-ReID results and understanding
group behavior. We describe aspects such as the necessity
of BRT dataset collection, the BRT dataset overview and
sampling scheme, the ground truth and the challenges of the
BRT dataset.

A. NECESSITY OF BRT DATASET COLLECTION
First, the BRT dataset is a G-ReID dataset, and a large num-
ber of current pedestrian ReID datasets are single-pedestrian
ReID datasets. In real life, people often travel together and
their travel activities have social attributes. The task of
G-ReID is different from that of single-pedestrian ReID. The
research on G-ReID has unique difficulties caused by varia-
tions in the number and positions of group members. Second,
in the BRTG-ReID dataset, the sampling points cover 5 urban
administrative areas in the city center. In previous research,
the sampling point referred only to a local space area, such
as an airport transfer hall or a corner of a campus. The BRT
dataset brings many benefits for future G-ReID research. On
the one hand, the BRT dataset is convenient for spatiotem-
poral feature modeling and matching, which is helpful for
improving the efficiency and accuracy of G-ReID. On the
other hand, the spatial visualization of G-ReID results is con-
ducive to mining and understanding the potential semantic
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FIGURE 5. Urban spatial distribution of the sampling lines and sites of
the BRT dataset. The circles in different colors represent the different BRT
stops and the lines in different colors represent the different operating
lines of the BRT system. The group images come from the camera group
at these sites, which all have real spatial and geographical coordinates.

information of human activities. In addition, the previous
ReID datasets involve only internal campus scenes. Students
travel in a single way among the school, canteen and dor-
mitory. However, the BRT dataset is different and reflects
the style of public travel among people of different ages,
genders, occupations and nationalities. Such datasets are the
true reflection of society and can combine ReID tasks with
tracking to formmany trajectories, thereby contributing to the
use of sociological, psychological and human geographical
knowledge to mine semantic information.

B. BRT DATASET OVERVIEW AND SAMPLING SCHEME
1) BRT DATASET OVERVIEW
The BRT system is a new type of public transportation system
between rapid rail transit and conventional public transporta-
tion. The collection line of the BRT dataset involves five BRT
operating lines in the city. The sampling stations cover the
central urban area of the city and include 53 stations, such as
Haojia Town, Cultural Palace, Mingyuan, Mobile Company,
Youyi, Hongshan, Academy of Sciences and RailwayBureau.
The details of the sampling stations and sampling lines of the
BRT dataset are shown in Fig. 5.

2) BRT DATASET SAMPLING SCHEME
The project team arranged 13 groups that consisted of 6-8
people in each group. Each group had a sampling route.
The team members combined freely to ensure the sufficient
diversity and quantity of the group images. During the sample
collection process, we recorded the time spent in the station
and the station name. In addition, group members transferred

to different bus routes at least once. Fig. 6 shows a schematic
diagram of the group sampling. The groups appear at different
blue and red sites. The blue and red lines indicate the sam-
pling routes.

C. GROUND TRUTH OF THE BRT DATASET
To simplify the research, we do not consider the spatial layout
of the cameras in the BRT station when we divide the dataset.
We label pedestrians collected by different types of cameras
at the same site with the same group label. The dataset is
divided into the training set and test set. There are 200 types
of group pictures in the training set, each of which is a group,
with a total of 1, 870 images. There are also 200 types of
group pictures in the test set, each of which is a group, with a
total of 1, 340 images. The total number of images in the test
set and training set is 3, 210. First, we extract a picture from
each sample of the test set to form the gallery set. The remain-
ing sample images in the test set constitute a probe set. In this
way, the gallery set has only one image of the same group,
while the probe set has several images of the same group. We
statistically compare BRTwith two existing G-ReID datasets,
namely, i-LIDSMCTS[7] and Road Group [58] in TABLE 2.

TABLE 2. Statistical comparisons between the BRT and existing G-ReID
datasets.

D. CHALLENGES OF THE BRT DATASET
The BRT dataset is collected at a real scene and has practical
application value. The real scene is complex and changeable.
The collected BRT dataset is subject to interference from
natural factors, such as changes in the light, illumination and
imaging color. It is also influenced by human factors, such as
group members blocking each other, changes in affiliations
of the group members, etc. The challenges of the BRT dataset
are summarized in 9 aspects, as shown in Fig. 7.

V. EXPERIMENTAL RESULTS
In this section, we introduce the experiment from the follow-
ing five aspects: the evaluation protocol; pretraining the SSD
detector; experiments on the BRT dataset; experiments on
the i-LIDS MCTS and Road Group datasets; implementation
details and experimental setup.

A. EVALUATION PROTOCOL
Pedestrian ReID approximates matching retrieval or sort-
ing tasks. The basic goal is to use the algorithm model
to calculate the distance between the probe image and all
images in the gallery set. Then, according to the distance,
we obtain a sorted list. The Rank 1 accuracy and cumulative
matching characteristic curve are commonly used evaluation
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FIGURE 6. Schematic diagram of the group sampling. Group 1 on the left consists of two people. The picture on the left shows that
group 1 was photographed by cameras at different BRT stations. Two girls in group 1 passed through Children’s Park and South Gate
separately. The blue line indicates the operating route of BRT 1. It is roughly inferred that group 1 got on at Southgate and off at
Children’s Park. The resolution of group 1 captured by the two sites is different. On the right is group 2, which is composed of three
people. The figure on the right shows that group 2 passed the four stations: Changjiang Road, Children’s Village, Children’s Park and
the Academy of Sciences. The picture on the right is the distribution map of the re-identification results of group 2 on the urban real
geographic map. The pink line indicates the sampling route of group 2. The appearance of group 2 captured by different cameras
varies.

FIGURE 7. The challenges of the BRT dataset are summarized in 9 aspects. (a) Self occlusion (b) Relative
position changes of the group members (c) Significant color differences (d) Group local appearance
information (e) Group members of different sizes (f) Strong light changes (g) Changes in the affiliations of the
group members (h) Interference with pedestrian information (i) Group members with different body postures.

indicators to evaluate, quantify and verify pedestrian ReID
algorithms. Rank 1 can be regarded as the traditional clas-
sification accuracy. However, in actual application scenar-
ios, by solely depending on the ReID algorithm, we cannot

achieve a very high Rank 1 value. Therefore, we cannot truly
complete the pedestrian identity consistency matching task
across cameras. In this case, having the algorithm return a
sorted list is a more practical application of ReID. The user
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selects the correct matching result from the first N objects
on the list. If N is much smaller than the size of the probe
set, the ReID algorithm can greatly reduce the labor cost and
improve the efficiency of the matching task. The mathemati-
cal formula is defined as follows.

cmc(N ) =
N∑
n=1

r(n) (10)

where r(n) represents the probability that the n-th element
on the sorted list is consistent with the identity of the target
to be queried. With N as the abscissa and CMC(N) as the
ordinate, the CMC curve can be drawn and it is easy to find
that CMC(1) is the same as Rank 1.

B. IMPLEMENTATION DETAILS AND EXPERIMENTAL
SETUP
The backbone network of PCB uses ResNet50 [8]. The
batch size is set to 32 and the person images are resized to
384× 128 as inputs. The total training of the PRM algo-
rithm is 60 epochs and the basic learning rate is 0.05. After
30 epochs of training, the learning rate decays to 0.005.
Because the i-LIDS MCTS dataset does not have a training
set, the article [4] treats the entire i-LIDSMCTS dataset as the
test set. Therefore, to ensure that the evaluation ground truths
are the same, we use the G-ReID model trained on the BRT
dataset and test it directly on the i-LIDS MCTS dataset. We
use the labeled detection frame of the Road Group dataset to
obtain the information of a single person. Next, we execute
the PRM algorithm on the Road Group dataset. The final
result is obtained by averaging the results of 10 random splits.
We use the cumulative matching characteristics (CMC) as the
evaluation metric.

C. PRETRAINING THE SSD DETECTOR
The BRT dataset does not have bounding-box detection.
Therefore, before the pedestrian ReID work is carried out,
the members of the group must be detected. To improve the
pedestrian detection accuracy of the SSD, we pretrain the
SSD detector on pedestrian datasets, such as PRW [56] and
INRIA [53]. INRIA is currently the most used static pedes-
trian detection database and provides original pictures and
corresponding annotation files. These high-resolution images
come fromGRAZ-01 and Google. The PRWpedestrian ReID
dataset is an extension of the Maretk1501 dataset. The test
results are shown in Fig. 8. Pretraining the SSD model on the
INRIA pedestrian dataset is more helpful for theG-ReID task,
because the INRIA dataset is similar to the BRT dataset, and
includes pedestrians with complete bodies, while the PRW
pedestrian dataset is different, and contains many cropped
images at different scales.

D. EXPERIMENTS ON THE BRT DATASET
1) EVALUATION COMPONENT OF THE PRM ALGORITHM ON
THE BRT DATASET
Because the final PRM algorithm is determined by a combi-
nation of strategies such as detector pretraining, PCB local

FIGURE 8. Contribution of pretrained pedestrian detection to improve the
accuracy of G-ReID. The abscissa is the rank and the ordinate is the
accuracy. The red polyline represents the accuracy of G-ReID with the SSD
model without additional fine-tuned training. The blue and green
polylines represent the accuracy of G-ReID with the SSD model pretrained
for pedestrian detection on the INRIA and PRW datasets, respectively.

feature localization and extraction strategies and group fea-
ture descriptors, we must identify the optimal combination
of these strategies to ensure the best performance of the
PRM algorithm. We test and compare the components of
the PRM algorithm on the BRT dataset. TABLE 3 shows
the test results for the component of the algorithms on the
BRT dataset, where R-k ( k = 1, 5, 10 ) denotes the Rank-k
accuracy(%).

The PRM algorithm is based on the baseline algorithm,
by adding some innovative elements. For the baseline algo-
rithm, we choose the ResNet50 [8] and PCB [37] networks
because the ResNet50 has low complexity and good perfor-
mance. It is the baseline of the ILSVRC [57] and COCO2015
[54] competitions and is ranked first in ImageNet detection,
local positioning and segmentation tasks. The PCB algorithm
is a recognized baseline in the field of ReID. We evaluate
and compare the PRM algorithm with the existing baseline
algorithms on the BRT dataset. The R50B algorithm does
not perform detection and inputs the entire picture into the
ResNet50 network to extract group features. The PCB algo-
rithm does not perform detection and sends the entire picture
directly to the PCB network to extract group features. As
shown in TABLE 3, the performance of the G-ReID algo-
rithm that uses the PCB network is better than the perfor-
mance of the G-ReID algorithm that uses R50B, because
the ResNet50 feature extraction network does not specify the
classification target. The targets in these images are people,
animals, vehicles, objects etc. By contrast, the PCB baseline
algorithm is designed for single-person ReID. Therefore,
we choose the PCB network as the basis for the design of
the PRM algorithm.
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FIGURE 9. Example of the correct matching of G-ReID on the BRT dataset. The blue box indicates the pedestrians who
should be probed during the test phase and the red box indicates the pedestrians that the probe image matches correctly
in the gallery set. The ranking images are sorted from left (Rank 1) to right (Rank 5).

TABLE 3. Ablation study of the proposed PRM method. The matching
accuracy values (%) at Rank(r) = 1, 5, 10 are shown on the BRT datasets.
The best results are shown in black boldface font.

The PRM algorithm adds relational descriptors based on
the baseline PCB algorithm. The SSD-PCB algorithm detects
pedestrians by using an SSD detector without pretraining
and inputs the detected pedestrians into the PCB network
to extract group features. A lower pedestrian detection rate
leads to a lower ReID accuracy rate. The SSD-INR-PCB+M
denotes the strategy of using the INRIA dataset to pretrain the
SSD model of pedestrian detection and using the arithmetic
mean descriptor to extract group features. The SSD-INR-
PCB+M+U algorithm uses the SSD pedestrian detection
model pretrained on the INRIA dataset, the arithmetic mean
descriptor and the max relational descriptors to extract group
features. In the architecture of the max relational descriptor,
we first calculate the difference between the local features
and then select the max feature value. The PRM (SSD-
INR-PCB+M+R) denotes the strategy of using the INRIA
dataset to pretrain the SSD model of pedestrian detection and
using the minus-average relational feature and the arithmetic
mean descriptor to extract features. Theoretically, the max
relational descriptor mainly gives attention to the salient line

FIGURE 10. Visualization of the class activation maps (CAMs). The CAM of
(a) indicates the original images from the BRT dataset. The CAMs of
(b) and (c) are generated by the PCB baseline and PRM model,
respectively.

features of the group, for example, the overall outline infor-
mation of a pedestrian. However, the minus-average rela-
tional descriptor and the arithmetic mean descriptor mainly
concentrate on the overall information of the group. The
content of the overall information is more abundant than
the contour information. Therefore, the expression ability of
the minus-average relational descriptor and arithmetic mean
descriptor are stronger than the expression ability of the
max relational descriptor. The performance of PRM is better
than the performance of SSD-INR-PCB+M, which indicates
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FIGURE 11. The t-SNE visualization of high-dimensional group features obtained by the PCB,
SSD-INR-PCB+M and PRM from the BRT dataset. Each color represents an identity randomly chosen from
the unseen training BRT dataset.

that the minus-average relational descriptor is an effective
accumulation factor. The final evaluation results show that
the PRM algorithm performs the best.

2) VISUALIZATION
The visualization of the PRM model is presented for the
evaluation on the BRT dataset. To express the algorithm
performance intuitively, we show a typical test-phase case
in Fig. 9. The blue box image from the probe set is the group
image that must be queried during the test phase. The red
frame picture from the gallery set is the group image that
was correctly matched during the test phase. The matching
process is performed to calculate the cosine distance between
the blue box image and all the group images in the gallery
set and then to sort the calculation results. When the cosine
similarity is higher, the similarity of the two images is greater.
We sort the calculated similarity values, the value with the
highest similarity is named Rank 1 and the value with the
second-highest similarity is named Rank 2. The sorted results
are displayed from left (Rank 1) to right (Rank 5). The evalu-
ation of the visualization also demonstrates the performance
of the algorithm. Fig. 9 is the visualization effect of the PRM
model that continuously hits an index target on the BRT
dataset during the retrieval of the gallery set.

a: VISUALIZATION OF THE CLASS ACTIVATION MAP
We visualize the class activation maps (CAM) in Fig. 10
by using Grad-CAM [58]. The visual group images were

taken at different sites of the BRT and the members of the
groups in the images were accompanied by mutual occlu-
sion and relative position changes. We use the PCB baseline
algorithm to process the entire group image to obtain the
CAM activation map (b).We use the PRM algorithm to detect
the group members and construct relations for the detected
group members to obtain the CAM activation map (c). Com-
pared with the PCB baseline algorithm, the proposed method
has a higher activation in the same discriminative area. The
PRM algorithm can more effectively capture the relationship
information between group members. The PRM algorithm
can also show independent hotspots in group members and
thermal transitions between group members. This indicates
that the proposed method can focus on more discriminative
cues.

b: THE T-SNE VISUALIZATION OF GROUP FEATURES
To determine whether the PRM descriptors are effective in
group classification from the perspective of feature dimen-
sionality reduction, we use the PCB, SSD-INR-PCB+M and
PRM algorithms to extract group features and then use the
t-SNE algorithm to visualize these extracted features. The
t-SNE algorithm [59] creates a single map that reveals struc-
tures at many different scales. This is particularly important
for high-dimensional data that lie on several different but
also related low-dimensional manifolds, such as images of
objects from multiple classes seen from multiple viewpoints.
We randomly selected 6 groups of data and used the t-SNE
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TABLE 4. Comparison with state-of-the-art G-ReID methods. The best results (%) are in black boldface font.

algorithm to perform a visualization on the training set.
The PCB algorithm does not perform detection but rather
sends the entire picture directly to the PCB network to extract
group features. The test results show that the arithmetic mean
descriptor and the minus-average relational descriptor are
effective at group classification tasks. Moreover, the perfor-
mance of the PRM algorithm based on the two descriptors is
the best. The PRM algorithm can pull the images from the
same identity closer while pushing different identities away
from each other.

E. EXPERIMENTS ON THE I-LIDS MCTS AND ROAD
GROUP DATASET
In this section, we introduce a comparison between the PRM
model and the state-of-the-art algorithms for G-ReID on the
i-LIDS MCTS dataset [54] and Road Group dataset [55].

1) DATASET DESCRIPTION
As shown in Fig. 12, the i-LIDS MCTS dataset [54] was cap-
tured by the multicamera CCTV network in the airport arrival
hall. The dataset was captured from two non-overlapping
camera views. A total of 64 groups were extracted and
274 images were cropped. For most groups, four images
are available that are from different camera views or from
the same camera but are captured at different locations and
different times. The capture of these images was subject to
large variances in light and occlusion.

The Road Group dataset [55] consists of 162 group pairs
taken from a 2-camera view of a crowded road scene. The
bounding box coordinates of a total of 1, 099 pedestrians are
also provided. The Road Group dataset includes severe object
occlusions and large variations in group layout.

2) COMPARISON WITH STATE-OF-THE-ART METHODS
To evaluate the G-ReID performance, we compare the
PRM model with the following state-of-the-art methods:
CRRRO-BRO [2]; Covariance [5]; and PREF [3]. In the
previous methods, the group features were designed by hand.
The CRRRO-BRO descriptor attempts to obtain a stable rep-
resentation against a relative position change between the
couple and BRO descriptor is robust to the changes in non-
center-rotation. In this case, CRRRO-BRO achieves decent
performance on the i-LIDS MCTS dataset, while the most
groups in this dataset contain two pedestrians. The princi-
ple of the covariance descriptor [5] is to measure the sim-
ilarity of two groups by calculating the difference in the
covariance matrix. Because the calculation of the covariance

FIGURE 12. Snapshots of the utilized datasets. The left is the i-LIDS MCTS
dataset. The right is the Road Group dataset. Each row of each dataset
shows a few snapshots with the same group ID. Each column represents
different groups.

matrix is based on local pixel values, it is highly susceptible
to interference from background information. Consequently,
the performance of the covariance descriptor is limited. PREF
(pooling residuals of encoded feature) [3] uses a feature
dictionary to express single-person features and then trans-
fers them for group appearance coding. The effect of PREF
is limited because changes in group appearance are more
complicated than changes in individual pedestrian appear-
ance. As shown in TABLE , the accuracy of the G-ReID is
higher with the PRM model than with the state-of-the-art
algorithms because the PRM algorithm solves the problems
of changes in the number and relative positions of the mem-
bers within the group. Therefore, PRM is valid for most
group datasets, regardless of whether the group in the dataset
contains 2 pedestrians or multiple pedestrians.

VI. CONCLUSION
In this paper, we have proposed the PRM algorithm. First, it is
based on the local features that are conducive to expressing
the internal structure of the human body. Second, the arith-
metic mean descriptor and the minus-average relational
descriptor solve the G-ReID problem caused by changes in
the number and relative positions of group members. Third,
the minus-average relational descriptor can describe the dif-
ferences in the appearance of the group members. The PRM
algorithm has a simple structure and has effective perfor-
mance on the G-ReID task evaluated by test experiments.
In addition, considering the rarity of G-ReID datasets and
the requirement to improve the applicability of the G-ReID
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algorithm in real-life scenarios, we have contributed the BRT
G-ReID dataset.

In the open world, G-ReID must work with more complex
scenarios and more diverse problems. The PRM algorithm is
a supervised learning method based on a group dataset with
label information. However, there are very few datasets for
G-ReID with label information. Therefore, future work can
consider using semi-supervised learning and transfer learning
methods to address variations in group appearance. More-
over, in real-life scenarios, considerable multi-source infor-
mation is available for G-ReID. For example, the geographic
spatio-temporal information is also a beneficial constraint
condition. Therefore, in the next stage, we will integrate
spatio-temporal constraint information with image appear-
ance information to address the challenges of G-ReID.
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