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ABSTRACT Multivariate Time series data play important roles in our daily life. How to use these data in
the process of prediction is a highly attractive study for many researchers. To achieve this goal, in this paper,
we present a novel multivariate time series prediction method based on multi-attention generative adversarial
network. This method includes three phases to explore multivariate time series prediction. Firstly, the encoder
stage consists of two modules, from which the input-attention and self-attention can encode the exogenous
sequence into latent space. Secondly, the decoder stage consists of the temporal-convolution-attention
module, which can extract long-term temporal patterns. To solve the problem of low accuracy in long-term
prediction, inspired by the weight clipping method, we design an improved discrimination network finally.
The experiment results indicate that multi-attention mechanism is useful and the discrimination network can
improve the performance in multivariate time series prediction. We also tested extensive empirical studies
with five real world datasets (NASDAQ100, SML2010, Energy, EEG and Air Quality) demonstrate the
effectiveness and robustness of our proposed approach.

INDEX TERMS Multivariate data, time series prediction, multi-attention, generative adversarial network.

I. INTRODUCTION
Multivariate time series data exist in every aspect of our daily
life. From the price of the stock market, the traffic flows
of highways, the outputs of solar power plants, to the tem-
peratures in different cities, users are often interested in the
prediction of new trends or new potential hazardous events
based on historical observations on time series signals. The
prediction results can provide a basis for various situations as
production planning, control, optimization, etc. For example,
a better route plan can be devised according to the predicted
traffic jam patterns a few hours ago, a larger profit can be
gained through the prediction of recent stocks, a reasonable
energy forecast can help us carry out load balancing, and a
successful temperature forecast can also help us make rea-
sonable travel preparation.

Typically, the periodicity and tend of the data play impor-
tant roles in predicting future data. People usually focus on
short-term or long-term predictions. For now, the autore-
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gressive moving average (ARMA) model [1] is a common
time series prediction model. Researchers proposed differ-
ent improved models based on the ARMA model to solve
the different problems, such as the auto-regression integral
moving average (ARIMA)model. ARIMA model is a form of
regression analysis that measures the strength of a dependent
variable relative to other variable variations. However, exper-
iments proved that these models cannot simulate nonlinear
relationships. To cope with this problem, A nonlinear autore-
gressive exogenous (NARX) model propose in this paper. Our
model associates the current value of the time series value
with the past value of the same sequence and the past value
of the driving (exogenous) sequence.

Specifically, real-world applications often entail short-term
or long-term patterns. In a set of time steps, various time
series components, such as complex trends, seasonality, and
noise, can be observed within a certain range. Compared with
ARIMA models, ANN (Artificial Neural Network) models
are much more complex techniques for training and fore-
casting. There is significant interest in the Recurrent Neural
Network (RNN) and sequence-to-sequence models [4] for
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forecasting. In the standard RNN structure, there are weights
between neurons in the hidden layer. With the continuous
progress of the sequence, the front hidden layer will affect
the back hidden layer, which leads to the temporal correlation
of data that can be captured. However, the loss will also
accumulate with the sequence. Then vanishing gradients in
the RNN have been addressed in the Long Short-Term Mem-
ory (LSTM) [5] and the Gated Recurrent Unit (GRU) [6],
by introducing gate-like structures. These LSTM and GRU
cell structures are however recurrent and are constant over
time. Several studies have shown success with variants of
these models [7]-[9].

In the study of time series prediction, some people try to
solve the problem by learning and predicting the trend of time
series data. Lin et al. [10] proposed a hybrid neural network
to predict a trend in uniform time series. Besides, in some
applications, such as algorithmic trading, it is more achiev-
able to predict the trend of stock price rather than forecast the
market absolute values [11]. They are also not good at using
the information provided by exogenous(driving) sequences
of data. To solve the problem of insufficient application of
exogenous sequence information, Qin et al. [12] and Liu
et al. [13] proposed to use encoder and decoder framework to
solve the problem, in which encoder can help extract infor-
mation of exogenous series. In another way, it still does not
make good use of the correlation between the driver series and
the target series. For example, when we predict the network
flow as the target value, we also conclude the relationship
between the target value and other driving attributes (such as
the click rate, jump rate, page stay time or other attributes)
which also contain some information for prediction. In the
process of real-time data prediction, the driving series at time
T cannot be provided for predicting the target value at the
same time T, which is the necessity for the DARNN model.
Meanwhile, with the increase of the prediction step, the
prediction accuracy cannot be maintained. Zhang et al. [14]
proposed a generative adversarial network (GAN) structure
with MLP as a discriminator and LSTM as a generator to
predict financial data. However, these methods are based
on the recursive application of single step prediction model
for multi-step prediction. If there are prediction errors, such
errors will continue to accumulate. In general, we are facing
two challenges: the first one is that how to use the correlation
between driving series and target well, the second one is that
the task of using observed time series in the past to predict
the unknown time series in prediction— the larger the predict
steps, the harder the problem.

In order to cope with these limitations, we propose a
novel model, Multi-Attention based Generative Adversarial
Network (MAGAN). Our model is composed of three stages,
the encoder network, the generator(decoder) network, and
the discriminator network as illustrated in Fig 1. We use the
encoder stage to capture the correlation of the multivariate
driving time series. The encoder network is composed of
input-attention which is extracted the correlation of target
data in the current time step and self-attention which is
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adjusted the proportion of driving series. In the decoder
stage, we select the temporal relevance of hidden information
with temporal-convolution-attention. In the discrimination
stage, convolution layers are used to extract data features
and discriminated the generated data with the true data. Con-
sidering the short-term situation, a discrimination network
does not work well in a short sequence. We just use the
encoder network and the decoder network to make up a model
named Multi-Attention based Recurrent Neural Networks
(MARNN)[15]. The main contributions of this paper are as
follows:
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FIGURE 1. The architecture of the MAGAN model.

(1) Self-attention dynamically adjusts the proportion of
driving series in the encoder network. The higher the weight
is, the stronger the correlation of the driving series is. The
relevance of the driving series is discussed and proved in
section 5.4.3.

(2) We add a convolution layer based on the temporal
attention which can capture the temporal pattern features in
encoder hidden states. The ability to capture the temporal
dependence is enhanced by increasing the weight of the
temporal features in the temporal-convolution-attention layer.

(3) We propose a new model MAGAN for long-term
prediction. The GAN model can improve the ability of the
MARNN model for generating time series data. Results show
the proposed framework can efficiently predict the long-term
series in future.

(4) We design dynamic weight clipping algorithm, which
makes the discriminator stage more stable and accurate. The
experimental result proves effective and is better than state-
of-the-art methods.

(5) We conduct extensive experimental evaluations on five
real datasets, demonstrated the superiority of MAGAN. The
effectiveness and robustness of multi attention mechanism
and weights clipping are verified.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the related background.
Section 3 describes the problem statement in the paper.
In Section 4, we present the details of our model, including
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the Encoder network, Generator network, and Discriminator
network. Experiments are given in Section 5. We conclude
our work and give a glimpse of the future work in Section 6.

Il. RELATED WORK

The deep learning models for prediction divide into two
kinds, one is a discriminative approach which models in view
of conditional and another is a generative approach which
models in view of joint probability.

A. DISCRIMINATIVE APPROACHES

Support Vector Machine (SVM) is a representative classical
model which is proposed by Vapnik in 1995 [16]. It is a
nonlinear time series prediction method based on supervised
kernels. Some researchers have proved that the support vector
machine method [17] is proposed in order to improve accu-
racy. It is based on the neural-fuzzy framework to construct
different local areas of input space.

Recurrent Structures is another classical network. RNN
connects the output and the inputs of neurons so that the
network has the ability for remembering trend information.
There is a vanishing and exploding gradient problem in stan-
dard RNN. Then the LSTM network overcomes this prob-
lem by introducing a linear unit that adds the information
for each timestep. Therefore, LSTM can maintain temporal
information in the state for a long number of timestamps
and is widely used in prediction tasks [18] in the field of
univariate and multivariate [19]. However, when there are
multiple exogenous (driving) sequences available, these net-
works cannot display the selection of relevant driving series
for prediction. In order to address the problem, Qin ez al. [12]
put forward a dual-stage attention-based RNN (DARNN) to
capture the long-term temporal dependencies and select the
relevant driving series to make the prediction.

CNN (Convolutional Neural Network) is also a common
representative deep learning model for forecasting [21]. Some
literature used deep CNN layers for dynamic occupancy
power grid prediction [22] and wind power prediction [23].
Compared with the widespread use of images, CNN is used
to classify rather than forecasting the next value. Until TCN
(Temporal Convolution Network) [24] was proposed to pro-
vide the ability of CNN for prediction is not worse than RNN.

B. GENERATIVE APPROACHES

Bayesian Networks (BNs) is a classical model for dealing
with uncertainty issues. There have been many studies on
time series prediction using the BNs model. Compared with
other generative models, BNs can be naturally applied to
model the multivariate time series, where the relationship
between variables as well as the evolution over time will be
both effectively captured [25]-[27].

Deep Belief Network (DBN) is a deep learning model
for developing abstract and information abilities. The pre-
dicted objects include traffic flow, energy to drought
index [28], [29]. But these deep models require much more
computational cost.
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In recent years, multiple studies have straightforwardly
inherited the GAN framework within the temporal setting.
The first (C-RNN-GAN) [30] directly applied the GAN archi-
tecture to sequential data, using LSTM networks for genera-
tor and discriminator. Data is generated recurrently, taking as
inputs a noise vector and the data generated from the previ-
ous time step. Recurrent Conditional GAN (RCGAN) [31]
which is a medical data generation framework took a similar
approach, introducing minor architectural differences such
as dropping the dependence on the previous output while
conditioning on additional input. EEGGAN [32] is a frame-
work for generating brain signals. They improve the training
of Wasserstein-GANSs to stabilize training and investigate a
range of architectural choices critical for time series gen-
eration (most notably up and down sampling). Time-series
Generative Adversarial Networks [33] is also a data gener-
ation approach, which generating realistic time-series data
that combines the flexibility of the unsupervised paradigm
with the control afforded by supervised training. But all these
works are to generate data with the same time trend, not to
predict the future data.

In fact, representation learning in the time series primarily
deals with the benefits of learning compact encodings for pre-
diction tasks. Meanwhile, in some generation tasks, several
works have explored the benefit of combining autoencoders
with adversarial training. [34] is proposed for learning sim-
ilarity measures. [35] is proposed for improving generative
capability. But these works are applied to image generation,
not data generation.

Ill. PRELIMINARY

A. MULTIVARIATE TIME SERIES STRUCTURE OVERVIEW
Before introducing our proposed model, we give some formal
definitions for time series data.

Definition 1: A univariate time series X = [x1, x2, ..., X7]
is an ordered set of real values. The length of X is equal to
the number of real values T.

Definition 2: An n-dimensional time series X; =
[xtl, x,z, ..., x/'] consists of n different univariate time series
with X; e R",t € [0, T].

Definition 3: A dataset D = {(X1,y1), X2,¥2),...,
(X1, yr) is a collection of pairs (X;, y;).

Where X; could be multivariate time series with y; as its
corresponding target values. The X; is always called driving
(exogenous) series because of the relationship with the target
value. In this paper, we also pay attention to use the correla-
tion between driving series and target values.

B. PROBLEM STATEMENT

Based on the concept of adversarial training, GAN is basi-
cally composed of two competing neural networks, which
help them simulate the distribution of any data. GAN has
been a great success in the field of image generation since its
appearance. In recent years, some authors have put this con-
cept into temporal data generation. But if the prediction data
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are generated directly from the random noise Z, the quality of
the generated data is not very good. Therefore, we first use the
encoder network to process the driving series of data from the
original distribution to a normal distribution. So, the result as
the latent space contains the information about driving series
data. As we can see, x¥ = (x{‘, Xk x’}) € RT represents
the driving series of length T,and the x, = (x!,x?, ..., x}") €
R" denotes a vector of n driving series at time t. We encoder

the time series data X; to calculate the result as latent space Z.
Z =E(x,x2,...,x7) (H

where E(-) is the Encoder network. In the Generator
(Decoder) stage, the temporal-attention mechanism is used to
automatically select the time steps of the result of the encoder.
Given T target values, i.e., Y = (y1,y2,...,y1) € RT, where
T is the length of window size we define. Y denotes all target
series during the past T time step. Then the prediction values
Y= G741, 742, - . ., I7+¢) Will be calculated with the latent
space Z and target series Y. ¢ represents the prediction time
step. Given the previous reading, predict the target series y.

y=DQy1,y2,....y1.Z) )

where D(-) is the Decoder (Generator) network. We unite the
encoder network and decoder network as the mode]l MARNN
which could forecast short-term time series. In order to get
better long-term prediction results, we use the true values
Yy = V741, Y742+ - - - ,¥T+¢) and prediction value J to train
the discriminator network, and add category labels L =
(L741,Lr42, ..., LT4¢) as conditional variables to guide
the discriminator network. Specifically, the discriminator
network is trained to minimize the least square loss between
its predictions per time step and the labels of the sequence.

Dipss = LS(Ya L) (3)

where LS is the least square function. L is a vector of 1s or Os
for series. The generator is trained to ‘trick’ the discriminator
into classifying its outputs as the true data, that is, it wishes
to minimize the least square loss between the discriminator’s
predictions on generated data and the ‘true’ label, the vector
of 1s (we write as 1).

Gioss = DZOSS(Zﬂ 1) (4)

IV. THE MULTI-ATTENTION MODEL

In this section, we introduce our proposed model which
mainly consists of three modules. Firstly, the encoder net-
work is mainly composed of input-attention modules and
self-attention modules. Time series data is encoded by the
two modules into latent space. Secondly, the latent space
is decoded by the temporal-convolution-attention module to
obtain the predicted results. The two modules combine as the
MARNN model. Thirdly, the discriminator network classifies
data into true data or generated data. The three modules
combine as the MAGAN model.
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A. THE ENCODER NETWORK

The encoder network processes the driving series with self-
attention and input-attention, calculates the results with
LSTM function, and generates the latent space which can
maintain the relationship information. Fig.2 shows the details
of the encoder network.

Lantern Space

FIGURE 2. Details of the encoder network.

1) INPUT ATTENTION
The primary purpose of the attention mechanism is to select
from the mass of information that is more critical to the
current target. In time series prediction, when long sequence
data input into the Encoder-Decoder model, the front infor-
mation will be covered by the back. Therefore, the important
information in the sequence data can be extracted by the
attention mechanism to better predict the target value.

Given T input series x* = (xf, x5, ... xk) € RT, T is
the time window. The attention weight is computed by the
following formula.

et = v} tanh(W,[h; 115,11+ Uex®) (5)
ex (ek)
of = P ©)
Zi:l exp(er)

where v, € RT, W, € RT*2™ and U, € RT*T denote all the
learnable parameters. The previously hidden state /,_; and
the cell state s;,_; are the middle stage results in the encoder
LSTM unit. af is the recording of the attention weight at
time . A SoftMax function is used to ensure the attention
weights sum to 1. Consider extracting the series adaptively,
we multiply the attention weight with the time series data.

Fl=(akak, obxk, L akxky 7
2) SELF-ATTENTION
In order to study textual representation, Vaswani proposed
Self-attention [36]. Self-attention is a special case of atten-
tion mechanism that only requires a single sequence to
compute its representation. The self-attention mechanism
achieves great performance to label the deep semantic infor-
mation [37]. Zheng et al. proposed an additive attention

VOLUME 9, 2021



X. Yin et al.: Multi-Attention Generative Adversarial Network for Multivariate Time Series Prediction

IEEE Access

mechanism that dynamically adjusting the proportion of hid-
den states [38]. We follow a similar idea. In our paper, we note
the importance of dynamically adjusting driver sequences so
that each driver sequence has a unique adjustment coefficient.

An attention layer with an attention matrix is used to
capture the similarity of any token with relative to all adjacent
tokens in the input sequence. The input driving series repre-
sent as x; = (x,l , xtz, ... ,xtk), then the attention mechanism
is computed as follows:

g = tanh(Wex; + by) ®)
&k = o(Wagr + ba) )

where o denotes the sigmoid function, W, € R" and W,, €
RT>Mm are the learnable parameters, by and by, are the bias vec-
tors. The attention weight is then multiplied by the attributes
of the driving sequence to show the different importance of
the different attributes.

=2 1.1 .22 k kT
X = (o x, ,0rx;, . ..,0,%) (10)

We transpose %2 to the same shape with ¥' for the next
concatenation.

The results are defined as the latent space by calculating
with the f] function.

hi = filh} . %) (11)
R = fi(hi?, 53 (12)
Z = [h}; h?] (13)

where fi function is an LSTM unit. [iztl; 71,2] represents the
concatenation of the two hidden states. And the output Z put
into generator network for next calculating.

B. THE DECODER NETWORK (GENERATOR NETWORK)

In the encoder(generator) stage, self-attention and
input-attention are adopted to better obtain driving series
relevance. In the decoder stage, a convolution layer is first
used to enhance the temporal learning of the model by
applying convolution filters on the row vectors of the encoder
latent space Z which is illustrated in Fig.3. The convolutional
operations yield H ,.CeRTX" is given by:

T
HE = ReLU(§ _,Zx0) (14)
=

where k filters CeR'*" in our model, 1 x w represents the size
of the kernel. Then temporal attention is employed to adap-
tively select the hidden state of all time steps related encoder.
The attention weight B! of each time step ¢ is calculated by
the previously hidden state d;—; and the cell state of LSTM
unit s';_1.

I

Vi tanh (W [d—1: o'+ UaHE) - (15)
; exp(l))

Pl= i (16)
Zj:] exp(l)

where [d,,l; s ,,1] € R% is a concatenation of the previous
hidden state and cell state of the LSTM unit. v4 € R™,
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FIGURE 3. Details of the decoder (Generator) network.

Wy € R and U; € R™™ are parameters to learn. The
attention mechanism computes the context vector ¢, with the
convolutional operations Hl.c and the attention weights ,Bti
which represents the importance of the encoder hidden state.

T-1 .
c=) _ BHf (17)

Then we combine the context vectors c¢;—; with the given
target series y,—1 as shown in (18).

e =w y—t;c1] + b (18)

where [y,_1;¢,—1] € R™! is a concatenation of the tar-
get series y;—1 and the weighted sum context vectors c¢;_j.
Ww € R™! and b € R are the parameters that map the
concatenation to the size of the decoder input. A nonlinear
function as an LSTM unit can be used for the update of the

decoder hidden state d; at time ¢ as given in (19).

d; :fl(dt—lvj}t—l) (19)

The LSTM unit can capture the time relationship.

C. THE DISCRIMINATOR NETWORK
The discriminator network is composed of three layers of con-
volution network. Figure 4 shows the discriminator network
illustration. 1D convolution network can better capture the
interesting features from overall data and discriminate data.
As we all know, the discriminator is used to judge whether
the data is from true data or generator data, and it should give
accurate judgment as much as possible. The generator is used
to generate data, and the generated data should confuse the
discriminator as much as possible. In paper [39], the author
thinks that taking cross entropy as a loss will make the genera-
tor not optimize the generated data recognized as t data by the
discriminator, even if these generated data are still far away
from the decision boundary of the discriminator, that is to
say, far away from the real data. Why is the least square used
as the evaluation of loss function? Because the generator has
achieved our goal of confusing the discriminator as much as
possible, the cross entropy loss is small. But the least square
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FIGURE 4. Details of the discriminator network.

is different. In order to reduce the loss of the least square,
the generator must pull the generated data which is far away
from the decision boundary to the decision boundary on the
premise of confusing the discriminator. So we think that using
the least square as the loss function can effectively improve
the quality and stability of data generation. The expression of
the least squares loss function is as follows:

minJ(D) = min lEprr D (x) — a]?
D D 2
1
+5Eep[D (G (2)) = b1 (20)
. 1
minJ(G) = min 2 Ez, [D (G(2) — c? 1)

D (.) represent discriminator network, G (.) represent gener-
ator network, latent space Z generated by Encoder network.
The constants a and b represent the true data and the generated
data labels respectively, and c is the value determined by the
generator for the discriminator to think the generated data is
the true data.

In WGAN [40], a weight clipping method to enforce a Lip-
schitz constraint is proposed. This method has been proved
to have simplicity and already good performance. However,
in actual training, all parameters may go to extremes, either
maximum or minimum. In this way, the value range of clip-
ping is required to be high. Only when the setting is not
large or small, can the generator get a proper return gradient.
Therefore, this paper applies a dynamic clipping strategy to
solve this problem. First, we get all the parameter values, then
calculate the values of the top 6 percent and the last 6 percent
of all the parameters, finally use them as the threshold value
of the parameters to clip. The MAGAN training process is
described in Algorithm 1.

D. THE TRAINING PROCEDURE
The loss function of my proposed model is mean squared
error which can be formulated as:

R 1 N . ,
0 (rovr) =5 Yo, G =)’ (22)
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Algorithm 1 MAGAN Training Process
Require: 6, the clipping threshold. TrueData, the real
world data. Fakedata, the data from generator network.
w, the weight in discriminator network. 1s, a vector of
TrueLabel. Os, a vector of FakeLabel.

1. For i in ganepoch do:
2. Latern < MARNN.Encoder
3. Fakedata < MAGAN.Genertator
4. For 7 in Disepoch do:
5. DlossT < MAGAN.Discriminator.Train(Truedata,1s)
6. DlossF <~ MAGAN.Discriminator. Train(Fakedata,0s)
7. w < clip(w, w0 * len(w)], w [(1 — ) * len (w)])
8. End for
9. For 7 in Genepoch do:
10.  Gloss <« MAGAN.Genertator.Train(1s)
11. End for
12.  For 7 in epoch do:
13. MARNN.Train()
14. End for
15. End for

where y7 is the predicted vector and yr is the true vector.
Where N is the number of training samples. Adam opti-
mizer [41] and back-propagation algorithm can train our
model.

V. EXPERIMENT AND EVALUATION

A. DATASET

1) NASDAQ 100 DATA SET (NASDAQ)[42]

The subset of the entire nasdaql00 stock dataset includes
81 major corporations and interpolates the missing data with
linear interpolation. The index value of nasdaq100 is used as
the target series. These data include 105 days of inventory
data from July 26 to December 22 in the 2016 year. Each
day contains 390 data points except for 210 data points on
November 25 and 180 data points on December 22 which
is collected minute-by-minute. In our experience, the last
column is the target series and the other 80 columns are the
driving series.

2) SML2010 DATA SET (SML) [43]

The dataset is collected from a monitor system mounted
in a domestic house. The data were sampled every minute,
then the 15-minute average is calculated and uploaded.
In our experience, we choose the indoor temperature(room)
as the target value and the 18 other features as the driving
series.

3) APPLIANCES ENERGY PREDICTION DATA

SET(ENERGY) [44]

The dataset is at 10 minutes for about 4.5 months. In our
experiment, we employ appliances energy use as the target
series, delete the date attribute, and employ other attributes
as driving series.

VOLUME 9, 2021



X. Yin et al.: Multi-Attention Generative Adversarial Network for Multivariate Time Series Prediction

IEEE Access

TABLE 1. The six indexes of time series prediction over the four datasets (¢ = 1).

Models NASDAQI100 SML2010 Energy EEG AQ
LSTM(1997) MSE 0.18159 0.07978 0.95126 051442 024116
RMSE 0.42616 0.28245 0.97532 071723 0.49108
MAE 035651 021677 052727 041551  0.17682
MAPE(%) 51.222 259.869 215.482 384.145 431256
SMAPE 0.44155 0.47647 0.92662 0.79771  0.56843
R2 0.84138 0.89488 0.52411 043251 0.78995
Seq2Seq(2014) MSE 0.60124 0.06788 1.02599 045117 0.62430
RMSE 0.77540 0.26054 1.01291 0.67169  0.79013
MAE 0.61133 0.20334 0.54669 039718  0.23847
MAPE(%) 45.8007 630.050 164.344 257.622  337.681
SMAPE 0.59956 0.46653 1.07271 0.68181 057991
R2 0.47483 0.91056 0.57197 0.54119  0.80120
Temporal-attn- MSE 0.63361 0.02405 037958 031599  0.12699
RNN(2017) RMSE 0.79580 0.15508 0.61610 056212 035636
MAE 0.55880 0.13108 0.18459 035174  0.09509
MAPE(%) 40.6236 64.0863 105.178 174611 215912
SMAPE 0.49296 0.29459 0.54414 071515 0.37451
R2 0.44651 0.97300 0.67148 0.66192 093228
DARNN(2017) MSE 0.00501 0.01015 0.28175 0.18439  0.09295
RMSE 0.07083 0.10076 0.53080 042940  0.35698
MAE 0.05420 0.08149 0.19332 033115 0.09295
MAPE(%) 6.14165 70.5867 93.1724 90.8817  198.115
SMAPE 0.0599 0.28236 0.66817 0.60978  0.38477
R2 0.99504 0.98211 0.83145 071541  0.94151
TCN(2018) MSE 0.06279 0.05316 031975 0.18446  0.11742
RMSE 0.25058 0.23057 0.56546 042949 034266
MAE 0.15976 0.18483 0.17648 029493  0.09347
MAPE(%) 10.6014 132.450 95.8873 92.1225 154714
SMAPE 0.11369 0.45707 0.71775 0.57145 035178
R2 0.94516 0.93034 0.82671 074217  0.94276
MARNN MSE 0.00132 0.00148 0.28911 0.17688  0.06938
RMSE 0.03634 0.03847 0.53768 0.42058  0.26341
MAE 0.02344 0.02581 0.17532 033353 0.05354
MAPE(%) 3.73919 57.2669 97.6681 101.951  98.1174
SMAPE 0.03507 0.12889 0.67912 0.61427  0.29341
R2 0.99876 0.99727 0.86117 0.76577  0.95447

4) EEG STEADY-STATE VISUAL EVOKED POTENTIAL SIGNALS
DATA SET(EEG)[45]

This dataset consists of 30 subjects performing Brain Com-
puter Interface for Steady State Visual Evoked Potentials
(BCI-SSVEP), and we only use the visual image search
dataset from the first subject. In our experiment, we use O1 as
the target value and the other 13 signal attributes coming from
the electrodes as exogenous series.

5) AIR QUALITY DATA SET (AQ) [46]

The dataset contains 9358 hourly -average response instances
from an array of five metal oxide chemical multi-sensors
devices. This is the longest free data recorded for the response
of air quality chemical sensor devices deployed on site range
one year. This dataset has 15 driving series, of which 12
attributes were selected in this paper, and two properties
date and time are abandoned. The forecast target value is
Temperature.

In our experiments, the last twenty percent points are the
test data. Among the rest eighty percent data, the previous
eighty percent data points are the training data and the last
twenty percent points are the validation data. In order to
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make each feature make the same contribution to the results,
the normalization method is used to preprocess the data.

B. BASELINE

1) LSTM [5]

LSTM is a kind of temporal recurrent neural network, which
is specially designed to solve the long-term dependence prob-
lem existing in general RNN (Recurrent neural network).
All RNN models have a chain form of the recurrent neural
network module.

2) SEQ-TO-SEQ [4]

Seq2Seq model is an Encoder-Decoder model. The encoder
network can turn a variable length input sequence into a fixed
length vector. Then decoder network can decode the vector
into a variable length output sequence. This method has good
performance in machine translation, text translation, or other
NLP processing.

3) DARNN [12]

This algorithm is proposed in 2017, which is a seq2seq
model combine with attention mechanism. It shows the
state-of-the-art performance in single-step time series
prediction.
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FIGURE 5. The detail of time series prediction results over NASDAQ (left) and SML datasets(right).

4) TEMPORAL-ATTENTION-RNN [12]

In the DARNN model, we remove input-attention from the
encoder module, while retaining temporal-attention in the
decoder module.

5) TCN [23]
The Temporal Convolution Network integrates the mod-
eling ability in the time domain and the feature extrac-
tion ability in a low parameter number of convolutions.
It runs faster than RNN and is good at capturing temporal
dependency.

C. PARAMETER SETTING AND EVALUATION METRICS

1) HYPER-PARAMETERS

Following the previous work[12], we set seven parameters in
our prediction model. During the training phase, the learning
rate is 0.001 and the batch size is 128. In our model, we set
the length of window size T as the set value of {5, 8, 10, 13,
15,20}. When T equals 10 or 13, the prediction result reaches
the best performance over the validation set. For simplicity,
we use the same hidden dimensionality at the encoder (m),
the decoder (p), and the number of filters (k) in convolution,
and conduct a grid search over {16, 32, 64, 128, 256}. When
m = p = k = 64 or 128, our approach achieves the best
performance over the validation set. The size of kernel (w) is
range as {3, 5, 7,9, 11} in our test and the best performance
is reached when w is 7.We test all these approaches including
the baseline approaches and record the average performance
and standard deviations for comparison.

2) EVALUATION METRICS

In order to compare the effectiveness of various time series
prediction algorithms, we use six common criteria to evaluate
our model, namely mean squared error (MSE), root mean
squared error (RMSE) [47], mean absolute error (MAE),
mean absolute percentage error (MAPE), symmetric mean
absolute percentage error (SMAPE) and R? score (R?) which
are widely used in regression tasks. The smaller the values of
the first five indicators are, the smaller the deviation between
the predicted results and the real values, the more accurate
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the prediction is. The closer the value of the R? index is to 1,
the better the effect is. The formulas of the six measurements
are defined below:

1 N . o2
MSE = — DA (23)
1 N . 2
RMSE = \/ N i, 01— 3D (24)
1 N
MAE = =3 Iy =3l (25)
1 N i _ i
MAPE = — > M (26)
N i=1 Vi
Ly =3
SMAPE = (27)
N 2 i+ 15in/2
2
R=1- —ijl O =30 (28)
Zi:l (y; _y;)

where y; is the true target at time t and y; is the predicted value
at time .

D. RESULTS AND DISCUSSION

In this section, we mainly verify the accuracy and robust-
ness of MARNN and MAGAN through experiments.
We also interpret our model and prove the efficiency of the
multi-attention mechanism.

1) SHORT-TERM PREDICTION

To evaluate the performance of our work, our model is com-
pared with other widely used baseline models in this section.
Consider the fairness, the average recorders are displayed
in Table 1. In LSTM and Seq2Seq models, we set the LSTM
units are same 64. In the DARNN model, the optimal param-
eters we used are the same as their papers.We use 8 as the
depth of the network and 7 as the kernel size in the TCN
model. The results in boldface are the best performance
in Table 1.

As we can observe from Table 1, the algorithms MARNN
outperforms other algorithms in six indexes on the five
datasets. Among several RNN models, the performance of
the RNN with temp-attention has been significantly improved
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TABLE 2. The six indexes of time series prediction over the four datasets (¢= 50).

Models NASDAQ100 SML2010 Energy EEG AQ
LSTM(1997) glﬁzE 0.3389 0.7145 0.5968 0.4304 0.2890
0.5821 0.8452 0.7725 0.6560 0.5376
MAE 0.4184
MAPE(%) 0.4362 0.7924 1.3416 0.3977 346.20
SMAPE 178.65 468.18 251.97 195.66 0.6349
R2 0.5142 0.8714 0.9591 0.9754 0.3350
0.7311 0.4414 0.1471 0.2143
Seq2Seq(2014) MSE 0.3369 0.6451 0.6147 04816 03582
RMSE 0.5804 0.8031 0.7840 0.6939 0.5985
MAE 1.2385 0.4733
MAPE(%) 0.3491 0.7594 e 0.3814 40342
168.28 514.71 : 198.26
SMAPE 0.9257 0.6749
R2 0.4646 0.8452 : 0.8791 0.2758
0.1879 :
0.7281 0.4326 0.2599
Temporl-atiton- MSE 0.3019 0.4617 0.6015 03955 02537
mn(2017) RMSE 0.5494 0.6794 0.7755 0.6288 0.5036
MAE 0.1826 0.5864 1.2297 0.3714 0.3178
MAPE(%) 123.51 401.82 188.65 192.12 278.11
SMAPE 0.3934 0.8138 0.9318 0.8543 0.6431
R2 0.7747 0.5211 0.1871 0.2994 0.4368
DARNN(2017) MSE 0.2881 0.3938 05912 03817 02129
RMSE 0.5367 0.6275 0.7688 0.6178 0.4614
MAE 0.1554 0.5134 1.1561 0.2951 0.2756
MAPE(%) 51.992 371.61 184.11 189.99 201.64
SMAPE 0.31545 0.6841 0.8157 0.8271 0.4712
R2 0.8412 0.5442 0.2395 0.3132 0.6143
TCN(2018) I\R/IﬁEE 0.2412 0.4989 0.5983 0.3591 01146
MAE 0.4911 0.7063 07734 0.5992 03386
MAPE(%) 0.0993 0.5614 11154 02411 0.2666
’ 24.856 227.35 16593 16470 17915
SMAPE : :
0.2777 0.9310 0.4052
0.8463 0.7124
R2 0.8435 0.4161 0.2293 03545 0.7661
MARNN MSE 0.2581 0.3785 0.6851 03792 0.1219
RMSE 0.5080 0.6152 0.8277 0.6157 0.3491
MAE 0.1720 0.4317 1.1941 0.2524 0.3177
MAPE(%) 31.581 175.30 139.54 167.84 150.94
SMAPE 0.3514 0.6871 0.8199 0.6879 0.3814
R2 0.8187 0.5307 0.3018 0.4442 0.7526
MAGAN MSE 0.1821 0.1627 0.4135 0.3869 0.1071
RMSE 0.4267 0.4033 0.6430 0.6220 0.3272
MAE 0.0584 0.3233 0.8127 0.2069 0.2847
MAPE(%) 18.647 121.51 131.64 164.78 164.51
SMAPE 0.2783 0.6417 0.7174 0.6635 0.4018
R2 0.8249 0.5958 0.3581 0.4399 0.7466

because the temporal attention mechanism selects relevant
encoder hidden states in all time steps to improve the per-
formance. The results of the DARNN model show that the
adaptive extraction of the driving series can provide more
reliable input features and make more accurate predictions.
In our model, the self-attention network is added to the
Encoder module to calculate the correlation of the driving
series, adjust the weight of the driving series, and improve the
prediction accuracy. From the six indicators, we can see that
our algorithm has been improved. In order to understand the
performance of our model and baseline models in prediction
better, we select the data points from timestamp [5500-6000]
in the NASDAQ test dataset and timestamp [0-200] in the
SML test dataset, and compare our model with other five
models. The specific results are shown in Fig. 5.
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Observing Fig. 5, we can clearly see that the red curve
which represents the prediction data by our proposed model
is more consistent with the blue curve which represents
the real data. This means that our model has better perfor-
mance than the other five base models. Meanwhile, we can
see that DARNN and MARNN models which have the
input-attention in the encoder network outperform the Temp-
Attn-RNN model which removes input-attention from the
DARNN model. It proves that attention in the encoder net-
work can capture the short dependence.

2) LONG-TERM PREDICTION

In this section, we compare our model with the other five
baseline models on five data sets. We predict fifty time-steps
and record the average of the results in Table 2. In the LSTM
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FIGURE 7. MAE vs. clipping threshold over SML (left) and NASDAQ (right) Datasets.

and seq2seq models, LSTM units are 64. We use 8§ as the
depth of the network and 7 as the kernel size in the TCN
model. The MARNN model uses the same parameters with
MAGAN in this test. The best result displays in boldface.

From the results shown in Table 2, we can see that both
the LSTM and seq2seq models can maintain temporal depen-
dence, but the advantage of the seq2seq model is that it can
output indefinite length values. In the encoder stage, the data
will be mapped into a fixed dimension vector, which leads to
some information lost. So, the prediction effect is not good
enough. In contrast, MARNN is also an encoder-decoder
network, but in the encoder stage, the data information is
retained to the maximum extent through input attention and
self-attention, so the prediction results are better. Although
the TCN model can capture temporal dependence, it is not
ideal when the prediction length is long, and because of
the poor ability to transfer learning, it has a great impact
on different databases. We can see from the table that the
performance of the MARNN model is a little worse than
the TCN model. Meanwhile, based on the MARNN model,
the MAGAN model adds a discriminator to train the gener-
ated data, which can generate better quality prediction data
through feedback more effectively.

Since our algorithm aims at evaluating the effect of multi-
step prediction, we explore the variation tendency between
the prediction effect and the prediction step size € increasing
on the SML dataset and the NASDAQ dataset in Figure 6.

57360

0.0625

0.0600

0.0575

0.0550

0.0525

0.0500

0.0475

0.0450

0.0425

FIGURE 8. The heat map of self-attention matrix.

As we can see, with the increase of prediction step size,
the prediction accuracy also decreases at different levels.
At the same time, the performance of our algorithm is equiv-
alent to the TCN model in short-term prediction. But with the
increase of the prediction step, our algorithm performance is
more stable and better in long-term prediction finally.

3) MODEL INTERPRETATION AND ATTENTION MECHANISM

In order to evaluate the sensitivity and effectiveness of the
dynamic weight clipping strategy, we test the effect of differ-
ent thresholds with the range from 0.1 to 0.3 on the prediction
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FIGURE 9. Results of our model in the ablation tests on the NASDAQ(left) and SML2010(right) datasets.

results. Figure 7 shows the effect of weight clipping. It can
be seen the threshold can effectively improve the accuracy
of prediction. When the clipping threshold is equal to 0.2,
the performance of the model is superior.

To further investigate our method and demonstrate the
correlation of driving series, we conducted a case study
of self-attention. The NASDAQ dataset has 81 driv-
ing series and lock of relevant presentations.
Therefore, we use Fig. 8 to show the self-attention
result on the SML2010 dataset. We can observe that
the “Tempera-ture_Comedor_Sensor” attribute which rep-
resents “‘Relative temperature (dining room)” and the
“Humedad_Comedor_Sensor” attribute which represents
as ‘“Relative humidity (dining room)” contribute a lot to
the prediction. Meanwhile, the “CO2_Comedor_Sensor”
attribute which represents “Carbon dioxide in ppm (din-
ing room)” and the “CO2_Habitacion_Sensor” attribute
which represents “Carbon dioxide in ppm (room)” con-
tribute less for prediction. In fact, our target value—Indoor
temperature (room) is highly correlated with indoor tem-
perature (dining room) and relative humidity (dining room).
Indoor CO2 ppm has little influence on the correlation. This
example analysis shows that our method is effective and can
be easily interpreted.

To demonstrate the efficiency of the multi-attention mech-
anism, a careful ablation study is conducted. Specifically,
we remove each attention component at a time in our frame-
work and keep them with the same parameters. First, we name
the models without different components as follows.

« MARNNw/oIA: The MARNN model without
Input-Attention component.

« MARNNw/oSA: The MARNN model without
Self-Attention component.

« MARNNw/oTCA: The MARNN model without

Temporal-Convolution-Attention component.

Several observations from Fig.9 are worth highlight-
ing. Although, the MAGAN model has not a good
performance in short-term prediction. But, with the increas-
ing of the prediction timesteps, the MAGAN model could
show its advantages. The MARNN model which has
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multi-attention always outperforms other ablation models.
The MARNNw/0TCN model performs a little worse than
the other two ablation models. We think that is because
Temporal-Convolution-Attention can enhance the temporal
capture ability.

VI. CONCLUSION

In this work, a Multi-attention model for multivariate time
series prediction has been proposed. We use the encoder
network to deal with the exogenous sequence of multidimen-
sional data and input the results into the generator as a latent
space. Compared with generating data from noise, we can
retain more relevant information. At the same time, in order to
improve the quality of data generation, a discriminator is used
to adjust the data. We also adopt a dynamic threshold method
for the discriminator network. Finally, we evaluate with five
open real-world datasets. It is proved that our proposed model
can achieve better performance compared with five baseline
methods in prediction on the six metrics. In the future, based
on the GAN framework, we will focus on generating long-
term data to solve the duplicate data problem. We also hope
to improve the training speed.
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