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ABSTRACT This paper investigates the distributed fault detection problem for linear discrete time-
varying heterogeneous multi-agent systems under relative output information. Due to the lack of absolute
outputs, an augmented model is built by stacking all local relative output information. Then, the fault
detection problem consisting of residual-generation and residual-evaluation is handled using theH∞ filtering
framework. The residual-generation problem is actually a minimization problem of an indefinite quadratic
form, and the Krein space-Kalman filtering theory is applied, which results in a low computational burden
despite the time-varying characteristic. Using the Krein space theory, a necessary and sufficient condition
for the minimum is derived, and a residual-generation algorithm is developed. Further, a residual-evaluation
mechanism is designed by constructing an evaluation function and detecting faults by comparing it with a
threshold. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed fault
detection approach.

INDEX TERMS Discrete-time systems, distributed algorithms, fault detection, fault diagnosis, filtering
theory, heterogeneous networks, linear systems, minimization, multi-agent systems, time-varying systems.

I. INTRODUCTION
With the increasing complexity of work environments and
task scales, it is difficult for traditional research on a single
controlled object to meet the actual demand. Accordingly,
multi-agent systems (MASs) have received considerable
attention due to their characteristics of autonomy [1], [2], dis-
tribution [3], [4] and coordination [5], [6]. Control problems
of MASs have been extensively studied such as adaptive con-
trol [7], [8] and event-triggered control [9]–[11], and many
results have been obtained for communication delay [12],
[13]. Moreover, the fault-tolerant control problems for MASs
has been recently studied by many researchers [14]–[16]
because MASs are vulnerable to faults due to their structural
complexity. However, prior to employing the fault-tolerant
control technique, it is necessary to confirm the occurrence of
faults. If the fault occurring on one agent node is not detected
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and dealt with in time, it will spread to the other nodes through
the network, giving rise to a huge threat to the security of the
whole MAS. Therefore, the investigation of fault detection
(FD) for MASs is highly urgent.

During the past few decades, distributed FD approaches
have been developed for networked systems using local
information only. [17] solved the fault isolation problem for
discrete-time fuzzy interconnected systems with unknown
interconnections. In [18], an observer-based fault estimation
methodology was proposed for leader-following linear multi-
agent systems subject to actuator faults. [19] dealt with the FD
problem for the discrete-time Markovian jump linear system
with a stochastic packet dropping effect. In [20] and [21],
theH∞ optimization was used for FD of linear time-invariant
systems where the generated residuals were sensitive to faults
while robust against disturbances and noises. In [22] and [23],
unknown input observers were used to solve the FD prob-
lems for second-order MASs. In [24] and [25], linear matrix
inequalities were applied to obtain sufficient conditions for
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the solvability of FD problems. In [26], an adaptive threshold
method and a sliding mode observer were used to solve the
FD problem for the physical layer network in cyber-physical
systems, and [27] also designed an adaptive threshold accord-
ing to the dynamics of residual vectors to detect faults in
networked robots. Moreover, the time delay phenomenon
has attracted much attention in FD problems for MASs,
see [28]–[32] for examples.

So far, the FD of time-varying MASs has attracted much
attention, and a number of results have been reported, par-
ticularly for linear discrete time-varying (LDTV) systems.
In [33], the Kalman filter was used to solve the FD prob-
lem for a class of LDTV networked sensing systems where
the disturbances and noises were assumed to satisfy the
known probability distributions. In [34], the FD problem for
time-varying sensor networks with multiplicative noises was
investigated based on the least-squares approach. In [35],
the distributed fault estimation problem of MASs with sen-
sor faults and partially decoupled disturbances was treated
using the unknown input observer and recursive linear matrix
inequalities. Moreover, [36] investigated the finite-horizon
distributed H∞ fault estimation problem for a class of LDTV
sensor networks based on the Krein space theory, and [37]
developed a distributed Krein space-based attack detection
algorithm over sensor networks under deception attacks.

All the above results rely on the absolute measurement
outputs, making them unsuitable for application to MASs
where only relative output information is available. As men-
tioned in [38]–[40], in typical situations, a single node of the
MASmay lack absolute state observation and only be capable
of measuring relative values against its neighboring nodes.
Furthermore, according to [41], the transmission of absolute
information requires communication channels, which may
suffer from potential network attacks. In [42]–[44], it was
assumed that each agent was equipped with sensors for rel-
ative output measurements. To summarize, it is crucial to
investigate the FD problem for time-varying MASs with only
relative outputs.

In this paper, we deal with the distributed fault detection
problem for a class of LDTV heterogeneous MASs with rel-
ative output information. We construct an augmented model
for each agent by stacking all locally obtained relative output
information, and apply the Krein space-based H∞ filtering
theory to yield a distributed residual-generator and a dis-
tributed residual-evaluation mechanism.

The contributions of this paper are twofold.
First, pure relative information is used for the fault detec-

tion of time-varying MASs. For MAS fault detection with
relative information, some results have been obtained. Rela-
tive output information was considered in [42], [43] and [44],
however, the absolute measurements were also used for FD
in these works; on the other hand, [39] and [40] investigated
FD problems for multi-agent networks with only relative
state measurements; however, the systems considered in these
studies were all time-invariant, making the obtained results
unsuitable for our problem. To deal with the lack of absolute

output information, we construct an augmented model for
each agent by stacking all locally obtained relative output
information, based on which each agent carries on the fault
detection for its neighbors and itself.

Second, linear discrete time-varying heterogeneous MASs
are considered in this paper. For time-varying systems, some
FD results have also been obtained [33]–[37]. However,
in [33] and [34], the employment of the least-squares method
required the disturbance and noise to satisfy known prob-
ability distributions, making the obtained results unsuitable
for our problem. Additionally, [36] and [37] investigated
the FD problems for LDTV sensor networks, where there
was only one system dynamic equation and only absolute
output information was considered. Moreover, [35] studied
the distributed fault estimation problem for MASs, but the
considered MASs were homogeneous and absolute measure-
ments were used in the result. To deal with the time-varying
characteristic of the coefficient matrices in the considered
problem, we apply the Krein space projection theory to
yield a distributed residual-generation recursive algorithm,
which has a low computational burden and is suitable for
application.

The rest of this paper is organized as follows. Some pre-
liminary information about the Krein space is presented in
section II, and the problem is formulated in section III.
Moreover, the design procedure of the distributed residual-
generator is presented in section IV, and a distributed residual-
evaluation mechanism is provided in section V. Finally, two
illustrative examples are given in section VI to verify the
effectiveness of the proposed FD method.

Notation: Rn denotes the n-dimensional Euclidean space.
The script letters V, E, · · · denote sets. |V| denotes the car-
dinality of V . ‖ · ‖ denotes the Euclidean norm of a vector.
col{· · · } represents a column vector. diag{· · · } denotes a
block-diagonal matrix. I is an identity matrix with an appro-
priate size. w(k) ∈ l2 means that w(k) is l2-norm bounded for
∀k ∈ N . The elements in the Euclidean space are denoted by
normal letters such as x, y, w, f , v, while the elements in the
Krein space are denoted by bold letters, such as x, y, w, f , v.

II. PRELIMINARY
Definition 1: An abstract vector space K, 〈·, ·〉 that satis-

fies the following requirements is called a Krein space:
1) K is a linear space over the complex field C.
2) There exists a bilinear form 〈·, ·〉 ∈ C on K such that

a) 〈y, x〉 = 〈x, y〉∗.
b) 〈ax+ by, z〉 = a〈x, z〉 + b〈y, z〉

for any x, y, z ∈ K, a, b ∈ C, and where * denotes
complex conjugation.

3) K admits a direct orthogonal sum decomposition

K = K+ ⊕K−,

such that K+, 〈·, ·〉 and K−, 〈·, ·〉 are Hilbert spaces,
and

〈x, y〉 = 0

for any x ∈ K+ and x ∈ K−.
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Remark 1: Infinite-dimensional Hibert spaces and finite-
dimensional Hibert spaces (often called Euclidean spaces)
are well known. Although infinite-dimensional Krein spaces
and finite-dimensional Krein spaces (often called Minkowski
spaces) share many properties with the corresponding
Hilbert spaces such as requirements 1) and 2), they also differ
from Hilbert spaces in some aspects.
In Hibert spaces,

〈x, x〉 > 0 when x 6= 0.

However, in a Krein spaceK, the fundamental decomposi-
tion defines two projection operators P+ and P− such that

P+K = K+ and P−K = K−,

and every x ∈ K can be written as

x = P+x+ P−x = x+ + x−, x± ∈ K±.

For ∀x ∈ K+, we have 〈x, x〉 ≥ 0; however, for an arbitrary
vector x ∈ K, it may not be satisfied that 〈x, x〉 ≥ 0.
Moreover, a vector x ∈ K is said to be positive if 〈x, x〉 > 0,
neutral if 〈x, x〉 = 0, or negative if 〈x, x〉 < 0.
Definition 2: Assume that the elements y0, . . . , yT are in

K. The Gramian of the collection of the elements {y0, . . . , yT }
is defined as a (T + 1)× (T + 1) matrix

Ry , [〈yi, yj〉]i,j=0:T .

The reflexivity property 〈yj, yi〉 = 〈yi, yj〉
∗, indicates that the

Gramian is a Hermitian matrix.
In 1990s, Babak Hassibi developed a self-contained Krein

space-Kalman filtering theory for linear estimation [45].
Based on simple concepts such as projections and matrix fac-
torizations, a relation between the Krein space projection and
the recursive computation of the stationary points of certain
quadratic forms was discussed in [45], providing an approach
to solve the H∞ filtering problems for LDTV systems.

III. PROBLEM FORMULATION
In practice, many multi-agent nonlinear systems, such as
unmanned vehicles, power networks and chemical processes,
can be approximated by linear time-varying models using
trajectory linearization techniques, and continuous processes
are usually discretized for online implementation. Hence,
the study of linear discrete time-varying (LDTV) system
is practically meaningful. In addition, many practical MAS
nodes cannot acquire absolute state observation and can
only obtain relative values against its neighboring nodes,
such as unmanned vehicle systems where each vehicle can
only obtain the disturbances between itself and its neigh-
bors rather than its absolute position. Motivated by the
above discussion, in this paper we investigate the FD prob-
lem for LDTV heterogeneous MASs with relative output
information.

Let V = {1, 2, . . . ,N } denote the node index set of a
multi-agent system consisting of N agents. For an arbitrary

agent i ∈ V , the corresponding system model is described
as

xi(k + 1) = Ai(k)xi(k)+ Bwi (k)wi(k)+ Bfi (k)fi(k),

yi(k) = Ci(k)xi(k)+ vi(k)+ Dfi (k)fi(k) (1)

where xi(k) ∈ Rnxi is the system state, wi(k) ∈ Rnwi

belonging to l2 is the unknown external disturbance, fi(k) ∈
Rnfi is the fault of agent i, yi(k) ∈ Rnyi denotes the abso-
lute measurement output of agent i (nyi is the same for all
agents), and vi(k) ∈ Rnvi belonging to l2 denotes the mea-
surement noise. Ai(k),Bwi (k),Bfi (k),Ci(k),Dfi (k) are known
time-varying matrices with appropriate dimensions. It should
be noted that the fault vector is composed as fi(k) =
[f Tip (k), f

T
is (k)]

T , with fip(k) denoting the fault occurring on
the agent dynamics and fis(k) denoting the fault occurring
on the absolute measurement sensor. Accordingly, the coef-
ficient matrices Bfi (k) and Dfi (k) are composed as Bfi (k) =
[Bfip (k), 0] and Dfi (k) = [Dfip (k),Dfis (k)], respectively.
Let E ⊆ V × V be the edge set. The edge (i, j) ∈ E

represents that node i is a neighbor of node j, which means
that agent j can obtain the relative output yji(k) = yj(k)−yi(k).
Let A = [aij] ∈ RN×N denote the adjacency matrix, where
aij = 1 means (i, j) ∈ E and aij = 0 means (i, j) /∈ E ,
∀i, j ∈ V . Let Ni = {j|aji = 1} denote the neighbor set of
agent i.
Note that agent i ∈ V only acquires the relative

outputs against its neighbors. Therefore, let yNi (k) =
col{yii1 (k), yii2 (k), · · · , yii|Ni|

(k)} denote all output informa-
tion that agent i obtains locally, where i1, i2, · · · , i|Ni| ∈

Ni represent all neighbors of agent i. Similarly, we define
vij(k) = vi(k)− vj(k), ∀(i, j) ∈ E .
Thus, we build the following augmented model for agent i

that contains yNi (k):

xNi (k + 1)= ANi (k)xNi (k)+ BwNi (k)wNi (k)

+BfNi (k)fNi (k),

yNi (k) = CNi (k)xNi (k)+ vNi (k)+ DfNi (k)fNi (k), (2)

where the augmented vectors xNi (k),wNi (k), fNi (k) are
defined by bNi (k) = col{bi(k), bi1 (k), · · · , bi|Ni|

(k)} with
b ∈ {x,w, f }, vNi (k) = col{vii1 , · · · , vii|Ni|

}, and the coef-
ficient block diagonal matrices ANi (k),BwNi (k),BfNi (k) are
defined in the form

MNi (k) =


Mi(k) 0 · · · 0
0 Mi1 (k) · · · 0
...

...
. . .

...

0 0 · · · Mi|Ni|
(k)

 ,
and the coefficient block diagonal matrices CNi (k),DfNi (k)
are defined in the form

ENi (k)=


Ei(k) − Ei1 (k) 0 · · · 0
Ei(k) 0 − Ei2 (k) · · · 0
...

...
...

. . .
...

Ei(k) 0 0 · · · − Ei|Ni|
(k)

 ,
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Based on the augmented model (2), we will solve the FD
problem in two steps:

(a) Design a distributed residual-generator for each agent
i ∈ V using all locally obtained information yNi (k).
(b) Develop an effective residual-evaluation mechanism so

that the alarm can be raised after the fault occurrence. The
design of this mechanism includes building an evaluation
function of residuals and determining a threshold function,
so that the fault can be detected by comparing the values of
the two functions using a simple ‘‘yes’’ or ‘‘no’’ logic.

IV. DISTRIBUTED RESIDUAL-GENERATOR DESIGN
To deal with the time-varying characteristic of the coefficient
matrices, we adopt the H∞ filtering scheme to solve this FD
problem. According to the augmented model (2), the residual
of agent i ∈ V is expected to satisfy the following perfor-
mance index under the H∞ filtering scheme:

sup
φi 6=0

∑W
k=0 ‖ri(k)− fNi (k)‖

2

ϕi +
∑W

k=0(‖wNi (k)‖
2 +‖fNi (k)‖

2+ ‖vNi (k)‖
2)
< γ 2

i ,

(3)

where ri(k) is the residual of agent i to be designed;
γi > 0 is a given performance level scalar measur-
ing the robustness and sensitivity quality of the resid-
ual, φi = (xNi (0),w

W
Ni
, f WNi

, vWNi
), where wWNi

=

col{wNi (0), . . . ,wNi (W )}, f WNi
= col{fNi (0), . . . , fNi (W )},

vWNi
= col{vNi (0), . . . , vNi (W )}, and ϕi = xTNi

(0)P−10i xNi (0),
with P0i > 0 being a weighting matrix.

Next, we design a distributed residual-generator for ∀i ∈ V
such that the inequality (3) is satisfied.

In the remaining part of this section, the residual design
problem is converted into a minimization problem of an
indefinite quadratic form, and then an auxiliary Krein space
model is introduced, based on which we propose a recursive
residual-generation algorithm.

A. A MINIMIZATION PROBLEM OF AN INDEFINITE
QUADRATIC FORM
In this subsection, we convert the H∞ inequality (3) into
a minimization problem of an indefinite quadratic form,
which is instrumental for developing the residual-generator
as described below.

We rewrite the augmented system model (2) as

xNi (k + 1) = ANi (k)xNi (k)+ BNi (k)di(k),

yNi (k) = CNi (k)xNi (k)+ vNi (k)+ DNi (k)di(k), (4)

where the disturbance and fault are combined as di(k) =
col{wNi (k), fNi (k)}, and the coefficient matrices are
correspondingly combined as BNi (k) = [BwNi

(k),
BfNi

(k)],DNi (k) = [0,DfNi
(k)].

We denote the error between the residual and the aug-
mented fault vector as

ei(k) = ri(k)− fNi (k) = ri(k)− Hidi(k), (5)

where Hi = [0, I ]. According to the inequality (3), we define
the following indefinite quadratic form

JWi = xTNi
(0)P−10i xNi (0)+

W∑
k=0

(
‖di(k)‖2 + ‖vNi (k)‖

2

− γ−2i eTi (k)ei(k)
)
. (6)

It is obvious that theH∞ inequality (3) is satisfied if and only
if JWi > 0 for φi 6= 0.

To motivate the subsequent discussion, we define a new
output vector

ȳi(k) = C̄i(k)xNi (k)+ v̄i(k)+ D̄i(k)di(k), (7)

where ȳi(k) = col{yNi (k), ri(k)}, C̄i(k) = [CT
Ni
(k), 0]T ,

v̄i(k) = col{vNi (k), ei(k)}, D̄i(k) = [DTNi
(k),HT

i ]
T .

We denote

dWi = col{di(0), di(1), . . . , di(W )},

v̄Wi = col{v̄i(0), v̄i(1), . . . , v̄i(W )},

ȳWi = col{ȳi(0), ȳi(1), . . . , ȳi(W )},

QWi = diag{ Qi,Qi, . . . ,Qi︸ ︷︷ ︸
(W+1) block entries

},

where Qi = diag{I ,−γ 2
i I }. Thus, we write the indefinite

quadratic form in the matrix form as

JWi =

xNi (0)
dWi
v̄Wi

T P0i 0 0
0 I 0
0 0 QWi

−1xNi (0)
dWi
v̄Wi

 . (8)

Because v̄Wi can be written as a linear combination of
xNi (0), d

W
i and ȳWi , we can convert JWi into an indefinite

quadratic form of xNi (0), d
W
i and ȳWi . Thus, the residual-

generator design problem can be interpreted as follows:
(i) ensuring the indefinite quadratic form JWi to have a mini-
mum w.r.t. {xNi (0), d

W
i } for a given ȳ

W
i ; (ii) determining the

residual ri(k) to ensure this minimum to be positive.
For the minimization problem, the global expressions of

both the stationary point of JWi over {xNi (0), d
W
i } and the

value of JWi at this stationary point can be obtained directly
according to [46], as well as the global expression of the con-
dition for this value to be the minimum. However, the direct
computation using these global expressions will incur a huge
computational burden. Therefore, in the next subsection we
introduce the Krein space projection theory to recursively
solve the minimization problem.
Remark 2: As shown in [47], the H∞ filtering problem can

be cast into a minimization problem of a certain quadratic
form. By considering the appropriate state space model and
Gramians, we can use the Krein space projection theory
to calculate the value at the stationary point and study its
properties.
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B. INTRODUCTION OF THE KREIN SPACE
In this subsection, the following auxiliary Krein space state-
space model is introduced to recursively solve the minimiza-
tion problem of the indefinite quadratic form JWi :

xNi (k + 1) = ANi (k)xNi (k)+ BNi (k)d i(k),

ȳi(k) = C̄i(k)xNi (k)+ D̄i(k)d i(k)+ v̄i(k), (9)

where xNi (k) is the state vector, d i(k) is the external input
vector, v̄i(k) = col{vNi (k), ei(k)} is the noise vector, ȳi(k) =
col{yNi

(k), ri(k)} is the output vector. Let xNi (0), d i(k) and
v̄i(k) take the following Gramian

〈

xNi (0)
d i(k)
v̄i(k)

 ,
xNi (0)
d i(l)
v̄i(l)

〉 =
P0i 0 0

0 Iδkl 0
0 0 Qiδkl

 , (10)

where δkl = 0 for k 6= l and δkl = 1 for k = l.
The linear space generated by the output vectors {ȳi(q)}

k
q=0

is denoted byL {ȳi(q)}
k
q=0, and the projection of a vector g(k)

ontoL {ȳi(q)}
k−1
q=0 in the Krein space is denoted by ĝ(k|k−1).

Defining g̃(k) = g(k)− ĝ(k|k − 1), we obtain the innovation
denoted as

˜̄yi(k) = ȳi(k)− ˆ̄yi(k|k − 1). (11)

Further, the value of JWi at its stationary point is given by

JW∗i =

W∑
k=0

˜̄yi(k)R
−1
˜̄yi
(k) ˜̄yi(k), (12)

where the Gramian R ˜̄yi (k) = 〈
˜̄yi(k), ˜̄yi(k)〉, see [45] for

details.

C. A NECESSARY AND SUFFICIENT CONDITION FOR THE
EXISTENCE OF THE QUADRATIC FORM’s MINIMUM
According to equation (12), the value of the quadratic form
at its stationary point has been expressed in terms of the
innovations. Next, a necessary and sufficient condition for the
minimum of this quadratic form is given below.
Lemma 1: [45] The minimum of JWi over {xNi (0), d

W
i } is

equal to JW∗i if and only if R ˜̄yi (k) has the same inertia as Qi’s
for all k = 0, 1, . . . ,W.
Note that it is impossible to directly check the inertia con-

dition in Lemma 1. Therefore, a feasible numerical approach
for checking this minimum condition is given in Lemma 2 as
below.
Lemma 2: The minimum of JWi over {xNi (0), d

W
i } is equal

to JW∗i if and only if

Ψi(k) > 0 and Φi(k) < 0 (13)

for all k = 0, 1, . . . ,W, where

Ψi(k) = CNi (k)Pi(k)C
T
Ni
(k)+ DNi (k)D

T
Ni
(k)+ I , (14)

Φi(k) = −γ 2
i I + HiH

T
i − HiD

T
Ni
(k)Ψ−1i (k)DNi (k)H

T
i ,

(15)

Pi(k) = 〈x̃Ni (k), x̃Ni (k)〉

= 〈xNi (k)− x̂Ni (k), xNi (k)− x̂Ni (k)〉. (16)

Proof: According to equations (9), (10) and (11),
we have

˜̄yi(k) = C̄i(k)x̃Ni (k)+ v̄i(k)+ D̄i(k)d i(k). (17)

Thus, the Gramian in Lemma 1 can be calculated as

R ˜̄yi (k) = C̄i(k)Pi(k)C̄T
i (k)+ Qi + D̄i(k)D̄

T
i (k)

=

[
Ψi(k) DNi (k)H

T
i

HiDTNi
(k) −γ 2

i I + HiH
T
i

]
, (18)

where

Pi(k) = 〈x̃Ni (k), x̃Ni (k)〉

= 〈xNi (k)− x̂Ni (k), xNi (k)− x̂Ni (k)〉,

Ψi(k) = CNi (k)Pi(k)C
T
Ni
(k)+ DNi (k)D

T
Ni
(k)+ I .

To further investigate the inertia of the Gramian, we apply
the triangular factorization to equation (18), yielding

R ˜̄yi (k) =
[

I 0
Ωi(k) I

] [
Ψi(k) 0
0 Φi(k)

] [
I 0

Ωi(k) I

]T
, (19)

where

Φi(k) = −γ 2
i I + HiH

T
i − HiD

T
Ni
(k)Ψ−1i (k)DNi (k)H

T
i ,

Ωi(k) = HiDTNi
(k)Ψ−1i (k).

The factorization result in equation (19) indicates the con-
gruent relationship

R ˜̄yi (k) '
[
Ψi(k) 0
0 Φi(k)

]
, (20)

which means that the two matrices have the same inertia.
Further, recallingQi = diag{I ,−γ 2

i I } and applying the result
of Lemma 1, Lemma 2 is then proved. �

D. DISTRIBUTED RESIDUAL-GENERATOR
Lemma 2 presents a necessary and sufficient condition for
the value of the indefinite quadratic form JWi at the stationary
point to be the minimum w.r.t. {xNi (0), d

W
i } for a given ȳ

W
i .

We note that the residual ri(k) is included in the defined out-
put vector ȳi(k) according to equation (7). Therefore, in this
subsection, we recursively determine the residuals in ȳWi to
guarantee positive JW∗i , which satisfies the H∞ performance
index (3) under the minimum condition.
Theorem 1: Suppose the minimum condition (13) holds.

Then, the residual ri(k) can be given as

ri(k) = Ωi(k)
(
yNi (k)− ŷNi (k|k − 1)

)
(21)

to guarantee that min(JWi ) = JW∗i > 0 for φi 6= 0, where
ŷNi (k|k − 1) = CNi (k)x̂Ni (k|k − 1) and x̂Ni (k|k − 1) can be
recursively calculated as

x̂Ni (k + 1|k) = ANi (k)x̂Ni (k|k − 1)

+Θi(k)Ψ
−1
i (k)

(
yNi (k)− ŷNi (k|k − 1)

)
,

(22)

with Θi(k) = ANi (k)Pi(k)C
T
Ni
(k) + BNi (k)D

T
Ni
(k), x̂Ni (0| −

1) = 0.
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Moreover, the involved Gramian Pi(k) can be recursively
calculated as

Pi(k + 1) = ANi (k)Pi(k)A
T
Ni
(k)+ BNi (k)B

T
Ni
(k)

−Θi(k)Ψ
−1
i (k)ΘT

i (k)

−Θi(k)ΩT
i (k)Φ

−1
i (k)Ωi(k)ΘT

i (k)

−BNi (k)H
T
i (k)Φ

−1
i (k)Hi(k)BTNi

(k)

+Θi(k)ΩT
i (k)Φ

−1
i (k)Hi(k)BTNi

(k)

+BNi (k)H
T
i (k)Φ

−1
i (k)Ωi(k)ΘT

i (k), (23)

where Pi(0) = P0i.
Proof: The value of the indefinite quadratic form at the

stationary point can be written as

JW∗i =

W∑
k=0

˜̄
iy
T (k)R−1

˜̄yi
(k) ˜̄yi(k)

=

W∑
k=0

[
ỹNi

(k)
r̃i(k)

]T
R−1
˜̄yi
(k)
[
ỹNi

(k)
r̃i(k)

]
. (24)

Noting ri(k) = ei(k) + Hid i(k) and according to the
Gramian in equation (10), we have

r̂i(k|k − 1) = 0. (25)

Furthermore, according to equation (19), we have

R−1
˜̄yi
(k)

=

[
I 0

−Ωi(k) I

]T [
Ψ−1i (k) 0

0 Φ−1i (k)

] [
I 0

−Ωi(k) I

]
=

[
Ψ−1i (k)+ΩT

i (k)Φ
−1
i (k)Ωi(k) −ΩT

i (k)Φ
−1
i (k)

−Φ−1i (k)Ωi(k) Φ−1i (k)

]
.

(26)

According to equations (25) and (26), equation (24) can be
rewritten as

JW∗i =

W∑
k=0

[
ỹNi

(k)
ri(k)

]T
×

[
Ψ−1i (k)+ΩT

i (k)Φ
−1
i (k)Ωi(k) −ΩT

i (k)Φ
−1
i (k)

−Φ−1i (k)Ωi(k) Φ−1i (k)

]
×

[
ỹNi

(k)
ri(k)

]
=

W∑
k=0

(
ỹTNi

(k)Ψ−1i (k)ỹNi (k)+ (ri(k)−Ωi(k)ỹNi (k))
T

× Φ−1i (k)(ri(k)−Ωi(k)ỹNi (k))
)
. (27)

Recalling Ψi(k) > 0 in Lemma 2, we set

ri(k) = Ωi(k)ỹNi (k), (28)

so that

JW∗i =

W∑
k=0

ỹTNi
(k)Ψ−1i (k)ỹNi (k) > 0. (29)

Next, we show how to recursively compute the state pro-
jection x̂Ni (k|k − 1) and xNi (k)’s Gramian Pi(k).
According to the Krein space projection theory, we have

x̂Ni (k + 1|k)

=

k∑
h=0

〈xNi (k + 1), ˜̄yi(h)〉R
−1
˜̄yi
(h) ˜̄yi(h)

=

k−1∑
h=0

〈xNi (k + 1), ˜̄yi(h)〉R
−1
˜̄yi
(h) ˜̄yi(h)

+〈xNi (k + 1), ˜̄yi(k)〉R
−1
˜̄yi
(k) ˜̄yi(k). (30)

The first summation of equation (30) can be calculated as

k−1∑
h=0

〈xNi (k + 1), ˜̄yi(h)〉R
−1
˜̄yi
(h) ˜̄yi(h)

= ANi (k)
k−1∑
h=0

〈xNi (k), ˜̄yi(h)〉R
−1
˜̄yi
(h) ˜̄yi(h)

+BNi (k)
k−1∑
h=0

〈d i(k), ˜̄yi(h)〉R
−1
˜̄yi
(h) ˜̄yi(h)

= ANi (k)x̂Ni (k|k − 1). (31)

The cross-Gramian 〈xNi (k + 1), ˜̄yi(k)〉 in the second sum-
mation of equation (30) can be calculated as

〈xNi (k + 1), ˜̄yi(k)〉

= ANi (k)〈xNi (k), ˜̄yi(k)〉 + BNi (k)〈d i(k), ˜̄yi(k)〉

= ANi (k)〈xNi (k), C̄i(k)x̃Ni (k)+ v̄i(k)+ D̄i(k)d i(k)〉

+BNi (k)〈d i(k), C̄i(k)x̃Ni (k)+ v̄i(k)+ D̄i(k)d i(k)〉

= ANi (k)〈xNi (k), C̄i(k)x̃Ni (k)〉

+BNi (k)〈d i(k), D̄i(k)d i(k)〉

= ANi (k)Pi(k)C̄
T
i (k)+ BNi (k)D̄

T
i (k). (32)

Moreover, recalling ri(k) = Ωi(k)ỹNi (k) in equation (28),
we have

R−1
˜̄yi
(k) ˜̄yi(k)

=

[
Ψ−1i (k)+ΩT

i (k)Φ
−1
i (k)Ωi(k) −ΩT

i (k)Φ
−1
i (k)

−Φ−1i (k)Ωi(k) Φ−1i (k)

]
×

[
I

Ωi(k)

]
ỹNi (k)

=

[
Ψ−1i (k)

0

]
ỹNi (k). (33)

According to the above three equations, the state projection
is given below in a recursive form:

x̂Ni (k + 1|k) = ANi (k)x̂Ni (k|k − 1)+Θi(k)Ψ
−1
i (k)ỹNi (k),

(34)

where Θi(k) = ANi (k)Pi(k)C
T
Ni
(k) + BNi (k)D

T
Ni
(k) and the

initial projection x̂Ni (0| − 1) = 0.
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On the other hand, applying the projection theory to
equation (16) yields that

Pi(k) = 〈xNi (k), xNi (k)〉 − 〈x̂Ni (k|k − 1), x̂Ni (k|k − 1)〉.

(35)

We note that the two Gramians in equation (35) can be
calculated recursively as

〈xNi (k + 1), xNi (k + 1)〉

= 〈ANi (k)xNi (k)+ BNi (k)d i(k),ANi (k)xNi (k)

+BNi (k)d i(k)〉

= ANi (k)〈xNi (k), xNi (k)〉A
T
Ni
(k)+ BNi (k)B

T
Ni
(k) (36)

and

〈x̂Ni (k + 1|k), x̂Ni (k + 1|k)〉

= 〈ANi (k)x̂Ni (k|k −1)+ 〈xNi (k +1), ˜̄yi(k)〉R
−1
˜̄yi
(k) ˜̄yi(k),

ANi (k)x̂Ni (k|k − 1)+ 〈xNi (k + 1), ˜̄yi(k)〉R
−1
˜̄yi
(k) ˜̄yi(k)〉

= ANi (k)〈x̂Ni (k|k − 1), x̂Ni (k|k − 1)〉ATNi
(k)

+〈xNi (k + 1), ˜̄yi(k)〉M
−1
˜̄yi

(k)〈xNi (k + 1), ˜̄yi(k)〉
T .

(37)

Therefore, the Riccati recursion of Pi(k) can be deduced as

Pi(k + 1) = ANi (k)Pi(k)A
T
Ni
(k)+ BNi (k)B

T
Ni
(k)

−〈xNi (k+1), ˜̄yi(k)〉R
−1
˜̄yi
(k)〈xNi (k +1), ˜̄yi(k)〉

T

= ANi (k)Pi(k)A
T
Ni
(k)+ BNi (k)B

T
Ni
(k)

−Θi(k)Ψ
−1
i (k)ΘT

i (k)

−Θi(k)ΩT
i (k)Φ

−1
i (k)Ωi(k)ΘT

i (k)

−BNi (k)H
T
i (k)Φ

−1
i (k)Hi(k)BTNi

(k)

+Θi(k)ΩT
i (k)Φ

−1
i (k)Hi(k)BTNi

(k)

+BNi (k)H
T
i (k)Φ

−1
i (k)Ωi(k)ΘT

i (k), (38)

where Pi(0) = 〈x̃Ni (0), x̃Ni (0)〉 = P0i. �
For convenient reference, the calculation of the residual

ri(k) is summarized in the following algorithm.

V. DISTRIBUTED RESIDUAL-EVALUATION MECHANISM
In this section, we construct a residual-evaluation mechanism
by building a residual-evaluation function and determining a
threshold function.

According to the H∞ performance index (3), in the fault-
free case, we have

W∑
k=0

‖ri(k)‖2 ≤ γ 2
i
(
xNi (0)

TP−10i xNi (0)+
W∑
k=0

‖wNi (k)‖
2

+

W∑
k=0

‖vNi (k)‖
2). (39)

Under the assumption that wNi (k) and vNi (k) are l2-norm
bounded with ‖wNi (k)‖ ≤ σwNi

and ‖vNi (k)‖ ≤ σvNi
for

TABLE 1. Distributed residual-generation algorithm.

∀k ∈ N , the threshold function for the fault detection can be
set as follows:

ThWi = γ
2
i
(
xNi (0)

TP−10i xNi (0)+ (W + 1)σ 2
wNi

+ (W + 1)σ 2
vNi

)
. (40)

Defining the residual-evaluation function as

VW
i =

W∑
k=0

‖ri(k)‖2,

fault detection can be accomplished according to the follow-
ing logic: {

VW
i > ThWi ⇒ An alarm for fNi

VW
i ≤ Th

W
i ⇒ No alarm

(41)

Remark 3: Note that if the H∞ performance level scalar
γi is small enough, the residual ri(k) is exactly an H∞
estimate of the augmented fault vector fNi (k). However,
in many cases we must set γi > 1 to satisfy the min-
imum condition in Lemma 2, leading to a distinct error
between the residual ri(k) and the augmented fault vector
fNi (k). Thus, in many cases the H∞ framework in (3) can
only be used to carry on the detection of the fault rather
than the estimation. Furthermore, for fault detection prob-
lems, there are always trade-offs between false alarms and
missed detections. Note that the threshold function ThWi
shows the worst-case tolerant limit decided by the l2-norm
bounds of the unknown disturbance vector wNi (k) and the
measurement noise vector vNi (k). Therefore, the proposed
residual-evaluation mechanism guarantees zero false alarm
rate, at the cost of possible missed detections. Furthermore,
because the residual-evaluation function VW

i and the thresh-
old function ThWi are accumulations, the FD efficiency is
influenced by the fault start time, and it is also possible that
the fault appears too late in the fixed FD time interval to
be detected. Moreover, the l2-norm bounds of disturbance
vectors and noise vectors also influence the FD efficiency,
and lower bounds will shorten the time delay from the fault
occurrence to the alarm-raising.
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FIGURE 1. Relative output topology of the MAS in EXAMPLE 1, where
faulty agents 3 and 4 are marked in red.

VI. TWO ILLUSTRATIVE EXAMPLES
In this section, we use two simulation examples to illustrate
the efficiency of the proposed FD method. Matlab R2016a is
used in the simulation.

A. EXAMPLE 1
We consider a multi-agent system consisting of 7 agents,
where the coefficient matrices in (1) are set as

Ai(k) =
[
0.52+ 0.1sin(k) 0.12

0.05 0.37+ 0.1cos(k)

]
,

Bwi (k) =
[
0.05cos(k) 0.12
−0.04 0.07

]
,

Ci(k) =
[
0.5sin(k) 0.6cos(k)

]
,

∀i ∈ V = {1, 2, 3, 4, 5, 6, 7}.
In this example, only sensor faults are considered, and the

coefficient matrices of fi(k), i ∈ V are set as

Bfi (k) =
[
0
0

]
, Dfi (k) = 2.

The relative output topology is shown in Fig. 1, with the
adjacency matrix defined as

A =



0 0 1 0 0 0 0
0 0 1 0 1 0 0
1 1 0 0 0 0 0
0 0 0 0 1 1 1
0 1 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 1 0 0 0


.

We set the initial states x1(0) = [0, 0]T , x2(0) = [1, 0.5]T ,
x3(0) = [−0.3, 0.5]T , x4(0) = [0, 0.1]T , x5(0) = [0.1, 0.1]T ,
x6(0) = [0.5, 0.2]T , x7(0) = [0,−0.3]T , and choose the
weighting matrix P0i = I , ∀i ∈ V . We set the disturbance
as wi(k) = 0.1[sin(ik), cos(ik)]T and the measurement noise
as vi(k) = 0.01cos(i+ k), ∀i ∈ V . Assuming that the l2-norm
bounds of disturbance vectors and noise vectors are known as
‖wi(k)‖2 ≤ 0.12 and ‖vi(k)‖2 ≤ (0.01)2, ∀k ∈ N , we have

‖wN1 (k)‖
2
= ‖w1(k)‖2 + ‖w3(k)‖2

≤ 0.12 × 2,

‖wN2 (k)‖
2
= ‖w2(k)‖2 + ‖w3(k)‖2 + ‖w5(k)‖2

≤ 0.12 × 3,

‖wN3 (k)‖
2
= ‖w3(k)‖2 + ‖w1(k)‖2 + ‖w2(k)‖2

≤ 0.12 × 3,

‖wN4 (k)‖
2
= ‖w4(k)‖2 + ‖w5(k)‖2 +‖w6(k)‖2 +‖w7(k)‖2

≤ 0.12 × 4,

‖wN5 (k)‖
2
= ‖w5(k)‖2 + ‖w2(k)‖2 +‖w4(k)‖2 +‖w6(k)‖2

≤ 0.12 × 4,

‖wN6 (k)‖
2
= ‖w6(k)‖2 + ‖w4(k)‖2 + ‖w5(k)‖2

≤ 0.12 × 3,

‖wN7 (k)‖
2
= ‖w7(k)‖2 + ‖w4(k)‖2

≤ 0.12 × 2,

‖vN1 (k)‖
2
= ‖v1(k)− v3(k)‖2

≤ (0.01− (−0.01))2,

‖vN2 (k)‖
2
= ‖v2(k)− v3(k)‖2 + ‖v2(k)− v5(k)‖2

≤ (0.01− (−0.01))2 × 2,

‖vN3 (k)‖
2
= ‖v3(k)− v1(k)‖2 + ‖v3(k)− v2(k)‖2

≤ (0.01− (−0.01))2 × 2,

‖vN4 (k)‖
2
= ‖v4(k)− v5(k)‖2 + ‖v4(k)− v6(k)‖2

+‖v4(k)− v7(k)‖2

≤ (0.01− (−0.01))2 × 3,

‖vN5 (k)‖
2
= ‖v5(k)− v2(k)‖2 + ‖v5(k)− v4(k)‖2

+‖v5(k)− v6(k)‖2

≤ (0.01− (−0.01))2 × 3,

‖vN6 (k)‖
2
= ‖v6(k)− v4(k)‖2 + ‖v6(k)− v5(k)‖2

≤ (0.01− (−0.01))2 × 2,

‖vN7 (k)‖
2
= ‖v7(k)− v4(k)‖2

≤ (0.01− (−0.01))2.

Further, the l2-norm bounds of augmented disturbance vec-
tors and augmented relative noise vectors can be set as
σwN1

=
√
0.02, σwN2

=
√
0.03, σwN3

=
√
0.03, σwN4

=
√
0.04, σwN5

=
√
0.04, σwN6

=
√
0.03, σwN7

=
√
0.02,

σvN1
=
√
0.0001, σvN2

=
√
0.0002, σvN3

=
√
0.0002,

σvN4
=
√
0.0003, σvN5

=
√
0.0003, σvN6

=
√
0.0002,

σvN7
=
√
0.0001,

In the simulation, we set the absolute measurement faults
of agents 3 and 4 as

f3(k) =

{
0, 0 ≤ k < 35,
1, 35 ≤ k ≤ 100,

f4(k) =

{
0, 0 ≤ k < 20,
1, 20 ≤ k ≤ 100.

Additionally, we set f1(k) = f2(k) = f5(k) = f6(k) = f7(k) =
0, k = 0, 1, · · · , 100.

Moreover, the augmented fault vectors are defined as

fN1 (k) = col{f1(k), f3(k)},

fN2 (k) = col{f2(k), f3(k), f5(k)},

fN3 (k) = col{f3(k), f1(k), f2(k)},

fN4 (k) = col{f4(k), f5(k), f6(k), f7(k)},

fN5 (k) = col{f5(k), f2(k), f4(k), f6(k)},

fN6 (k) = col{f6(k), f4(k), f5(k)},

fN7 (k) = col{f7(k), f4(k)}.

To satisfy the minimum condition in Lemma 2, we set the
parameter γi in (3) as γi = 1.01, ∀i ∈ V .
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FIGURE 2. Residual-generation stages with the augmented fault fNi (k) = [fi (k), fi1 (k), · · · , fi|Ni |
(k)]T and the residual

ri (k) = [r (1)
i (k), r (2)

i (k), · · · , r
(|Ni |+1)
i (k)]T for i = 1, 2, · · · , 7; Residual-evaluation stages with the evaluation function V k

i
and the threshold function Thk

i for i = 1, 2, · · · , 7.

The residual-generation stages of the 7 agents are shown
on the upper part of each subfigure in Fig. 2 respectively,

where the fault entries and residual entries corresponding
to the same positions have the same colors. Additionally,
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FIGURE 2. (Continued.) Residual-generation stages with the augmented
fault fNi (k) = [fi (k), fi1 (k), · · · , fi|Ni |

(k)]T and the residual

ri (k) = [r (1)
i (k), r (2)

i (k), · · · , r
(|Ni |+1)
i (k)]T for i = 1, 2, · · · , 7;

Residual-evaluation stages with the evaluation function V k
i and the

threshold function Thk
i for i = 1, 2, · · · , 7.

the evaluation-stages of the 7 agents are shown on the lower
part of each subfigure in Fig. 2 respectively, where the
residual-evaluation function V k

i is compared with the thresh-
old function Thki , ∀i ∈ V .
For the sake of simplicity and without loss of gener-

ality, the performance of agent 2 shown in Fig. 2. (b)
will be analyzed as an example. The residual-generation
stage of agent 2 shows that the residual r2(k) =

[r (1)2 (k), r (2)2 (k), r (3)2 (k)]T changes sharply immediately after
the sensor fault f3(k) occurs at its neighbor agent 3. The
corresponding residual-evaluation stage shows that the fault
alarm is raised at k = 41 because at this time the evaluation
function V k

2 exceeds the threshold Thk2, indicating the fault
occurrence in the set {2} ∪ N2. On the other hand, we note
that there is a 6 s delay between the fault occurrence and the
alarm-raising because of the accumulation characteristic of
V k
2 and Thk2, which is a drawback of the proposed method as

mentioned in Remark 3. Furthermore, it is observed that the
positive fault signal f3(k) have a clear influence on each entry
of the residual r2(k), and the entry r

(2)
2 (k) at the corresponding

position is also positive due to the setting of the coefficient
matrices.

According to the topology shown in Fig. 1, each agent
is either faulty or adjacent to one faulty agent. Therefore,
it is observed from the residual-evaluation stages in Fig. 2
that agents 1-7 all raise alarms, indicating that each of these
agents detects at least one fault in the union of itself and their
neighbors, which verifies the effectiveness of the proposed
FD method.

Further, if it is stipulated that there are at most two faulty
agents in thismulti-agent system, the faulty agents 3 and 4 can
be easily isolated according to the relative output topology
in Fig. 1.

FIGURE 3. Relative output topology of the MAS in EXAMPLE 2, where
faulty agent 3 is marked in red.

B. EXAMPLE 2
In this example, the GE F404 gas turbine engine system
model, which was borrowed by [37] from [48], is investi-
gated. We consider that the MAS consists of 4 F404 engines
and that each engine is described by the continuous-

time model ẋi(t) =

−1.46 0 0.2480
0.1643 −0.4 −0.3788
0.3107 0 −2.23

 xi(t) + 0.2 0.2
0.8 0.8
−0.2 −0.2

wi(t), ∀i ∈ V = {1, 2, 3, 4}, where xi(t) =

[x(1)i (t), x(2)i (t), x(3)i (t)]T is the engine state, with x(1)i (t)
and x(2)i (t) representing the horizontal positions and x(3)i (t)
denoting the altitude of the aircraft. Taking the sample
period as 0.3 s and noting that the coefficient matrices may
be time-varying due to environmental changes, we con-
sider the LDTV models of the 4 engines with Ai(k) =0.6474+ 0.1isin(k) 0 0.0429

0.0339 0.8869 −0.0764
0.0538 0 0.5141+ 0.1icos(k)

 and

Bwi (k) =

 0.0471 0.0471
0.2299 0.2299
−0.0418 −0.0418

, ∀i ∈ V .

To observe engine conditions, on-board engine moni-
toring systems (EMSs) are usually employed in gas tur-
bines, see [48]. We assume that the EMS on engine i,
∀i ∈ V is equipped with one sensor for the absolute
measurement yi(k) and other sensors for the relative out-
put measurements such as yij(k) with engine j being the
neighbor of engine i. The fault vector is composed as
fi(k) = [fip(k), fis(k)]T , where fip(k) denotes the fault occur-
ring on the engine dynamics and fis(k) denotes the fault
occurring on the absolute measurement sensor. Other coef-
ficient matrices for the absolute measurement sensor in (1)
are given as C1(k) = [−0.5, 0.8, 0.5sin(k)], C2(k) =
[−0.4, 0.6, 0.6cos(k)], C3(k) = [−0.9, 0.5, 0.6sin(k)],

C4(k) = [−0.7, 0.4, 0.5cos(k)], Bfi (k) =

 1 0
1.8 0
1.2 0

, Dfi (k) =
[4i, 6i], ∀i ∈ V .
The relative output topology is shown in Fig. 3, with the

adjacency matrix given as

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
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FIGURE 4. Residual-generation stages with the augmented fault
fNi (k) = [fip(k), fis(k), fi1p(k), fi1s(k), · · · , fi|Ni |

p(k), fi|Ni |
s(k)]T and the residual ri (k) = [r (1)

i (k), r (2)
i (k), · · · , r

(2|Ni |+2)
i (k)]T

for i = 1, 2, 3, 4.

The initial engine states are given as xi(0) =

[0.1i, 0.3i, 0.2i]T , ∀i ∈ V . Furthermore, the external distur-
bance is given aswi(k) = [0.2isin(2k), 0.1icos(2k)]T , and the
measurement noise is given as vi(k) = 0.01icos(k), ∀i ∈ V .
Assuming that the l2-norm bounds of disturbance vectors and
noise vectors are known as ‖wi(k)‖2 ≤ 0.01i2 + 0.03i2 and
‖vi(k)‖2 ≤ (0.01i)2, ∀k ∈ N , we have

‖wN1 (k)‖
2
= ‖w1(k)‖2 + ‖w2(k)‖2 + ‖w4(k)‖2

≤ 0.04× 12 + 0.04× 22 + 0.04× 42,

‖wN2 (k)‖
2
= ‖w2(k)‖2 + ‖w1(k)‖2 + ‖w3(k)‖2

≤ 0.04× 22 + 0.04× 12 + 0.04× 32,

‖wN3 (k)‖
2
= ‖w3(k)‖2 + ‖w2(k)‖2 + ‖w4(k)‖2

≤ 0.04× 32 + 0.04× 22 + 0.04× 42,

‖wN4 (k)‖
2
= ‖w4(k)‖2 + ‖w1(k)‖2 + ‖w3(k)‖2

≤ 0.04× 42 + 0.04× 12 + 0.04× 32,

‖vN1 (k)‖
2
= ‖v1(k)− v2(k)‖2 + ‖v1(k)− v4(k)‖2

≤ (0.01− (−0.02))2 + (0.01− (−0.04))2,

‖vN2 (k)‖
2
= ‖v2(k)− v1(k)‖2 + ‖v2(k)− v3(k)‖2

≤ (0.02− (−0.01))2 + (0.02− (−0.03))2,

‖vN3 (k)‖
2
= ‖v3(k)− v2(k)‖2 + ‖v3(k)− v4(k)‖2

≤ (0.03− (−0.02))2 + (0.03− (−0.04))2,

‖vN4 (k)‖
2
= ‖v4(k)− v1(k)‖2 + ‖v4(k)− v3(k)‖2

≤ (0.04− (−0.01))2 + (0.04− (−0.03))2,

and the l2-norm bounds of the augmented disturbance vectors
and augmented relative noise vectors can be set as σwN1

=

0.9165, σwN2
= 0.7483, σwN3

= 1.0770, σwN4
= 1.0198,

σvN1
= 0.0583, σvN2

= 0.0583, σvN3
= 0.0860, σvN4

=

0.0860.
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FIGURE 5. Residual-evaluation stages with the evaluation function V k
i

and the threshold function Thk
i for i = 1, 2, 3, 4.

In the simulation, we set

f3p(k) =

{
0, 0 ≤ k < 30,
5, 30 ≤ k ≤ 100,

f3s(k) =

{
0, 0 ≤ k < 35,
3, 35 ≤ k ≤ 100.

Additionally, we set f1p(k) = f1s(k) = f2p(k) = f2s(k) =
f4p(k) = f4s(k) = 0, k = 0, 1, · · · , 100.
Moreover, the augmented fault vectors are defined as

fN1 (k) = col{f1(k), f2(k), f4(k)}
= [f1p(k), f1s(k), f2p(k), f2s(k), f4p(k), f4s(k)]T ,

fN2 (k) = col{f2(k), f1(k), f3(k)}
= [f2p(k), f2s(k), f1p(k), f1s(k), f3p(k), f3s(k)]T ,

fN3 (k) = col{f3(k), f2(k), f4(k)}
= [f3p(k), f3s(k), f2p(k), f2s(k), f4p(k), f4s(k)]T ,

fN4 (k) = col{f4(k), f1(k), f3(k)}
= [f4p(k), f4s(k), f1p(k), f1s(k), f3p(k), f3s(k)]T .

To satisfy the minimum condition in Lemma 2, we set the
parameter γi in (3) as γi = 1.01, ∀i ∈ V . The residual-
generation stages of the 4 engines are shown in Fig. 4,
where the fault entries and residual entries corresponding
to the same positions have the same colors. Additionally,
the evaluation-stages of the 4 engines are shown in Fig. 5.

Fig. 5. (a) indicates that no fault was detected in the set
{1}∪N1 = {1, 2, 4}, Fig. 5. (b) indicates the fault occurrence
in the set {2} ∪N2 = {2, 1, 3}, Fig. 5. (c) indicates the fault
occurrence in the set {3} ∪ N3 = {3, 2, 4}, and Fig. 5. (d)
indicates the fault occurrence in the set {4} ∪N4 = {4, 1, 3}.
The effectiveness of the FD method is verified by these
subfigures.
Furthermore, if it is known that there is at most one faulty

agent, the faulty agent 3 can be easily isolated because only
it satisfies the condition that any other raising-alarm agent is
adjacent to it.

VII. CONCLUSION
In this paper, we have investigated the distributed fault
detection problem for linear discrete time-varying heteroge-
neous multi-agent systems with relative output information.
Under the H∞ filtering framework, the distributed residual-
generator has been designed using all locally obtained relative
output information, with the Krein space projection theory
introduced to reduce the computational burden. Further, a dis-
tributed residual-evaluation mechanism has been given that
detects the faults by comparing the evaluation function with
the threshold function and guarantees a zero false alarm rate.
The effectiveness of the proposed fault detection approach
has been verified through two illustrative examples, where the
faulty agents can be isolated under certain conditions based
on a fault isolation criterion.
To overcome the limitations of this current proposed

scheme such as the lack of a balance between the false alarm
rate and missed detection rate, possible future research may
include developing more efficient FD methods to reduce the
missed detection rate and investigating more robust fault
isolation methods.
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