
Received January 25, 2021, accepted February 22, 2021, date of publication March 15, 2021, date of current version April 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3065872

A Survey of Software Clone Detection
From Security Perspective
HAIBO ZHANG 1 AND KOUICHI SAKURAI 2, (Member, IEEE)
1Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
2Department of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan

Corresponding author: Haibo Zhang (zhang.haibo@inf.kyushu-u.ac.jp)

This work was supported in part by the Collaboration Hubs for International Program (CHIRP) of Strategic International
Collaborative Research Program (SICORP) through the Japan Science and Technology Agency (JST).

ABSTRACT For software engineering, if two code fragments are closely similar with minor modifications
or even identical due to a copy-paste behavior, that is called software/code clone. Code clones can cause
trouble in software maintenance and debugging process because identifying all copied compromised code
fragments in other locations is time-consuming. Researchers have been working on code clone detection
issues for a long time, and the discussion mainly focuses on software engineering management and
system maintenance. Another considerable issue is that code cloning provides an easy way to attackers for
malicious code injection. A thorough survey work of code clone identification/detection from the security
perspective is indispensable for providing a comprehensive review of existing related works and proposing
future potential research directions. This paper can satisfy above requirements. We review and introduce
existing security-related works following three different classifications and various comparison criteria.
We then discuss three further research directions, (i) deep learning-based code clone vulnerability detection,
(ii) vulnerable code clone detection for 5G-Internet of Things devices, and (iii) real-time detection methods
for more efficiently detecting clone attacks. These methods are more advanced and adaptive to technological
development than current technologies, and still have enough research space for future studies.

INDEX TERMS Code clone, security analysis, software clone, vulnerability detection.

I. INTRODUCTION
In the field of software development, programmers prefer to
copy and paste a piece of source code directly from another
source code fragment, even if there are minor modifications,
so that they look similar or even identical. This is called soft-
ware/code cloning [1], [2], some researchers also call it code
duplication [3]–[5]. Many reasons exist for code cloning; the
main reason is that code clones can help programmers to fin-
ish their tasks more quickly. Programming and maintenance
issues occur because of this type of behavior. For instance, if a
bug is found in a cloned code fragment of a software system,
the programmer has to detect this bug everywhere and fix it,
which increases software maintenance difficulties [1].

Furthermore, in terms of software system security, code
clones could lead to vulnerability propagation if a vulnerable
code fragment is cloned [6]. Even though software program-
mers are trying to write secure source code and minimize vul-
nerabilities in the source code when developing their systems
[7], code clone behavior inevitably occurs during the software
programming process and propagates system vulnerabilities
[8], [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mansoor Ahmed .

Code clone vulnerability detection has been studied inten-
sively. Jiang et al. [10] presented a scalable and accurate
approach for detecting code clones on the basis of iden-
tifying similar subtrees. Yamaguchi et al. [11] proposed
a method called Chucky to statically taint source code,
which can identify anomalous or missing conditions linked
to security-critical objects. Farhadi et al. [12] presented a
malicious code clone detection technique for binary code
based on token normalization levels. Some researchers have
also applied more advanced and efficient technologies to
improve the efficiency of vulnerability detection systems.
Li et al. [13] proposed a deep learning-based system for
source code vulnerability detection called VulDeePecker. For
applications based on code clone detection, Gao et al. [14]
applied an approach based on binary vulnerability search for
cross-platform Internet of Things (IoT) devices. Hum et al.
[15] proposed a system based on code evolution analysis and
a clone detection technique to indicate cryptocurrencies that
might be vulnerable.

In this paper, we aim to provide a comprehensive
review of code clone detection methods based on vulner-
able code analysis. We compare previous studies follow-
ing several different analysis methods and detection tech-
niques, and then discuss open questions and future research

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 48157

https://orcid.org/0000-0002-4275-405X
https://orcid.org/0000-0003-4621-1674
https://orcid.org/0000-0003-2034-1403

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

trends in this field. Our contributions are summarized as
follows:
• We illustrate some key terminology, including related
definitions, code clone types, and techniques with code
samples.

• We comprehensively review and introduce previous
security-related studies following three classifications
and various comparison criteria.

• We discuss some open questions about deep learning-
based code clone vulnerability detection approaches,
which are more advanced and adaptive to technological
development than current technologies, and code clone
detection for 5G-IoT devices and real-time detection
methods that can detect clone attacks more efficiently.

To enable a better understanding of what we discuss in this
paper, it is organized to answer the following questions:

1) What is a code clone and why does it make software
vulnerable to cyberattacks?

2) What types of vulnerabilities can be detected by code
clone detection mechanisms?

3) What types of technologies can detect vulnerable code
clones and how do those technologies work?

4) What is the future research direction for vulnerable
code clone detection?

The motivation of this paper is to find corresponding
answers to above research question.

This paper focuses on the security perspective of code
clone detection. Most studies are selected by searching key-
words code clone vulnerability detection from e-resources,
such as Elsevier and Springer, which are authentic and
accepted with high impact factors. We also select research
works which are published on international conferences and
journals organized by ACM an IEEE. We selected 50 works
from IEEE, 17 works from ACM, 7 works from Springer,
5 works from Elsevier, and 4 works form arXiv preprint.
This paper does not discuss much of studies which are not
regarding security issues of code clone detection, such as the
general programming and maintenance issues aroused from
code clones.

The remainder of the paper is organized as follows:
In Section II, we provide background information on
why code cloning occurs, and introduce several repre-
sentative studies and definitions of related terminology.
In Section III, we thoroughly review existing security-related
code clone analysis methods and detection techniques, and
compare previous studies. In Section IV, we discuss deep
learning-based approaches, 5G-IoT-based code clone detec-
tion, and real-time detection research directions. In Section V,
we conclude this paper and outline avenues for future studies

II. BACKGROUND
In this section, we introduce the following:
• general background about why code cloning occurs; that
is, why programmers prefer to use copy-paste methods
during their programming work;

• issues arising from code cloning behavior; and
• definitions of several code clone-related terms, types
of code clones, and code clone detection phases and
detection techniques.

A. WHY CODE CLONING OCCURS
A good software engineering project should be developed
with thorough and mature programming; however, some-
times, programmers prefer to reuse a code fragment [16] to
finish their tasks, even if this is not encouraged. We analyzed
several reasons for code cloning.

1) COST AND TIME CONSTRAINTS
The main reason for code cloning is that it can help pro-
grammers to finish software development more efficiently
by reducing cost and time, particularly when meeting task
deadlines [2], [16], [17].

2) LIMITATIONS OF PROGRAMMERS’ SKILLS
Some junior, and even senior, programmers may receive spe-
cific programming tasks beyond their capabilities. For exam-
ple, theymay lack programming language proficiency or have
difficulty in understanding those tasks, which facilitates code
reuse [18].

3) USE OF TEMPLATES
Increasingly, code templates are providing more thorough
and mature code, algorithms, and frameworks for program-
mers to help them to finish software development more effi-
ciently. However, programs that use the same template could
include identical or closely similar code fragments, which
leads to code clones [2], [16].

4) FEAR TO BRING IN NEW IDEAS
Sometimes, new ideas or fresh code may result in a lengthy
software development life cycle, or even introduce new errors
to existing software [19], [20]. Hence, programmers fear
bringing new ideas or fresh code into their existing project [2].

5) ACCIDENTAL CLONING
Sometimes, a programmer writes a piece of code that acci-
dentally matches existing code, which leads to a type of
accidental code cloning [16].

B. ISSUES
As a result of the reasons for code cloning mentioned above,
whether intentional or unintentional, code clones have led to
some issues in software development and maintenance.
• Maintenance cost: Cloning a piece of code in soft-
ware can increase the post-implementation maintenance
effort. For instance, if one cloned code fragment is mod-
ified, all other cloned code fragments have to be located
to maintain the consistency [21].

• Bugs propagation: Cloning a piece of code that
includes a bug can propagate the bug to different
locations in the software system [2], [16], which also
increases themaintenance effort to identify this bug from
all cloned code fragments.

48158 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

• Vulnerability propagation: If a piece of code that is
vulnerable to specific attacks is copied, it will lead
to vulnerability propagation across the entire software
system. In this paper, we mainly discuss vulnerability
detection approaches in software/code clones.

C. CLONE DETECTION
Researchers have addressed clone issues by providing code
clone detection tools or approaches. Baker [22] devel-
oped a program called dup, which can locate duplicate
or near-duplicate code sections in large software systems.
Kamiya et al. [23] proposed a token-based clone detection
tool called CCFinder, which extracts code clones in C, C++,
Java, COBOL, and other source files. Li et al. [19] pro-
posed a tool called CP-Miner, which can identify cloned
code fragments in large software systems using data mining
techniques. Roy and Cordy [24] proposed a lightweight appli-
cation called NiCad for a source code transformation system
that can find near-miss clones by applying an efficient text
line comparison technique.

Several studies have also been conducted on clone detec-
tion approaches based on the application level. For Android
applications, Crussell et al. [25] presented a detection tool
called DNADroid, which can identify cloned applications
by computing the similarity between two applications.
Chen et al. [26] proposed an approach to measure the sim-
ilarity between code sections in two applications on the basis
of the method level. Similarly, Akram et al. [27] designed
DroidCC for detecting cloned Android applications based on
the source code level.

Meanwhile, many researchers have conducted excellent
surveys on the topic of code clone detection. Rattan et al. [2]
provided an extensive systematic literature review of software
clones in general and software clone detection in particular,
based on reviewing 213 articles from 2,039 articles published
in 48 publication resources. Sheneamer and Kalita [1] dis-
cussed details of code clones, such as types of clones, detec-
tion phases of clones, detection techniques and tools, and
challenges faced by clone detection techniques, by analyzing
previous related studies. Saini et al. [16] discussed code clone
detection andmanagement to help researchers to start quickly
on the basic concept of code clones and detection techniques.
Ain et al. [3] provided a comprehensive review of the latest
code clone detection tools and techniques, and a systematic
literature review of 54 studies.

In this paper, we focus on providing a comprehensive lit-
erature review of vulnerability detection approaches in code
clone areas to help to provide researchers with a clearer
direction for future studies.

D. TERMINOLOGIES
We summarize several terms related to code cloning to help
readers to obtain a basic understanding of code clones [1],
[16], [28].

1) CODE FRAGMENT
A code fragment is a piece of source code, with or without
comments, in a software project. It can contain any number

Code Fragment 1 Original Code Fragment
Data: A string
Result: Count the number of one certain letter in the string
1 def countElem (string, elem):
2 num = string.count(elem, 0, len(string))
3 # comment 1
4 print(num)
5 stri = ‘‘Hello world!’’
6 sub = ‘‘l’’
7 countElem(stri, sub)
8 # comment 2

of lines, statements, begin-end blocks, methods, or functions
needed to run a program. For instance, CODE FRAGMENT
1-5 are five different code fragments.

2) CODE CLONE PAIR
If a code fragment is identical or similar with minor mod-
ifications to another code fragment, which means that they
are code clones, these two code fragments are called a code
clone pair. For example, the pair that consists of CODE
FRAGMENT 1 andCODEFRAGMENT 2 is a code clone pair.

3) CLONE CLASS
A clone class refers to a set of code clone pairs (more than
two code fragments) related to each other, with the same
equivalence relation. CODE FRAGMENT 1-5 could be a
clone class.

4) CLONE GRANULARITY
Clone granularity can be regarded as a research or detection
level. This means that the detection method can be executed
at the level of, for example, functions, classes, blocks, state-
ments, and files. Granularity can be predefined for directional
detection or not predefined, as for free granularity clones.

5) PRECISION AND RECALL
Precision and recall are two critical factors for evaluating
the system accuracy of detecting software clones. Precision
refers to the percentage of true negatives detected, and recall
refers to the percentage of total clones detected in the software
system, including false positives.

E. TYPES OF CLONES
To better understand what type of study belongs to code
cloning and analyze the target source code more efficiently,
the code clone issue could be classified into two main
groups: textual-level clone and semantic-level clone [1], [29],
[30]. CODE FRAGMENT 1-5 provide five code fragments
(Python) as examples of these two groups of clones. CODE
FRAGMENT 1 is an example of the original fragment.

1) TEXTUAL-LEVEL CLONE
This type of clone refers to two code fragments that perform
almost the same text task [31]. For a textual-level clone, this
can be further classified into three types of clone.

VOLUME 9, 2021 48159

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

Code Fragment 2 Type-1 Exact Clone
Data: A string
Result: Count the number of one certain letter in the string
1 def countElem (string, elem):
2 num = string.count(elem, 0, len(string)) # comment 1
3 print(num)
4 stri = ‘‘Hello world!’’
5 sub = ‘‘l’’
6 countElem(stri, sub) # comment 2

Type-1: Exact clone A code fragment that is almost an
exact copy of the original code fragment except for whites-
pace, blanks, and comments is regarded as an exact clone.
Compared with the original code fragment, the Type-1 code
fragment simply modifies the layout of comments and deletes
one blank line, so it clearly belongs to the exact clone type.

Type-2: Renamed clone A code fragment that is similar
to the original code fragment except for the names of vari-
ables, functions, types, and literals is regarded as a renamed
clone. As shown inCODE FRAGMENT 3, compared with the
original code fragment, the Type-2 code fragment modifies
the function’s name from ‘countElem’ to ‘num_of_string,’
and some variables, such as ‘string’ to ‘a’ and ‘elem’ to ‘b.’

Code Fragment 3 Type-2 Renamed Clone
Data: A string
Result: Count the number of one certain letter in the string
1 def num_of_string (a, b):
2 number = a.count(b, 0, len(a))
3 # comment 1
4 print(number)
5 string = ‘‘Hello world!’’
6 letter = ‘‘l’’
7 num_of_string(string, letter)
8 # comment 2

Type-3:Near miss clone A code fragment that is almost
the same as the original code fragment except for some
modifications, such as added or removed statements, and a
different use of literals, variables, layout, and comments [1]is
regarded as a near miss clone. The Type-3 code fragment
belongs to the near miss clone type because of the modifi-
cation that only replaces variables ‘string’ and ‘elem’ with
‘a’ and ‘b,’ respectively.

2) SEMANTIC-LEVEL CLONE
The second group of code clones is based on the semantic
level, and is called the Type-4 clone.

Type-4: Semantic clone A code fragment that is similar
to the original code fragment based on their functions and not
syntax [32]is referred to as a semantic clone. The Type-4 code
fragment modifies the code using ‘for loop’ to implement the
same result achieved using the function ‘count,’ which refers
to a semantic clone.

Code Fragment 4 Type-3 Near Miss Clone
Data: A string
Result: Count the number of one certain letter in the string
1 def countElem (string, elem):
2 a = string
3 b = elem
4 num = string.count(b, 0, len(a))
5 # comment 1
6 print(num)
7 stri = ‘‘Hello world!’’
8 sub = ‘‘l’’
9 countElem(stri, sub)
10 # comment 2

Code Fragment 5 Type-4 Semantic Clone
Data: A string
Result: Count the number of one certain letter in the string
1 def countElem (string, elem):
2 num = 0
3 for i in string:
4 # comment 1
5 if i == ’l’:
5 num = num + 1
4 print(num)
5 stri = ‘‘Hello world!’’
6 sub = ‘‘l’’
7 countElem(stri, sub)
8 # comment 2

F. CODE CLONE DETECTION PHASES
Fig. 1 shows the entire life cycle of code clone detec-
tion; some researchers prefer to call the process from pre-
processing to report clones clones the code clone detection
phases. The Code clone detector is the main component
of a clone detection system, and is in charge of acquiring
copy-pasted or duplicated source code and then processing
the major clone detection phases. For instance, Davey et al.
[33] provided a comprehensive illustration of the fundamen-
tal process of developing SOM-based and DCL-based clone
detection tools.

1) PRE-PROCESSING
Pre-processing is the first step of code clone detection
that [28]:

• removes all uninteresting or irrelevant parts of the source
code, such as whitespace and comments, to reduce
unrelated comparisons and calculation;

• identifies the remaining source code as source units,
which are used for checking for the existence of direct
clones’ relations to each other after removing irrelevant
fragments [1]]; and

• divides sources units into smaller comparison units
depending on the comparison algorithm.

48160 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

FIGURE 1. Life cycle of code clone detection.

2) CONVERSION
Conversion, also called transformation, is used to convert the
source code acquired from the pre-processing step into a cor-
responding intermediate representation for further compari-
son [16]. Types of intermediate representation are the Tokens,
Abstract Syntax Tree andProgramDependencyGraph, which
we introduce in detail in Section III.

3) DETECTION MATCHING
This step compares the source code units with target files
using a particular comparison algorithm to identify similar
source code fragments. The output of this step is a list of clone
pairs or clone classes.

4) FORMATTING
This step formats the list of clone pairs obtained from the
previous step based on the comparison algorithm into a new
clone pair list related to the original source code.

5) POST-PROCESSING
Post-processing, also called filtering/manual analysis [34]],
is not required by all code clone detection systems, and is
used to filter out false positives or missed clones on the basis
of reanalysis by human experts or automated heuristics.

6) REPORT CLONES
Clone results analyzed and confirmed by previous detection
phases can be reported to the system for further action, such
as correcting or removing the source code.

III. SECURITY-RELATED WORKS
In addition to the maintenance and debug cost arising from
code clone behavior, software vulnerability propagation is
another serious issue. Programmers may use source code
files downloaded from websites that are intensively modi-
fied by attackers that can help those attackers to infiltrate
their target systems easily. Islam et al. [35] proved that the

security vulnerabilities found in code clones have a higher
severity of security risk than those in non-cloned source code
by detecting code clones and vulnerabilities in 8.7 million
lines of code over 34 software systems based on quantitative
analysis with statistical significance. Karademir et al. [36]
conducted an experiment that used the NiCad [37] clone
detector to identify JavaScript vulnerabilities in PDF files.
Nappa et al. [38] presented a systematic study of the effect of
shared/cloned code on vulnerability patching for client-side
applications.

In this section, we provide a comprehensive review of
recent security-related studies, analyze and discuss their
primary purpose, present systems or architectures, and eval-
uate results from different analysis methods and detection
techniques.

A. STATIC ANALYSIS VERSUS DYNAMIC ANALYSIS
The code clone detector shown in Fig. 1 plays an essential role
during the entire life cycle of clone detection. Furthermore,
analysis methods can be regarded as core functions of clone
detectors. Analysis methods of code clone detection can be
classified as static analysis and dynamic analysis, in addition
to hybrid analysis, which refers to the advanced combination
of both.

1) STATIC ANALYSIS
Static analysis refers to analyzing a piece of source code to
detect possible defects in the early stage without any pro-
gram’s dynamic execution. Two types of static code analysis
methods exist: one uses a machine that can read and check
the source code automatically to detect possible clones, and
the other is performed by a human reviewing the source code,
also called code review [39]. The reviewer could be an expert
or peer developer who fully understands the source code and
manually reviews it to identify any missed clones or false
positives.

VOLUME 9, 2021 48161

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

FIGURE 2. Possible analysis methods during a system development life cycle.

a: VULNERABILITY DETECTION VERSUS CODE CLONE
DETECTION
Static code analysis is typically used for software/source code
vulnerability detection. Source code vulnerability detection
methods normally refer to the code or function similarity
comparison between detected and target files based on nor-
malizing or abstracting the source code into a representation.
Code clone vulnerability detection can be regarded as a
type of special software vulnerability detection, where the
original code fragment is the target code fragment. Detec-
tion methods, particularly for vulnerability identification,
can be adopted as references in the detecting vulnerable
code cloning scenario. In this section, we discuss both of
vulnerability detection and code clone detection.

Table 1 provides a comparison of several vulnerable
code clone detection studies based on static code analysis
methods. It compares these studies by illustrating their pri-
mary research purposes, detection techniques, and evaluation
factors.
i) Source Code Vulnerability Detection: Zhang et al. [40]

proposed an approach that uses trace-based security testing
methods to detect software vulnerabilities in C programs.
They generated a program constraint (PC) and obtained a
security constraint (SC) by applying symbolic execution
based on each hotspot mentioned above. The judgment con-
dition for a vulnerable hotspot was PC∧SC , which means it
satisfies PC but violates SC.

To enhance the accuracy of vulnerable source code simi-
larity analysis, Zhu et al. [44] proposed a solution that com-
bines the Simhash algorithm and MD5 matching algorithm.
The authors considered the problem in which the traditional
hash algorithm cannot record the difference between similar
files by generating identical fingerprints with local sensi-
tive hashing. They used the Simhash algorithm to comple-
ment the file-level homology analysis algorithm based on
MD5 matching.

As mentioned previously, automatic static analysis has
some limitations, such as missing checks in the source code.
Yamaguchi et al. [11] introduced a method called Chuckythat
can identify missing checks (for vulnerability discovery) in
the source code automatically based on static analysis to
help to accelerate the manual code review. Their method
includes five major steps: (a) extract sources, sinks, condi-
tions, assignments, and API symbols from a function’s source
code using a robust parser; (b) identify functions in which

a similar context code operates; (c) determine only those
checks associated with a given source or sink; (d) embed a
selected function and its neighbors in a vector space using
the tainted conditions; and (e) perform anomaly detection
for missing checks based on identifying large distances from
the normality model over the functions. They also provided
suggestions for correcting potential fixes.
ii) Vulnerable Code Clone Detection: Jang et al. [41]

proposed a detection system called ReDeBugthat focuses on
detecting unpatched source code flaws from code cloning.
Unpatched code clones refer to buggy codes that are cloned
by programmers but missed or unpatched when patches to
source files are debugged and installed. Compared with pre-
vious detection techniques, ReDeBug does not focus on the
number of detected clones but the scalability across the entire
operating system. ReDeBug performs as a language-agnostic
system to identify sequences of known vulnerable patched
code fragments that are extracted and normalized from the
diff files in the source code file to obtain the unpatched code
clone list.

Li et al. [42] proposed a software vulnerability detection
system by applying a backward trace analysis approach and
symbolic execution method. Their system considers only
vulnerability-related paths to mitigate the path exploration
problem. They implemented this system using backward trac-
ing of sensitive data used in a detected hotspot. They then
used a data flow tree to recover the program’s execution
paths, which helped them to focus only on sensitive related
data. Like Zhang et al.’s study, they also applied PC and SC
mechanisms to verify existing vulnerabilities. They also pro-
posed a software vulnerability discovery mechanism using
code clone verification (CLORIFI) [6]], which can discover
vulnerabilities in real-world programs in a scalable manner.

Kim et al. [43] proposed a scalable approach called
VUDDY for code clone vulnerability detection. Its extreme
scalability is achieved by leveraging function-level granular-
ity and a length-filtering technique to reduce the number of
signature comparisons. Their approach was divided into two
main sections: pre-processing and clone detection [47].
• The pre-processing section includes retrieving functions
from a given program using a robust parser, abstracting
the source code by replacing it with symbols, normaliz-
ing the code body by removing unnecessary parts, and
generating fingerprint dictionaries for the next detection
process.

48162 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

TABLE 1. Comparison of static analysis-based code/clone vulnerability detection.

• The detection section works by comparing the finger-
print dictionary of vulnerabilities with the fingerprint
dictionary of target programs by applying key lookup
and hash lookup algorithms.

Bowman and Huang [45] used software source code
properties to implement a more robust vulnerable code
clone detection system called VGRAPH. Their system aims
to identify vulnerable code modification and all types of

VOLUME 9, 2021 48163

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

clone attacks by comprising the code property relationships
between three graph-based (code property graph) compo-
nents extracted from the contextual code, vulnerable code,
and patched code. They called it a Triplet Match. To eval-
uate their detection technique, Bowman and Huang also
compared VGRAPH with four state-of-the-art vulnerability
detection techniques, that is, FlawFinder, RATS, VUDDY
[43], and ReDeBug [41]], in accordance with the true pos-
itive, false positive, false negative, precision, recall and
F1 values.

Another scenario may lead to missing clones, that is,
the dynamic argumentation of source code functions. Nor-
mally, static code analysis focuses on the static arguments
of source code functions, and then the dynamic arguments
passed to the source code functions are ignored while the
system is running. Mishra and Polychronakis [46] recently
presented a compiler-level defense approach called Saffire
against code clone/reuse attacks. Saffire performs static code
analysis by eliminating the static arguments and restricting
the acceptable dynamic values of arguments (user input,
file address, and system status) during system runtime. This
approach applies a narrow-scope form of data flow integrity
to specialize functions with a restricted interface.

Although static code analysis is efficient in the early
stage of the code clone detection life cycle, there are some
inevitable limitations, such as time consumption, person-
nel training, and vulnerabilities introduced during program
runtime. Goseva-Popstojanova and Perhinschi [48] evaluated
three widely used commercial static code analysis tools to
detect security vulnerabilities based on C/C++ and Java
programs. Their experiment showed that a certain number of
vulnerabilities were missed by all three tools. Furthermore,
they did not provide any assurance of software product secu-
rity and required further manual effort to classify reported
warnings. Hence, dynamic analysis is needed for the late
stages, particularly unit testing.

2) DYNAMIC ANALYSIS
Opposite to static analysis, dynamic analysis is performed
by executing the program with real-time data to detect target
system cloning issues [39]. Dynamic analysis can proceed
on virtual machines, or even real processors, by monitoring
the system’s behavior while the system is running. This type
of analysis method helps to detect vulnerabilities introduced
during the entire system life cycle, particularly after static
code analysis.

A critical role of dynamic analysis is to detect the real-time
vulnerability introduced to avoid missing clones during the
entire system life cycle. It is not easy to provide an explicit
definition of dynamic analysis. Some researchers analyze
application similarity on a code/method/function level, but
we classify this kind of analysis as dynamic analysis after
the implementation phase. In Table 2, we summarize some
dynamic analysis studies for clone attack detection based
on various working environments with corresponding attack
methods, technologies, and evaluations.

a: SENSOR NETWORKS
Sensor networks provide a vulnerable environment for adver-
saries to easily compromise and duplicate sensors, and use
them as weapons to obtain access to the entire network
using legitimate credentials [50]. Parno et al. [51] presented
a detection system to prevent the node replication attack in
a distributed sensor network environment. However, their
study did not mention further attacks that result from cloning
compromised sensors that spread to the entire network.
Choi et al. [49] provided a clone detection scheme called
SETin sensor networks. They modeled a sensor network as
a set of non-overlapping sub-regions, and assigned a unique
identifier to each sensor node. The subset of each node in each
sub-region is exclusive to other nodes. If adversaries cap-
ture, compromise, and duplicate sensor nodes in the network,
the clone attack can be detected because of the intersecting
subsets of the cloned nodes. Xing et al. [50] proposed an
approach for the real-time detection of cloned-sensor attacks
in wireless sensor networks by computing the fingerprint of
each sensor to extract the neighborhood characteristics and
check the validity of the originator’s fingerprint for each
message. Their approach achieved high detection accuracy
based on a low computation and storage cost for node/sensor
cloning scenarios during fingerprint generation and the detec-
tion phase. Furthermore, with no limitation on the number
of cloned sensors, their approach improved on the results of
related studies [49], [51].

b: INTERNET OF THINGS
The rapid development of the IoT has triggeredmany security
issues, including various malicious code injections into IoT
devices. Program developers prefer to use the software clone
method to finish tasks quickly because of the large scale
and range of IoT devices. The consequent clone attacks need
more efficient corresponding detection approaches. To detect
code clones in IoT applications, Tekchandani et al. [53], and
Luo et al. [54] provided good results based on semantic-level
source code analysis; however, their studies were not pri-
marily on cloned vulnerability detection. Sachidananda et al.
[55] proposed a framework to detect various vulnerabilities
located in IoT devices using the static analysis method. Their
approach was efficient in terms of identifying many types of
attacks, such as memory leaks, code injection, buffer over-
flow, and other code-related vulnerabilities. Liu et al. [56]
also proposed a similar vulnerability detection method for
IoT binary code, but not for code clone attack detection in
particular.

Gao et al. [14] presented an approach called IoTSeeker for
cross-platform IoT device vulnerability detection based on
analyzing binary code at the semantic level. They constructed
a labeled semantic flow graph to capture both data flow
and control flow information from binary code. They then
extracted semantic features as numerical vectors and built a
detection neural network model for feature integration and
vulnerability search. Finally, IoTSeeker calculated the cosine
distance between two embedding vectors to identify whether
vulnerable clones exist.

48164 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

TABLE 2. Comparison of dynamic analysis-based software clone attacks detection.

The supply chain provides another platform for introducing
software clone attacks, such as cloned and compromised
RFID tags, which may help attackers to acquire confidential

credentials and authorization information to compromise the
supply chain system. Researchers [57]–[60] have proposed
several clone detection approaches for an RFID-embedded

VOLUME 9, 2021 48165

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

supply chain system, and these approaches can be applied
to vulnerable RFID tag clone detection with the appropriate
improvement.

c: ANDROID APPLICATIONS
The Android operating system has become more popular
and widely used, and more security concerns have attracted
researchers’ attention. Some researchers have detected
source code similarities for Android applications, includ-
ing Type-1, Type-2, and Type-3 clones, and also injected
vulnerabilities into applications during software runtime.
Crussell et al. [25] presented a cloning attack detection
tool called DNADroid, Chen et al. [26] presented a sim-
ilarity/clone detection approach called the centroid, both
which are based on comparing program dependency graphs
between methods in candidate applications. Crussell et al.’s
study focused only on identifying similar clones, thereby
leading to a low false positive rate and missing clones.
Chen et al.’s approach is more accurate, has the explicit
purpose of improving the detection system’s accuracy and
scalability, and has a greater focus on cross-platform appli-
cation clone detection. Akram et al. [27] proposed a scalable
clone detection approach calledDroidCC based on excluding
third-party libraries, normalization, and feature extraction,
and evaluated their approach on a real-time dataset.

d: ETHEREUM SMART CONTRACT
With the rapid development of blockchain’s distribution
architecture, the Ethereum smart contract provides an envi-
ronment for malicious code clones by injecting a piece of
contract code and propagating it to other blocks. He et al.
[52] focused on the ecosystem of the Ethereum smart con-
tract to characterize vulnerable code clones using the fuzzy
hashing technique to calculate the edit distance between
two fingerprints. Their approach compares the similarity
between generated fingerprints of user-created contract code
and contract-created contract code during Ethereum virtual
machine runtime.

e: CRYPTOCURRENCY
Cryptocurrency is another research topic of great interest
because of its novel security protection structure and wide
use in both academic research and industrial applications.
Hum et al. [15] proposed an approach called CoinWatch for
detecting code/system vulnerabilities in cryptocurrencies on
the basis of code clone detection technology. They provided
this type of approach because of the rapidly increasing use
of cryptocurrencies (e.g., Bitcoin) and their publicly readable
code structures [61], [62]. If one code fragment is vulnerable
to cyberattacks, the vulnerability is propagated into other
cloned code fragments or even cryptocurrencies.

CoinWatch has four main phases for vulnerabilities
detection:
• CVE parsing & linking it with commits: The first
phase involves CVE parsing and linking the result with
possible commits. A target CVE is provided at input
together with data publicly obtainable from its structured

details [63]. After selecting a target CVE, CoinWatch
performs code evolution analysis of the parent project to
obtain bug fixing and bug introducing commits.

• Identification of vulnerable code: The bug introduc-
ing and fixing commits are then manually annotated to
minimize the code responsible for the vulnerability and
improve the program.

• Initial filtering: This phase can be regarded as
pre-processing before moving to the detection process.
To narrow down the search space, which means to work
more efficiently, CoinWatch filtered the list of mon-
itored projects on the basis of the fork’s date before
running the clone detector.

• Detection process: The last phase is the core part of
CoinWatch: the clone detector. This part reports the
cloned projects that are likely to be affected by the vul-
nerability given the filtered source code of themonitored
cryptocurrencies.

Authors evaluated their approach by answering three
research questions about clone prevalence in cryptocurren-
cies, the accuracy of CoinWatch, and the comparison of true
positives with false positives in the vulnerability detection
report.

3) DISCUSSION
Malicious people typically target web applications as an
easy and flexible environment for code and script injection.
However, few researchers have discussed this related clone
problem. Vineetha and Krishna [65] researched this topic for
code clone vulnerability analysis and detection in web appli-
cations by analyzing the web page structure and comparing
the similarities. They did not propose a powerful detection
system, and further evaluation for their approach is needed.
Agrawal et al. [66] presented a detection framework to iden-
tify web application clones based on the source code level.
They presented their framework following a detailed process
introduction involving executing and monitoring, classify-
ing and controlling, and refining and managing code. Many
security practitioners have adapted this framework; however,
the framework is limited to the source code level, which is
not flexible for dynamic detection.

Following recent technological improvements, static or
dynamic analysis per se cannot satisfy the requirement to
prevent various increasing cyberattacks. For example, it is
difficult and will take a longer time to trace back a piece
of vulnerable code to its exact location through dynamic
analysis only. Static analysis cannot obtain access to some
types of source code files if the source code is not available
or the executable file has been packed by packer or protector
tools. Hybrid and advanced analysis methods, such as binary
code-level detection methods, are necessary for more effi-
cient code clone detection and source code fixing.

B. REPRESENTATIONS
Software clone detection techniques can be classified on the
basis of different representations as five types: text-based,

48166 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

TABLE 3. Comparison of detection-techniques-based code clone vulnerability detection.

token-based, AST-based, program data graph-based, and
metric-based. In this section, we provide a review of secu-
rity analysis studies on these clone detection techniques.
In Table 3, we summarize several studies by comparing
their representations, purpose, possible detected clone types,
applied techniques, and evaluations.

1) TEXT-BASED
Text-based code clone detection technology simplifies the
source code to a sequence of characters by removing unnec-
essary parts, such as comments, whitespace, and new lines,
from the source code [72]–[74]. It compares the similarity

between these character sequences individually, and then
returns the matching results [28]. Text-based code clone
detection can be used to detect Type-1 (exact clones), Type-2
(renamed clones), and Type-3 (near-miss clones) code clones,
which are based on the textual level.

Karademir et al. [36] and Alalfi et al. [68] both pre-
sented approaches for detecting vulnerable near-miss clones
(Type-3) based on a text-based technique. Karademir et al.’s
approach identifies malware from JavaScript in Adobe
Acrobat (PDF) files. It compares the similarity between
collected PDF files that contain JavaScript malware and
clear JavaScript. Their approach uses the NiCad clone

VOLUME 9, 2021 48167

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

FIGURE 3. SQL Injection and XSS Code Samples and corresponding Abstract Syntax Tree and Derived Template [64]. This code snippet (a) contains an
SQL Injection vulnerability occurs on line 6 as the variable $title will be posted in an SQL query without first security processing. Line 12 and 13 can
result in the XSS attack by inserting database rows into the document directly. Part (b) describes an example of an abstract syntax tree generated
from the SQL Injection vulnerability of part (a), in which leaf nodes correspond to identifiers (variables), API symbols or literals. Part (c) represents a
derived template from the abstract syntax tree by replacing all variables and literals using wildcard symbols and introducing edges between nodes to
represent the same variable.

detector, which is particularly for near-miss clone detec-
tion. Alalfi et al.’s approach identifies near-miss interac-
tion clones in reverse-engineered UML sequence diagrams.
Their approach works at the XMI level. They also used the
NiCad clone detector to help to process the detection in the
reverse-engineered behavioral model.

2) TOKEN-BASED
Token-based code clone detection technology converts the
source code into an intermediate representation, that is,
a token sequence, using a certain token conversion tool
before the detection phase [1], [28]. One converted token
sequence can be compared with another converted token
sequence under a matching rule to obtain the matching
results for further processing. Representative token-based
techniques are CCFinder [23] and CP-Miner [75]. Com-
pared with text-based techniques, a token-based technique
is more robust against code changes, such as formatting and
spacing [10].

Farhadi et al. [67] proposed a scalable code clone detection
approach called ScalClone for malware analysis on the basis
of their previous approach, which was for an assemble code
clone detection method [12], [76]. Their approach discov-
ers both exact and inexact clones at different token nor-
malization levels using a large-scale assemble code search.
Akram et al. [70] proposed a lightweight and scalable sys-
tem called VCIPR for vulnerability detection in unpatched
source code based on token normalization representation at
function-level granularity. They built a fingerprint index of
the top critical CVE’s source code to detect unpatched code
fragments in common open-source software.

3) TREE-BASED
Tree-based code clone detection technology also refers to
AST-based technology [1]. In the code parsing process,
the syntax tree-based method converts the source code into
an AST, and the representation is the tree node before the
matching and detecting phases [28]. The matching result is
returned by comparing two converted syntax trees.

In the code clone area, a source program can be parsed
into a parse tree or AST that represents the source code
[10]. Subtrees can be compared through exact or close
subtree matches to detect whether any code clones exist
[77]–[79].

Unruh et al. [64] proposed an approach to semi-
automatically detect vulnerable code snippets starting from
certain web tutorials and QAwebsites, which aim at assisting
programmers’ coding tasks. They applied AST-based graph
traversals to verify similarities in analyzed code snippets
that correspond to the original vulnerability. Unruh et al.
provided an example of an identified vulnerable code snippet
taken from a popular PHP tutorial and its corresponding
AST structure, and derived the template shown in Fig. 3.
Shi et al. [71] proposed a two-phase framework (training
phase and detection phase) to identify vulnerable source code
clones in operating systems. The approach learns correla-
tions on the basis of AST normalization at function-level
granularity.

4) PDG-BASED
PDG-based detection technology refers to converting source
code into a control flow and data flow graph, and then return-
ing the matching result by comparing the similarities between
the sub-graphs [28].

For Type-4 (semantic clones) code clones, the PDG-based
code clone detection method is efficient in terms of detecting
source code vulnerabilities because it preserves the semantic
features of the program [28]. Several research studies have
been conducted on the basis of this type of graph cooperation
method for vulnerability detection.

The final subsection (dynamic analysis) introduces some
studies that used program data graph abstraction for fea-
ture extraction. For instance, Crussell et al. [25] proposed
DNADroid, Chen et al. [26] proposed the centroid, both
for detecting Android application cloning vulnerabilities.
Their approaches are capable of identifying Type-4 (seman-
tic clones) code clones in a dynamic software operating
environment.

48168 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

5) METRIC-BASED
Themetric-based code clone detectionmethod parses the pro-
gram by dividing the source code into several small code seg-
ments, and then calculates the difference value among these
code segments and determines whether the calculated values
are the same (a clone) [28]. Mayrand et al. [80] discussed
using metric extraction techniques to automatically detect
function cloning in a software system. Their study focused
on analyzing and comparing control graph metrics and data
flow graph metrics on the basis of a previous AST represen-
tation. Few researchers have primarily studied, or specially
mentioned, applying metric-based detection techniques for
vulnerable code clone detection. Therefore, a more in-depth
survey is needed regarding this aspect.

6) DISCUSSION
As illustrated above, text, token, and AST-based detection
techniques can identify textual-based clone attacks, and the
PDG-based detection technique can detect semantic-based
clone attacks. However, (i) few researchers have aimed to
present a hybrid detection approach that is efficient in terms
of detecting both textual and semantic-based code/software
clone attacks; and (ii) it is not easy and obvious to select
a normalized source code representation while designing a
detection approach because there are no selection criteria.

C. BINARY-LEVEL DETECTION
When reviewing previous studies, we found that many
researchers focused on analyzing binary code-based similar-
ity comparison. The reason for binary-based analysis is that
software source code cannot be acquired at any time. Because
of some privacy protection reasons, researchers have to find
another way to obtain software or application code, or func-
tion information. Another reason might be the huge task
load of pre-processing, filtering, and feature extraction for
source code information. Khoo et al. [81] provided a search
system that identifies binary code by comprising instruction
mnemonics, control flow sub-graphs [89]], and data constants
extracted from binary code fragments. Lee et al. [83] intro-
duced a method for identifying software vulnerabilities from
assembly code using a deep learning mechanism. Hu et al.
[82] presented a semantics-based approach to identify binary
code clones.

Table 4 summarizes several binary-level-based code clone
detection techniques following a set of specific criteria.
As introduced in Table 4, some researchers have proposed
efficient binary-code reuse analysis and detection methods.
For instance, Frahadi et al. [12] introduced a method to
identify malicious cloned code binaries based on the token
normalization technique; Xue et al. [85] proposed a frame-
work to detect vulnerable code clones by slicing binary codes
and identifying domain-specific code fragments; Ishiura
[87] proposed detecting the loss of guards by comparing
binary-code pairs with or without problematic optimization;
Ding [88] proposed learning lexical semantic relationships
and the vector representation directly from plain assemble

code instead of manually specifying it from prior knowl-
edge; Liu et al. [56] proposed a long short-term memory
(LSTM)-based approach to detect binary-level software
vulnerabilities automatically.

However, binary-level analysis still faces several chal-
lenges. For instance, the limitation of accurately determin-
ing all valid control flow paths from the source code at
system runtime and performing accurate static data flow
analysis to identify argument values [46]. Mishra and Poly-
chronakis [90] proposed Shredder for statically analyzing
Windows applications at the binary level using backward
dataflow analysis to derive expected argument values and
generate application-wide policies for critical system func-
tions. To address limitations in binary-level analysis, after
Shredder, they proposed Saffire (section III). Hence, binary
code-based clone attack detection is an important future
research direction.

IV. FUTURE RESEARCH DIRECTION
For security analysis, several important topics on software
clone detection remain, which we discuss here. Following the
discussion in Section III, we summarize a potential research
direction, which is an integration of intelligent detection tech-
niques, code clone detection for IoT devices and dynamic
detection mechanisms.

Some researchers have provided efficient results, for exam-
ple, Gao et al. [14], and Liu et al. [56] proposed an in-depth
learning-based approach for binary vulnerability detection
at the semantic level for IoT devices. They trained a neural
network model with numerical vectors transformed by the
semantic features of the captured data flow and control flow
information. We discuss three aspects of this type of research
topic; however, we believe that there is a wider research space
for this topic.

A. INTELLIGENT DETECTION
FromTable 1, we found that some detection approaches based
on the static analysis method partially relied on manually
analyzing source code or generating representations, which
typically takes time and effort, and is not efficient for solving
the big-code problem [91]. Many researchers are moving
toward applying more intelligent technology, such as deep
learning and neural network models, to the research area of
vulnerable source code detection [92], [93].

Kim et al. [94] used obfuscation techniques for obfus-
cated macro code detection based on training five machine
learning classifiers and extracting 15 static discriminant fea-
tures. Wang et al. [95] researched the patch level for "0-day"
vulnerability detection by automatically identifying secret
security patches in open-source software. They trained the
identification model with extracted features from more than
4,700 security patches from a database to detect similar
patches or vulnerabilities.

Li et al. [13], [96], [97] proposed deep learning-based
approaches (VulPecker, VulDeePecker, SySeVR) for software
vulnerability detection. Their approaches were aimed at

VOLUME 9, 2021 48169

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

TABLE 4. Summary of binary-level code clone detection.

automatically detecting vulnerable source code fragments by
training a BLSTM neural network. They compared similari-
ties between source code fragments and target vulnerabilities
by generating code gadgets and transforming these code
gadgets into vector representations, which were used as the
neural network input. Their approach performedwell in terms

of finding vulnerabilities compared with similar systems, and
was able to findmany types of vulnerabilities simultaneously.

Although the series of VulDeePecker and Kim’s study
only focused on source code vulnerability detection based
on similarity comparison, it was an efficient and applica-
ble method for vulnerable code clone detection. The clone

48170 VOLUME 9, 2021

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

detection system can be made more intelligent and automated
by training it using the original vulnerable code fragments
on the basis of deep neural network models and appropriate
feature selection.

B. 5G-IoT DETECTION
The IoT network provides an environment for attackers to
inject malicious code easily. IoT devices, particularly small
devices, such as baby monitors, can be attacked easily by
malicious code cloning without complicated or extensive
code. The cloned vulnerability can spread in a moment
through a network of a vast number of devices.

The global data volume is increasing, which makes 5G
technology indispensable. For existing technologies, it is
more challenging to meet the requirements of the rapidly
developing IoT world. Next-generation technology, that is,
5G, will provide IoT devices with unlimited connectivity
in the future internet world. Hence, code cloning is a pri-
mary challenge for 5G-IoT technology. Ullah et al. [98]
proposed an approach to identify code clones in specific 5G-
IoT applications using a control flow graph and deep learning
model.

C. DYNAMIC DETECTION
From Table 2, we conclude that real-time clone attack detec-
tion is another possible research topic that needs further atten-
tion. Particularly for mobile applications and web environ-
ments, attackers can intrude on a running application at any
time by executingmalicious software clone behavior and con-
trolling compromised applications. Applying real-time detec-
tion techniques to platforms at the application level is very
necessary. As previously discussed, researchers have pro-
posed code clone vulnerability detection approaches for IoT
devices [14], [56], [99], and RFID-enabled supply chain sys-
tems [57]–[60]. Thus, a real-time cloning detection approach
is needed to protect systems more efficiently.

V. CONCLUSION
In this paper, we provided a comprehensive review of previ-
ous studies on software/code clone detection from the secu-
rity perspective.We compared and summarized several detec-
tion approaches based on static code analysis and dynamic
analysis, respectively. Additionally, we outlined different
representation-based studies and provided some meaningful
information to researchers, such as possible detected clone
types, the research purpose, and applied techniques or tools.
We also discussed vulnerable code clone detection issues at
the binary code level. Then we proposed a future research
direction, including three potential topics, intelligent detec-
tion, 5G-IoT-based clone detection and real-time detection,
which were generated from the literature review.

This survey provides a summary of previous vulnerable
code clone detection-related results to help researchers to
acquire basic knowledge of this topic, and select the correct
techniques or tools while identifying potential research issues
and future directions.

ACKNOWLEDGMENT
The authors thank Dr. Yujie Gu and all the reviewers
for their helpful advice on this article. They also thank
Dr. Maxine Garcia from Edanz Group (https://en-author-
services.edanz.com/ac) for editing a draft of this article.

REFERENCES
[1] A. Sheneamer and J. Kalita, ‘‘A survey of software clone detection tech-

niques,’’ Int. J. Comput. Appl., vol. 137, no. 10, pp. 1–21, Mar. 2016.
[2] D. Rattan, R. Bhatia, and M. Singh, ‘‘Software clone detection: A system-

atic review,’’ Inf. Softw. Technol., vol. 55, no. 7, pp. 1165–1199, Jul. 2013.
[3] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool,

‘‘A systematic review on code clone detection,’’ IEEE Access, vol. 7,
pp. 86121–86144, 2019.

[4] S. Ducasse, M. Rieger, and S. Demeyer, ‘‘A language independent
approach for detecting duplicated code,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance (ICSM), Software Maintenance Bus. Change, Aug. 1999,
pp. 109–118.

[5] R. Komondoor and S. Horwitz, ‘‘Using slicing to identify duplication in
source code,’’ in Proc. Int. Static Anal. Symp. Berlin, Germany: Springer,
2001, pp. 40–56.

[6] H. Li, H. Kwon, J. Kwon, and H. Lee, ‘‘CLORIFI: Software vulnerability
discovery using code clone verification,’’ Concurrency Comput., Pract.
Exper., vol. 28, no. 6, pp. 1900–1917, Apr. 2016.

[7] M. R. Islam and M. F. Zibran, ‘‘A comparative study on vulnerabilities in
categories of clones and non-cloned code,’’ in Proc. IEEE 23rd Int. Conf.
Softw. Anal., Evol., Reeng. (SANER), vol. 3, Mar. 2016, pp. 8–14.

[8] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, ‘‘Do code
clones matter?’’ in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009,
pp. 485–495.

[9] M. F. Zibran and C. K. Roy, ‘‘Conflict-aware optimal scheduling of code
clone refactoring: A constraint programming approach,’’ in Proc. IEEE
19th Int. Conf. Program Comprehension, Jun. 2011, pp. 266–269.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, ‘‘DECKARD: Scalable and
accurate tree-based detection of code clones,’’ in Proc. 29th Int. Conf.
Softw. Eng. (ICSE), May 2007, pp. 96–105.

[11] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, ‘‘Chucky:
Exposing missing checks in source code for vulnerability discovery,’’ in
Proc. CCS, 2013, pp. 499–510.

[12] M. R. Farhadi, B. C. M. Fung, P. Charland, and M. Debbabi, ‘‘BinClone:
Detecting code clones in malware,’’ in Proc. 8th Int. Conf. Softw. Secur.
Rel., Jun. 2014, pp. 78–87.

[13] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and
Y. Zhong, ‘‘VulDeePecker: A deep learning-based system for vul-
nerability detection,’’ 2018, arXiv:1801.01681. [Online]. Available:
http://arxiv.org/abs/1801.01681

[14] J. Gao, Y. Jiang, Z. Liu, X. Yang, C. Wang, X. Jiao, Z. Yang, and J. Sun,
‘‘Semantic learning and emulation based cross-platform binary vulnera-
bility seeker,’’ IEEE Trans. Softw. Eng., early access, Dec. 2, 2020, doi:
10.1109/TSE.2019.2956932.

[15] Q. Hum, W. J. Tan, S. Y. Tey, L. Lenus, I. Homoliak, Y. Lin, and
J. Sun, ‘‘CoinWatch: A clone-based approach for detecting vulnerabili-
ties in cryptocurrencies,’’ 2020, arXiv:2006.10280. [Online]. Available:
http://arxiv.org/abs/2006.10280

[16] N. Saini, S. Singh, and S. Suman, ‘‘Code clones: Detection and manage-
ment,’’ Procedia Comput. Sci., vol. 132, pp. 718–727, Jan. 2018.

[17] S. Wagner, Software Product Quality Control. Berlin, Germany: Springer,
2013.

[18] M. Kim, L. Bergman, T. Lau, and D. Notkin, ‘‘An ethnographic study
of copy and paste programming practices in OOPL,’’ in Proc. Int. Symp.
Empirical Softw. Eng. (ISESE), 2004, pp. 83–92.

[19] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, ‘‘CP-miner: Finding copy-paste
and related bugs in large-scale software code,’’ IEEE Trans. Softw. Eng.,
vol. 32, no. 3, pp. 176–192, Mar. 2006.

[20] L. Jiang, Z. Su, and E. Chiu, ‘‘Context-based detection of clone-related
bugs,’’ in Proc. 6th Joint Meeting Eur. Softw. Eng. Conf. (ACM SIGSOFT),
Symp. Found. Softw. Eng. (ESEC-FSE), 2007, pp. 55–64.

[21] C. J. Kapser and M. W. Godfrey, ‘‘Supporting the analysis of clones in
software systems,’’ J. Softw. Maintenance Evol., Res. Pract., vol. 18, no. 2,
pp. 61–82, 2006.

[22] B. S. Baker, ‘‘On finding duplication and near-duplication in large software
systems,’’ in Proc. 2nd Work. Conf. Reverse Eng., 1995, pp. 86–95.

VOLUME 9, 2021 48171

http://dx.doi.org/10.1109/TSE.2019.2956932

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

[23] T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,’’
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[24] C. K. Roy and J. R. Cordy, ‘‘NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normaliza-
tion,’’ in Proc. 16th IEEE Int. Conf. Program Comprehension, Jun. 2008,
pp. 172–181.

[25] J. Crussell, C. Gibler, and H. Chen, ‘‘Attack of the clones: Detecting cloned
applications on Android markets,’’ in Proc. Eur. Symp. Res. Comput. Secur.
Berlin, Germany: Springer, 2012, pp. 37–54.

[26] K. Chen, P. Liu, and Y. Zhang, ‘‘Achieving accuracy and scalability simul-
taneously in detecting application clones on Android markets,’’ in Proc.
36th Int. Conf. Softw. Eng., May 2014, pp. 175–186.

[27] J. Akram, Z. Shi, M. Mumtaz, and P. Luo, ‘‘DroidCC: A scalable clone
detection approach for Android applications to detect similarity at source
code level,’’ inProc. IEEE 42nd Annu. Comput. Softw. Appl. Conf. (COMP-
SAC), vol. 1, Jul. 2018, pp. 100–105.

[28] H. Min and Z. L. Ping, ‘‘Survey on software clone detection research,’’
in Proc. 3rd Int. Conf. Manage. Eng., Softw. Eng. Service Sci. (ICMSS).
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 9–16, doi: 10.1145/3312662.3312707.

[29] A. V. Aho, R. Sethi, and J. D. Ullman, ‘‘Compilers, principles, techniques,’’
Addison Wesley, vol. 7, no. 8, p. 9, 1986.

[30] C. K. Roy and J. R. Cordy, ‘‘A survey on software clone detection
research,’’ Queens School Comput., vol. 541, no. 115, pp. 64–68, 2007.

[31] C. K. Roy and J. R. Cordy, ‘‘A mutation/injection-based automatic frame-
work for evaluating code clone detection tools,’’ in Proc. Int. Conf. Softw.
Test., Verification, Validation Workshops, 2009, pp. 157–166.

[32] M. Gabel, L. Jiang, and Z. Su, ‘‘Scalable detection of semantic clones,’’ in
Proc. 30th Int. Conf. Softw. Eng. (ICSE), 2008, pp. 321–330.

[33] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, ‘‘The development
of a software clone detector,’’ Int. J. Appl. Softw. Technol., vol. 1, nos. 3–4,
pp. 219–236, 1995.

[34] C. K. Roy, J. R. Cordy, and R. Koschke, ‘‘Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,’’ Sci.
Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.

[35] M. R. Islam, M. F. Zibran, and A. Nagpal, ‘‘Security vulnerabilities in
categories of clones and non-cloned code: An empirical study,’’ in Proc.
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Nov. 2017,
pp. 20–29.

[36] S. Karademir, T. Dean, and S. Leblanc, ‘‘Using clone detection to find
malware in acrobat files,’’ in Proc. Conf. Center Adv. Stud. Collaborative
Res. (CASCON). New York, NY, USA: IBM Corp., 2013, pp. 70–80.

[37] J. R. Cordy and C. K. Roy, ‘‘The NiCad clone detector,’’ in Proc. IEEE
19th Int. Conf. Program Comprehension, Jun. 2011, pp. 219–220.

[38] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, ‘‘The attack
of the clones: A study of the impact of shared code on vulnerability
patching,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 692–708.

[39] M. A. Bari and S. Ahamad, ‘‘Code cloning: The analysis, detection and
removal,’’ Int. J. Comput. Appl., vol. 20, no. 7, pp. 34–38, Apr. 2011.

[40] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, and W. Wang,
‘‘Detecting vulnerabilities in C programs using trace-based testing,’’ in
Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2010,
pp. 241–250.

[41] J. Jang, A. Agrawal, and D. Brumley, ‘‘ReDeBug: Finding unpatched code
clones in entire OS distributions,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2012, pp. 48–62.

[42] H. Li, T. Kim, M. Bat-Erdene, and H. Lee, ‘‘Software vulnerability detec-
tion using backward trace analysis and symbolic execution,’’ in Proc. Int.
Conf. Availability, Rel. Secur., Sep. 2013, pp. 446–454.

[43] S. Kim, S. Woo, H. Lee, and H. Oh, ‘‘VUDDY: A scalable approach for
vulnerable code clone discovery,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2017, pp. 595–614.

[44] C. Zhu, Y. Tang, Q. Wang, and M. Li, ‘‘Enhancing code similarity analysis
for effective vulnerability detection,’’ in Proc. 2nd Int. Conf. Comput. Sci.
Softw. Eng. (CSSE), 2019, pp. 153–158.

[45] B. Bowman and H. H. Huang, ‘‘VGRAPH: A robust vulnerable code clone
detection system using code property triplets,’’ in Proc. 5th IEEE Eur.
Symp. Secur. Privacy (EuroS P), Sep. 2020, pp. 53–69.

[46] S. Mishra and M. Polychronakis, ‘‘Saffire: Context-sensitive function spe-
cialization against code reuse attacks,’’ in Proc. 5th IEEE Eur. Symp. Secur.
Privacy (EuroS P), Sep. 2020, pp. 17–33.

[47] S. Kim and H. Lee, ‘‘Software systems at risk: An empirical study of
cloned vulnerabilities in practice,’’ Comput. Secur., vol. 77, pp. 720–736,
Aug. 2018.

[48] K. Goseva-Popstojanova and A. Perhinschi, ‘‘On the capability of static
code analysis to detect security vulnerabilities,’’ Inf. Softw. Technol.,
vol. 68, pp. 18–33, Dec. 2015.

[49] H. Choi, S. Zhu, and T. F. L. Porta, ‘‘SET: Detecting node clones in
sensor networks,’’ in Proc. 3rd Int. Conf. Secur. Privacy Commun. Netw.
Workshops (SecureComm), 2007, pp. 341–350.

[50] K. Xing, F. Liu, X. Cheng, and D. H. C. Du, ‘‘Real-time detection of
clone attacks in wireless sensor networks,’’ in Proc. 28th Int. Conf. Distrib.
Comput. Syst., Jun. 2008, pp. 3–10.

[51] B. Parno, A. Perrig, and V. Gligor, ‘‘Distributed detection of node replica-
tion attacks in sensor networks,’’ in Proc. IEEE Symp. Secur. Privacy (S
P), May 2005, pp. 49–63.

[52] N. He, L.Wu, H.Wang, Y. Guo, and X. Jiang, ‘‘Characterizing code clones
in the ethereum smart contract ecosystem,’’ 2019, arXiv:1905.00272.
[Online]. Available: http://arxiv.org/abs/1905.00272

[53] R. Tekchandani, R. Bhatia, and M. Singh, ‘‘Semantic code clone detection
for Internet of Things applications using reaching definition and liveness
analysis,’’ J. Supercomput., vol. 74, no. 9, p. 4199–4226, Sep. 2018, doi:
10.1007/s11227-016-1832-6.

[54] Z. Luo, B. Wang, Y. Tang, and W. Xie, ‘‘Semantic-based representation
binary clone detection for cross-architectures in the Internet of Things,’’
Appl. Sci., vol. 9, no. 16, p. 3283, Aug. 2019.

[55] V. Sachidananda, S. Bhairav, and Y. Elovici, ‘‘OVER: Overhauling vulner-
ability detection for IoT through an adaptable and automated static analysis
framework,’’ in Proc. 35th Annu. ACM Symp. Appl. Comput., Mar. 2020,
pp. 729–738.

[56] S. Liu, M. Dibaei, Y. Tai, C. Chen, J. Zhang, and Y. Xiang, ‘‘Cyber
vulnerability intelligence for Internet of Things binary,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 3, pp. 2154–2163, Mar. 2020.

[57] J. Shi, S. M. Kywe, and Y. Li, ‘‘Batch clone detection in RFID-enabled
supply chain,’’ in Proc. IEEE Int. Conf. RFID (IEEE RFID), Apr. 2014,
pp. 118–125.

[58] J. Huang, X. Li, C.-C. Xing, W. Wang, K. Hua, and S. Guo, ‘‘DTD:
A novel double-track approach to clone detection for RFID-enabled supply
chains,’’ IEEE Trans. Emerg. Topics Comput., vol. 5, no. 1, pp. 134–140,
Jan. 2017.

[59] H. Maleki, R. Rahaeimehr, and M. van Dijk, ‘‘SoK: RFID-based clone
detection mechanisms for supply chains,’’ in Proc. Workshop Attacks
Solutions Hardw. Secur., Nov. 2017, pp. 33–41.

[60] H. Kamaludin, H. Mahdin, and J. H. Abawajy, ‘‘Clone tag detection
in distributed RFID systems,’’ PLoS ONE, vol. 13, no. 3, Mar. 2018,
Art. no. e0193951.

[61] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E.
W. Felten, ‘‘SoK: Research perspectives and challenges for bitcoin and
cryptocurrencies,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015,
pp. 104–121.

[62] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, ‘‘A survey on security and
privacy issues of bitcoin,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3416–3452, May 2018.

[63] Common Vulnerabilities and Exposures (CVE0), M. Corporation, USA,
2020.

[64] T. Unruh, B. Shastry, M. Skoruppa, F. Maggi, K. Rieck, J.-P. Seifert,
and F. Yamaguchi, ‘‘Leveraging flawed tutorials for seeding large-scale
Web vulnerability discovery,’’ in Proc. 11th USENIX Workshop Offensive
Technol. (WOOT), 2017, pp. 1–12.

[65] K. Vineetha and N. S. Krishna, ‘‘Efficient code clone analysis to detect
vulnerability in dynamic Web applications,’’ Int. J. Comput. Sci. Eng.,
vol. 4, no. 11, pp. 57–60, Nov. 2016.

[66] A. Agrawal, M. Alenezi, R. Kumar, and R. A. Khan, ‘‘A source code
perspective framework to produce secure Web applications,’’ Comput.
Fraud Secur., vol. 2019, no. 10, pp. 11–18, Oct. 2019.

[67] M. R. Farhadi, B. C. M. Fung, Y. B. Fung, P. Charland, S. Preda, and
M. Debbabi, ‘‘Scalable code clone search for malware analysis,’’ Digit.
Invest., vol. 15, pp. 46–60, Dec. 2015.

[68] M.H.Alalfi, E. P. Antony, and J. R. Cordy, ‘‘An approach to clone detection
in sequence diagrams and its application to security analysis,’’ Softw. Syst.
Model., vol. 17, no. 4, pp. 1287–1309, Oct. 2018.

[69] M. H. Alalfi, J. R. Cordy, and T. R. Dean, ‘‘Automated verification of
role-based access control security models recovered from dynamic Web
applications,’’ in Proc. 14th IEEE Int. Symp. Web Syst. Evol. (WSE),
Sep. 2012, pp. 1–10.

[70] J. Akram, L. Qi, and P. Luo, ‘‘VCIPR: Vulnerable code is identifiable when
a patch is released (Hacker’s Perspective),’’ inProc. 12th IEEEConf. Softw.
Test., Validation Verification (ICST), Apr. 2019, pp. 402–413.

48172 VOLUME 9, 2021

http://dx.doi.org/10.1145/3312662.3312707
http://dx.doi.org/10.1007/s11227-016-1832-6

H. Zhang, K. Sakurai: Survey of Software Clone Detection From Security Perspective

[71] H. Shi, R.Wang, Y. Fu, Y. Jiang, J. Dong, K. Tang, and J. Sun, ‘‘Vulnerable
code clone detection for operating system through correlation-induced
learning,’’ IEEE Trans. Ind. Informat., vol. 15, no. 12, pp. 6551–6559,
Dec. 2019.

[72] S. Ducasse, O. Nierstrasz, and M. Rieger, ‘‘On the effectiveness of clone
detection by string matching,’’ J. Softw. Maintenance Evol., Res. Pract.,
vol. 18, no. 1, pp. 37–58, 2006.

[73] J. H. Johnson, ‘‘Substring matching for clone detection and change track-
ing,’’ in Proc. ICSM, vol. 94, 1994, pp. 120–126.

[74] A. Marcus and J. I. Maletic, ‘‘Identification of high-level concept clones in
source code,’’ in Proc. 16th Annu. Int. Conf. Automated Softw. Eng. (ASE),
2001, pp. 107–114.

[75] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, ‘‘CP-Miner: A tool for finding
copy-paste and related bugs in operating system code,’’ in Proc. OSDI,
2004, vol. 4, no. 19, pp. 289–302.

[76] M. R. Farhadi, ‘‘Assembly code clone detection for malware binaries,’’
Ph.D. dissertation, School Eng. Comput. Sci., Concordia Univ., Montreal,
QC, Canada, 2013.

[77] I. D. Baxter, A. Yahin, L.Moura,M. Sant’Anna, and L. Bier, ‘‘Clone detec-
tion using abstract syntax trees,’’ in Proc. Int. Conf. Softw. Maintenance,
1998, pp. 368–377.

[78] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, ‘‘Clone detection in source
code by frequent itemset techniques,’’ in Proc. 4th IEEE Int. Workshop
Source Code Anal. Manipulation, Sep. 2004, pp. 128–135.

[79] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein,
‘‘Pattern matching for clone and concept detection,’’ Automated Softw.
Eng., vol. 3, nos. 1–2, pp. 77–108, Jun. 1996.

[80] J. Mayrand, C. Leblanc, and E. Merlo, ‘‘Experiment on the automatic
detection of function clones in a software system using metrics,’’ in Proc.
ICSM, 1996, p. 244.

[81] W.M. Khoo, A.Mycroft, and R. Anderson, ‘‘Rendezvous: A search engine
for binary code,’’ in Proc. 10th Work. Conf. Mining Softw. Repositories
(MSR), May 2013, pp. 329–338.

[82] Y. Hu, Y. Zhang, J. Li, and D. Gu, ‘‘Binary code clone detection across
architectures and compiling configurations,’’ in Proc. IEEE/ACM 25th Int.
Conf. Program Comprehension (ICPC), May 2017, pp. 88–98.

[83] Y. J. Lee, S.-H. Choi, C. Kim, S.-H. Lim, andK.-W. Park, ‘‘Learning binary
code with deep learning to detect software weakness,’’ in Proc. KSII 9th
Int. Conf. Internet (ICONI) Symp., 2017, pp. 1–5.

[84] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, ‘‘Detecting
code clones in binary executables,’’ in Proc. 18th Int. Symp. Softw. Test.
Anal. (ISSTA), 2009, pp. 117–128.

[85] H. Xue, G. Venkataramani, and T. Lan, ‘‘Clone-slicer: Detecting domain
specific binary code clones through program slicing,’’ in Proc. Work-
shop Forming Ecosystem Around Softw. Transformation (FEAST), 2018,
pp. 27–33.

[86] H. Xue, G. Venkataramani, and T. Lan, ‘‘Clone-hunter: Accelerated
bound checks elimination via binary code clone detection,’’ in Proc. 2nd
ACM SIGPLAN Int. Workshop Mach. Learn. Program. Lang., Jun. 2018,
pp. 11–19.

[87] Y. A. N. Ishiura, ‘‘Detection of vulnerability guard elimination by compiler
optimization based on binary code comparison,’’ in Proc. 22nd Workshop
Synth. Syst. Integr. Mixed Inf. Technol., Japan, 2019.

[88] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

[89] G. Erdélyi and E. V. Carrera, ‘‘Digital genome mapping: Advanced binary
malware analysis,’’ in Proc. Virus Bull. Conf., Chicago, IL, USA, 2004.

[90] S. Mishra and M. Polychronakis, ‘‘Shredder: Breaking exploits through
API specialization,’’ in Proc. 34th Annu. Comput. Secur. Appl. Conf.,
Dec. 2018, pp. 1–16.

[91] J. Akram, Z. Shi, M. Mumtaz, and P. Luo, ‘‘DCCD: An efficient and
scalable distributed code clone detection technique for big code,’’ in Proc.
SEKE, Jul. 2018, pp. 353–354.

[92] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, ‘‘Automated vulnerability detection in
source code using deep representation learning,’’ in Proc. 17th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2018, pp. 757–762.

[93] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Ellingwood,
E. Antelman, A. Mackay, M. W. McConley, J. M. Opper, P. Chin,
and T. Lazovich, ‘‘Automated software vulnerability detection with
machine learning,’’ 2018, arXiv:1803.04497. [Online]. Available:
http://arxiv.org/abs/1803.04497

[94] S. Kim, S. Hong, J. Oh, and H. Lee, ‘‘Obfuscated VBA macro detec-
tion using machine learning,’’ in Proc. 48th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2018, pp. 490–501.

[95] X. Wang, K. Sun, A. Batcheller, and S. Jajodia, ‘‘Detecting, ‘0-day’
vulnerability: An empirical study of secret security patch in OSS,’’ in Proc.
49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2019,
pp. 485–492.

[96] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, ‘‘VulPecker: An automated
vulnerability detection system based on code similarity analysis,’’ in Proc.
32nd Annu. Conf. Comput. Secur. Appl., Dec. 2016, pp. 201–213.

[97] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, ‘‘SySeVR: A frame-
work for using deep learning to detect software vulnerabilities,’’ 2018,
arXiv:1807.06756. [Online]. Available: http://arxiv.org/abs/1807.06756

[98] F. Ullah, M. R. Naeem, L. Mostarda, and S. A. Shah, ‘‘Clone detection
in 5G-enabled social IoT system using graph semantics and deep learning
model,’’ Int. J. Mach. Learn. Cybern., vol. 12, pp. 1–13, Jan. 2021.

[99] P.-Y. Lee, C.-M. Yu, T. Dargahi, M. Conti, and G. Bianchi, ‘‘MDSClone:
Multidimensional scaling aided clone detection in Internet of Things,’’
IEEE Trans. Inf. Forensics Security, vol. 13, no. 8, pp. 2031–2046,
Aug. 2018.

HAIBO ZHANG received the B.S. degree in soft-
ware engineering from Anhui University, China,
in 2015, and the M.S. degree in cyber security
engineering from the Viterbi School of Engi-
neering, University of Southern California, USA,
in 2018. She is currently pursuing the Ph.D.
degree in cyber security with Kyushu Univer-
sity, Japan. She is also working as a Research
Assistant with Strategic International Collabora-
tive Research Program (SICORP) for Internet of

Things related research work. Her research interests include Internet of smart
things security, digital supply chain security, and vulnerable software clone
detection.

KOUICHI SAKURAI (Member, IEEE) received
the B.S. degree in mathematics from the Faculty
of Science, Kyushu University, in 1986, the M.S.
degree in applied science and the Ph.D. degree
in engineering from the Faculty of Engineering,
KyushuUniversity, in 1988 and 1993, respectively.
From 1988 to 1994, he was engaged in research
and development on cryptography and information
security at the Computer and Information Sys-
tems Laboratory, Mitsubishi Electric Corporation.

Since 1994, he has been working with the Department of Computer Science,
Kyushu University, as an Associate Professor, where he became a Full
Professor, in 2002. He is concurrently working with the Institute of Systems,
Information Technologies and Nanotechnologies, as the Chief of the Infor-
mation Security Laboratory, for promoting research co-operations among the
industry, university, and government under the theme Enhancing IT-Security
in Social Systems. From 2005 to 2006, he was successful in generating such
co-operation between Japan, China, and Korea, for security technologies,
as a Leader of the Cooperative International Research Project supported
by the National Institute of Information and Communications Technology
(NICT). Moreover, in March 2006, he established research co-operations
under a Memorandum of Understanding in the field of information security
with Prof. Bimal Kumar Roy, the first time Japan has partnered with The
Cryptology Research Society of India (CRSI). He currently directs the
Laboratory for Information Technology and Multimedia Security and is
working with the CyberSecurity Center, Kyushu University. He is also with
Department of Advanced Security, Advanced Telecommunications Research
Institute International and involved in a NEDO-SIP-Project on supply chain
security. He has published about 400 academic articles in cryptography and
cybersecurity.

VOLUME 9, 2021 48173

