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ABSTRACT The power consumption of digital circuits is proportional to the square of operation voltage
and the demand for low power circuits reduces the operation voltage towards the threshold of MOSFETs.
A weak voltage signal makes circuits vulnerable to noise and the optimization of circuit design requires
modelling noise. Random Telegraph Noise (RTN) is the dominant noise for modern CMOS technologies and
Monte Carlo modelling has been used to assess its impact on circuits. This requires statistical distributions of
RTN amplitude and three different distributions were proposed by early works: Lognormal, Exponential, and
Gumbel distributions. They give substantially different RTN predictions and agreement has not been reached
on which distribution should be used, calling the modelling accuracy into questions. The objective of this
work is to assess the accuracy of these three distributions and to explore other distributions for better accuracy.
A novel criterion has been proposed for selecting distributions, which requires a monotonic reduction
of modelling errors with increasing number of traps. The three existing distributions do not meet this
criterion and thirteen other distributions are explored. It is found that the Generalized Extreme Value (GEV)
distribution has the lowest error and meet the new criterion. Moreover, to reduce modelling errors, early
works used bimodal Lognormal and Exponential distributions, which have more fitting parameters. Their
errors, however, are still higher than those of the monomodal GEV distribution. GEV has a long distribution
tail and predicts substantially worse RTN impact. The work highlights the uncertainty in predicting the RTN
distribution tail by different statistical models.

INDEX TERMS Random telegraph noise (RTN), yield, device variations, time dependent variations, jitters,
traps, statistical distributions.

I. INTRODUCTION
Random telegraph noise (RTN) is a step-like fluctuation of
drain current under constant gate and drain voltages. It has
received many attentions, as it adversely affects the opera-
tion of electronic circuits [1]–[15]. As MOSFETs become
smaller, RTN becomes increasingly important, driven by an
increased impact of a single charge on smaller devices and
an increase in the number of devices in a system [1]–[8].
A large number of devices in a system will contain more
devices in the tail of statistical distributions, which can
cause errors. Moreover, low power is a key requirement
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for many Internet-of-Things edge units and this drives the
operation voltage towards threshold voltage, Vth [16]–[18].
The minimization of overdrive voltage, (Vg-Vth), in the
future leaves little room to tolerate the RTN induced
jitter [5], [16], [18].

There have been many efforts to model RTN, both
in the frequency domain [1], [19]–[21] and in the time
domain [1]–[6]. It is widely accepted that RTN originates
from trapping/detrapping charge carriers from/to the conduc-
tion channel [1]–[21]. The number of traps per device follows
the Poisson distribution [3]–[6]. To performMonte Carlo sim-
ulation in the time domain, one needs the capture-emission
times and RTN amplitude of traps [5], [18], [22], [23].
We studied the statistical distribution of capture/emission
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time constants in an early work [18] and focus on the ampli-
tude distribution here.

The RTN amplitude can be measured as a Vth shift,1Vth,
or a normalized drain current fluctuation, 1Id/Id. 1Vth is
the accumulative effect of multiple traps on a device and
we use δVth to represent the RTN amplitude of one trap.
δVth is stochastic and one feature of its cumulative distribu-
tion function (CDF) is a long tail, when compared with the
Gaussian/Normal distribution, as shown in Fig. 1a [2], [6].
It has been proposed that this long tail originates from the
uneven distribution of current [2], [6], [7] since the impact
of a trapped charge in the oxide on the device depends on
the local current density beneath it [7], [24]. As schemati-
cally illustrated in Fig. 1b, the current near threshold voltage
flows through narrow percolation path. It is rare to have a
trap located just above this percolation path and such a trap
will cause a large δVth and result in the long distribution
tail [2], [6], [7], [24].

FIGURE 1. (a) A comparison of different cumulative distribution functions
(CDF) of threshold voltage shift, δVth. Each ‘o’ represents δVth induced by
one trap and there are 100 traps here. Although both the Exponential and
Lognormal CDFs describe the test data well, they give very different
results when their tails were used to make predictions, for example at 5σ ,
as shown by the dashed lines. (b) A schematic illustration of the impact
of traps (circles) on current path near threshold condition. The red circle
represents a trap just above the percolation path of current, which has a
large δVth and is in the distribution tail.

Modelling the long tail in the CDF is a tall order and
three statistical distributions have been proposed: Expo-
nential [3]–[6], [23], [25]–[29], Lognormal [1], [5]–[8],
[30]–[32] and Gumbel [9]–[11]. The success of RTN mod-
elling in term of yield prediction for a system, such as SRAM,

requires an accurate statistical distribution tail [2], [5],
[7], [30], [31]. For a dataset of 100 traps, Fig. 1 shows
that both Exponential and Lognormal CDFs agree well with
the test data, but they have substantially different tails. For
example, at 5σ where σ is the standard deviation, the δVth
predicted by Exponential and Lognormal CDFs is 23 mV and
44 mV respectively. This uncertainty calls the accuracy of
RTN modelling into question.

Agreement has not been reached on which distribution
should be used. Many early works [1], [4], [9], [10],
[25]–[28] only fitted their data with one statistical distri-
bution. Different distributions were not compared and the
reason for selecting a specific model is not given. For the
works that compared the Exponential and Lognormal distri-
butions [30], [31], it was reported that the Lognormal fitted
the data better. There are, however, more fitting parameters in
the Lognormal distribution than the Exponential distribution,
so that it is not clear whether the improved fitting with the
Lognormal originates from using extra fitting parameters.

The motivation of this work is to address the uncertainty in
model selection for RTN amplitude through two ways. First,
we attempt to find a statistical distribution that has lower error
without using higher number of fitting parameters. In addition
to the three distributions mentioned above, thirteen other dis-
tributions are evaluated. Second, we propose a new criterion
for selecting statistical models. It will be shown that if the
data truly follows a specific CDF, the error per trap should
decrease when increasing the trap number.

We start by examining the three distributions mentioned
above in terms of their errors both over the whole distribution
and in the distribution tail. The number of traps used in some
early works [7], [10], [25] is ∼100, leaving too few traps in
the tail (e.g. >95%) to evaluate the error reliably. To enable
the tail evaluation, 1,178 traps were used here.

The CDF parameters are extracted by the Maximum
likelihood estimation (MLE). Early works suggest that the
accuracy can be improved by using either bimodal Expo-
nential [29] or bimodal Lognormal distributions [6]. We will
examine the impact of using bimodal distributions on the
accuracy.

An analysis of the distributions proposed by early
works [1]–[11] have not identified a clear winner. This leads
us to search for new statistical distributions. Since there is
little research on whether the RTN amplitude can be modeled
better by other statistical distributions, apart from the three
distributions mentioned above, a scoping study of different
distributions are carried out. To emphasize the importance
of the accuracy in the distribution tail for RTN modelling,
the Z-score of corresponding CDF will be used to calculate
errors, where Z = (δVth-µ)/σ and µ is the average and
σ the standard deviation. After comparing 16 distributions,
it is found that Generalized Extreme Value (GEV) distribu-
tion [32] gives the lowest errors. GEV also meets the new
criterion.

The last issue addressed in this work is the impact of
trap number on the CDF accuracy in the distribution tail.
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The more traps used for extracting the distribution, the better
the accuracy should be. In practice, however, the number of
traps available is always limited. It is of importance to assess
how reliable a CDF extracted from a limited number of traps
can be used to predict the distribution tail at high sigma.

II. DEVICES, MEASUREMENT, AND METHODOLOGY
A. DEVICES
This work uses nMOSFETs fabricated by an industrial
CMOS process, which has metal gate and a high-k/SiON
stack. The channel length and width are 27× 90 nm, respec-
tively. The equivalent oxide thickness is 1.2 nm.

B. MEASUREMENTS
The test starts by applying a step voltage to the gate and drain.
The Id is then monitored under a fixed Vg and Vd by an oscil-
loscope at a sampling rate of 1 Mpoint/sec [18], [33]. As low
power requirement is driving operation voltage towards Vth
and the average Vth of the devices used here is 0.45 V,
we chose Vg = 0.5 V and Vd = 0.1 V for monitoring
RTN. Unless otherwise specified, tests were carried out
under 125 ◦C.
Some typical results are given in Figs. 2 and 3, where the

current fluctuation is plotted as δId/Id = (Id-Iref)/Id. The
reference Id, Iref, was taken from the average of the first ten
points of the measurement [18]. As Vg is close to Vth, δVth
can be evaluated from -δId/gm, where gm is transconduc-
tance [24]. The gm is evaluated from a pulse (3 µs) Id-Vg,
taken before the RTN test for each device [24].

C. METHOD FOR EXTRACTING RTN AMPLITUDE
In the test of negative bias temperature instability (NBTI),
the impact of one trap on Id is typically measured directly
from its discharge induced step-change of Id [28], [34].
For RTN tests, Hidden Markov Method [13] and Factorial
HMM [14], [15] has been used, when both the RTN amplitude
and time constants are needed. The time-lag plot has been
often used to measure the RTN amplitude [35].

Similar to the NBTI measurement [28], [34], we measured
the RTN amplitude directly from the step-changes in Id in
this work. As shown in Fig. 2a, once a step-like change is
observed, the Id for each discrete level is taken from the
average of that level to minimize the effect of thermal noise.
Moreover, unlike NBTI tests where discharging one trap is
often an one-off event [28], [34], we take advantage of the
multiple charge-discharge events in RTN and use the average
of step-heights to further improve measurement accuracy.
The minimum detectable δId/Id is ∼0.2%, corresponding to
a δVth of ∼0.2 mV.
Fig. 2b shows that the amplitude extracted by our method

agrees well with that of time-lag method, when there is only
one trap in a device. The time-lag method, however, uses
data in the whole time window and is difficult to use when
there are multiple traps and one example is given in Figs. 3a
and 3b. The advantage of our method is that it can be applied

FIGURE 2. (a) Extraction of RTN amplitude directly from the two discrete
levels of Id used in this work. (b) The same data in (a) was used to extract
the RTN amplitude by the conventional time-lag method. The RTN
amplitudes extracted by these two methods agree well when there is only
one trap in a device.

to a selected time range where two-level RTN events are
identified. For the same dataset in Fig. 3a, Figs. 3c shows that
the amplitude of fast trap 1 can be measured in a short time
window. For a longer time window in Fig. 3d, the slow trap
2 becomes active and its amplitude can be extracted from the
difference in the two discrete levels after averaging out the
impact of the fast trap.

III. RESULTS AND DISCUSSIONS
A. PROBLEMS WITH THE PROPOSED STATISTICAL
DISTRIBUTIONS
For the RTN amplitude per trap, two popular statistical distri-
butions used in early works are Lognormal [1], [5]–[8], and
Exponential [3]–[6], [28], [29]. In addition, Gumbel distribu-
tion has been used to capture the long tail of RTN [9]–[11].
Their cumulative distribution functions (CDF) are summa-
rized in Table 1. Table 1 also gives the formula for the
Generalized Extreme Value (GEV) distribution, which will
be investigated in Section III.C. In this section, we focus
on the three distributions used in early works: Lognormal,
Exponential, and Gumbel.

Using the equation in Table 1, the parameters of dif-
ferent statistic distributions are extracted by the Maximum
Likelihood Estimation (MLE) [29], [36]. MLE uses different
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FIGURE 3. (a) An example of two active RTN traps in a device. (b) It is
difficult to use the time-lag method to extract the RTN amplitudes for the
dataset in (a). (c) Extraction of the RTN amplitude of fast trap 1 by
applying our method in the short time range. (d) Extraction of the RTN
amplitude of slow trap 2 by applying our method in the long-time range.

weightings to different data to maximize the probability of
test dataset occurrence [36]. Based on the 1,178 measured
traps, the estimated parameters are given in Table 2. The
extracted CDFs are plotted together with test data in Fig. 4.

TABLE 1. The cumulative distribution functions (CDFs).

TABLE 2. The estimated CDF parameters.

FIGURE 4. The CDFs (lines) extracted from 1,178 traps by the MLE method
are compared with the test data (symbols) for: (a) Gumbel, (b)
Exponential, (c) Lognormal, and (d) GEV, respectively.

Following the early works [5], [6], [30], [31], [37], we use
the error between the extracted CDFs and the test data to
compare different statistical distributions. Fig. 5a shows the
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FIGURE 5. A comparison of the sum of square errors (SSE) per trap for
CDFs extracted by Maximum likelihood estimation (MLE) at 125 ◦C
(a) and 28 ◦C (b). The whole dataset were used in the error evaluation.
Lognormal has smaller error than Exponential for the whole dataset.

sum-square-error (SSE) per trap. Gumbel and Exponential
CDFs have similar errors, while Lognormal CDF has lower
error. For convenience, the result of GEV distribution is also
given in Fig. 5, whichwill be discussed in Section III.C. If one
uses the minimum error of whole dataset as a criterion, the
Lognormal distribution should be better than the Exponential
and Gumbel distributions.

The results in Fig. 5a were obtained at 125 ◦C. To show
that the observation is independent of test conditions,
Fig. 5b gives the results at 28 ◦C. RTN is generally sensitive
to temperature and 814 traps were measured under 28 ◦C.
The error of Lognormal distribution again is lower than that
of Exponential and Gumbel distributions.

The minimum SSE per trap for the whole dataset should
not be the only criterion for selecting statistical distribution
functions. As the loss of yield is mainly caused by traps
in the distribution tail, the SSE in the tail region should
also be examined. To see the tail clearly, the corresponding
Z-score of CDF is plotted linearly in Fig. 6. Some early
works used ∼100 traps [7], [10], [25] so that there are too
few traps to evaluate the SSE reliably in the >95% tail. With
1,178 traps here, their SSE in the >95% tail is compared
in Fig. 7. Although the Lognormal CDF has lower SSE for

FIGURE 6. A comparison of the tail region between the test data
(symbols) and the CDFs (lines) extracted by Maximum likelihood
estimation (MLE) for (a) Gumbel, (b) Exponential, (c) Lognormal, and (d)
GEV. The vertical axis is plotted linearly for the Z-score corresponding to
the cumulative probability.

the whole dataset in Figs. 5a&b, Figs. 7a&b show that the
Exponential CDF actually matches the test data better in this
tail region. The choice between Lognormal and Exponential
is not straightforward, therefore.

B. BIMODAL STATISTICAL DISTRIBUTIONS
To improve the accuracy of CDFs, bimodal CDF, BCDF, has
been proposed:

BCDF = p ∗ CDF1+ (1− p) ∗ CDF2 (1)

where 0 ≤ p ≤ 1 is an adjustable parameter that can be fitted
by using the MLE method [36]. CDF1 and CDF2 are two
monomodal distributions. Both bimodal Exponential [29] and
Lognormal [6] CDFs have been used. It has been suggested
that CDF1 and CDF2 originate from traps in different layers
of gate dielectric that have different statistical properties [29].

Figs. 8a-f show the bimodal CDFs extracted by the MLE
method for Lognormal, Exponential, and Gumbel, respec-
tively. The bimodal Lognormal in Figs. 8a&b is dominated by
the first Lognormal CDF and the contribution of the second
Lognormal CDF is weak with a p value of only 0.033. For
bimodal Exponential CDFs, the second CDF only counts for
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FIGURE 7. The error per trap of CDFs in the >95% tail extracted by MLE at
125 oC (a) and 28 oC (b). Exponential has smaller error than Lognormal in
the tail.

9% in Figs. 8c&d. This increases to 25% for the bimodal
Gumbel in Figs. 8e&f.

To compare the bimodal CDFs with their monomodal
counterparts, we calculate their errors from their Z-score plot
in Figs. 8b, 8d, and 8f. This places more weightings on
the distribution tails where accuracy is important for RTN
modelling. It is more appropriate than the error calculation
directly from CDF values in Fig. 5, therefore.

Fig. 9 shows that, although bimodal Gumbel has less error
than monomodal Gumbel, it is still well above the error of
monomodal Lognormal. The impact of using bimodal CDFs
on the errors is modest for both Lognormal and Exponen-
tial. When compared with monomodal CDFs, bimodal CDFs
more than double the number of fitting parameters. Accord-
ing to the Bayesian Information Criterion [38], penalty should
be applied to models with more fitting parameters, so that
using bimodal CDFs is not strongly supported by the data in
this work. The question is whether there is a monomodal CDF
that can give similar or even smaller error than the lowest
error achieved by the bimodal Lognormal CDF in Fig. 9. This
will be investigated next.

C. GENERALIZED EXTREME VALUE (GEV) DISTRIBUTION
Driven by the desire to find a statistical distribution that
has the lowest SSE per trap without using its bimodal CDF,

FIGURE 8. Bimodal CDFs for Lognormal (a) and (b), Exponential (c) and
(d), and Gumbel (e) and (f). (b), (d) and (f) are the Z-score to enlarge the
tail region. The symbols are test data. The black lines are the sum of two
CDFs. The blue and red lines are the monomodal CDF1 and CDF2,
respectively.

we evaluated 13 other distributions [39] and their SSE per trap
is compared in Fig. 10, together with the three distributions
used in early works. Among the 16, the Generalized Extreme
Value (GEV) distribution has the lowest error. It is worth of
exploring this distribution further, therefore.

The equation for GEV is included in Table 1 and the
extracted parameter values are given in Table 2. Fig. 4d shows
that the CDF of GEV agrees well with the test data overall.
Although Fig. 6d shows that the difference between GEV
and the highest few data points appear increasing, this is an
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FIGURE 9. A comparison of errors in bimodal CDFs with their monomodal
CDFs for Exponential, Lognormal, and Gumbel: The SSE per trap is
calculated from the Z-score for the whole dataset. The use of bimodal
CDFs has not reduced errors below the level achieved with a monomodal
GEV.

FIGURE 10. A comparison of the SSE per trap for 16 CDFs [39]. The error
is calculated from the Z-score for the whole dataset. The Generalized
extreme value (GEV) distribution has the lowest error.

artifact, as the last few points of test data is always lifted
upwardly by the limitation in the size of dataset. The Z-score
approaches infinity when CDF approaches 1. As the last data
point has CDF = 1, its Z-score would be infinity. To avoid
this, it is a common practice to calculate the CDF of test data
by [40],

CDF(δVth, i) = (i− 0.5)/N,

where i = 1 has the lowest δVth and i = N = 1,178 has the
highest δVth in our test dataset. This brings the last CDF point
from 1 to 0.999576 and their corresponding Z-score from
infinity to 3.34. It, however, cannot completely eliminate the
artificial up-swing of the last few data points.

Figs. 5 and 7 show that the GEV has the lowest error for
both the whole dataset and the tail region when compared
with other CDFs. Fig. 9 shows that the error of monomodal

FIGURE 11. A comparison of different CDFs extracted from the same
dataset (symbols). The solid lines are the monomodal CDFs and the
dashed lines are their bimodal counterparts for the same color.

FIGURE 12. A comparison of the probability of occurrence for
δVth≥25 mV predicted by different CDFs. The CDF values at δVth = 25 mV
were taken from Fig. 11, as marked out by the vertical dashed line.

GEV CDF is also lower than that of the bimodal Lognor-
mal, Exponential, and Gumbel CDFs. The number of fitting
parameters is 5, 3, and 5 for the bimodal Lognormal, Expo-
nential, and Gumbel CDFs, respectively. It is 3 for the GEV
in Fig. 9, so that the better accuracy of GEV was not gained
from using larger number of fitting parameters.

Fig. 11 compares the CDFs of different distributions
extracted from the same dataset. The predicted distribution
tail is sensitive to model selection. The δVth at high σ
increases in the order of Gumbel, Exponential, Lognormal,
and GEV. In another word, Gumbel has the shortest tail and
gives the optimistic prediction, while the GEV has the longest
tail and gives the pessimistic prediction. Fig. 12 compares the
probability for δVth ≥25 mV predicted by different CDFs.
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FIGURE 13. Dependence of SSE per trap on the number of traps used to
extract the CDFs. (a) The data are generated randomly from the
theoretical Lognormal (�) and GEV (•). They were treated as the ‘test
data’ and used to extract Lognormal and GEV CDFs, respectively. Their SSE
per trap decreases with increasing trap number, as shown by the fitted
dashed lines. (b) The real test data were used to extract CDFs and
calculate SSE per trap. The solid lines are fitted. For comparison, the two
dashed lines in (a) were replotted in (b). Only GEV clearly shows the
expected decrease of errors with increasing trap number.

Quantitatively, it is 4.5 × 10−7, 0.24, 52, and 2553 parts-
per-million (ppm) for Gumbel, Exponential, Lognormal, and
GEV, respectively. This highlights the uncertainty of RTN
prediction when using different CDFs.

On the applicability of the conclusions drawn here to
other fabrication processes, ideally we should compare the
results of samples fabricated by different processes. However,
we only have one wafer from one company. The test samples
used herewere fabricated by the 28 nmCMOSprocess, which
has been widely used commercially. The results reported here
should be a typical representation of industrial processes, but
further work will be needed to confirm this.

D. NEW MODEL SELECTION CRITERION
Given the large uncertainties in the RTN predicted by dif-
ferent CDF models, further work is needed to justify their
selection, in addition to their errors. Ideally, the selected
model should be justified by device physics. Unfortunately,
we could not link the Exponential, Gumbel, and GEV with

FIGURE 14. A comparison between theoretical GEV by using parameters
in Table 2 and the GEV fitted by using 100 hypothetical traps, which were
randomly generated by the theoretical GEV. The difference between
theoretical and fitted GEV at 5σ is shown by the dashed lines.

a physical process, as these models are empirical [1]. GEV
is developed from the extreme value theory to capture the
long distribution tails, with Gumbel, Fréchet, and Weibull
distributions as its special cases [32]. The number of traps in a
device is minimized in a modern commercial CMOS process
through quality control and one may consider that having a
trap right above the narrow percolation current path in Fig. 1b
is extremely rare.

The Lognormal CDF has been interpreted physi-
cally [6], [7]. As the number of charge carrier in the chan-
nel depends on (Vg-Vth) exponentially in the subthreshold
region, a local Vth fluctuation spatially leads to an exponen-
tial fluctuation of local density of charge carrier, n. If Vth
varies spatially by following Normal distribution, Log(n)
will vary by following Normal distribution. The impact of
a trapped charge on the channel is proportional to n, so that
Log(δVth) will also follow the normal distribution, i.e. δVth
follows Lognormal distribution [7].

There are, however, two difficulties with this interpreta-
tion. One is that Id was monitored above threshold in typ-
ical RTN tests, where n no longer depends on (Vg-Vth)
exponentially. The other is that the impact of trapping on
carrier mobility is neglected here [7]. It has been reported
that the contribution of charge-induced mobility degradation
is similar to that of carrier number reduction [41].

In searching for further criterion for model selection,
we examine the dependence of error per trap on the number of
traps. If the test data truly follow a specific CDF, we expect
that the error per trap decreases with increasing number of
traps, because an infinite number of data should produce this
specific CDF perfectly. To support this statement, we used a
theoretical Lognormal CDF to randomly generate a number
of data and then treat them as ‘test data’. These ‘test data’
were used to extract the Lognormal CDF and the errors were
evaluated in the same way as that for the real test data.
Fig. 13a shows that the SSE per trap indeed reduces for higher
number of traps, despite of the statistical scattering. The same
also applies to the GEV CDF.
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FIGURE 15. (a) shows the errors of prediction at 3σ by the CDFs extracted
from different number of traps with 80%, 90%, 95% and 99% confidence.
(b) shows the errors at different σ for 1,000 traps.

Fig. 13b shows the dependence of SSE per trap on the trap
number for the real test data. Only the error of GEV exhibits
a clear decrease for higher number of traps. To quantitatively
compare the error of theoretical and real test data, the two
fitted lines in Fig. 13a were reproduced as the two dashed
lines in Fig. 13b. The difference in the error between the
theoretical and real test data is substantially larger for Log-
normal, when comparedwithGEVdistribution. This supports
the GEV model.

E. IMPACT OF TRAP NUMBERS ON PREDICTION
ACCURACY
Fig. 13a shows that the error per trap reduces for higher
number of traps. In practice, the number of available traps
is always limited. When the CDFs extracted from a limited
number of traps is used to predict the RTN in the long tail,
an important question is how accurate it is.

To assess the impact of trap number on this accuracy, one
needs a reference distribution as the benchmark. Here, we use
the GEV distribution extracted in Fig. 11 as the reference and
their parameters are given in Table 2. One set of ‘N’ data is
randomly generated according to this distribution, as shown
in Fig. 14. These N data are then used to extract the statistical
distribution, which gives the orange curve in Fig. 14. The
difference between the fitted and the reference distributions

(the blue curve in Fig. 14) at a given σ can then be determined,
as illustrated by the dashed lines in Fig. 14. By repeating this
process 1000 times and each time with a different and ran-
domly generated set of N data, we can obtain the confidence
for the accuracy of statistical distributions extracted from a
set of N data [42].

Fig. 15a shows the error at 3σ for different N. For N= 100,
the error at 90% confidence is−58.35% and 57.42%, respec-
tively. For N = 1,000, these two errors are reduced to
−13.68% and 13.18%. If one targets an accuracy of 15% at
3σ with 90% confidence, 1,000 traps can be used.

Fig. 15b shows the errors for N = 1000 at different sigma.
The error increases from -13.68% and 13.18% at 3σ to
−37.15% and 26.5% at 5σ (a probability of 0.57 parts per
million) for 90% confidence. To be conservative, the guide-
band for RTN induced δVth at 5σ should be increased by
26.5% from the value predicted by the statistical distribution
extracted from 1000 traps, therefore.

With 1000 traps, the probability of occurrence for δVth
≥25 mV is between 1584.2 and 3537.6 with 90% confidence.
This uncertainty is substantially smaller than that from using
different CDF models shown in Fig. 12. We conclude that
the uncertainty in RTN amplitude prediction is dominated by
model selection.

IV. CONCLUSION
This work assesses the accuracy of the statistical distributions
for the RTN amplitude per trap. Its novelty includes propos-
ing a new model selection criterion based on the relation
between error and trap number, exploring the applicability of
a wide range of statistical distributions to RTN amplitudes,
and finding that the Generalized Extreme Value (GEV) dis-
tribution has the least Z-score based error. The new model
selection criterion requires a monotonic error decrease for
higher number of traps. The GEV meets this criterion, while
the Exponential, Lognormal, and Gumbel distributions do
not. Based on our data, using bimodal Exponential and Log-
normal CDFs only has a modest impact on the error, despite
the increased fitting parameters.

The accuracy of CDF extracted from a limited number
of traps is also assessed. For 90% confidence, the guide-
band for RTN induced δVth at 5σ should be increased by
26.5% from the value predicted by the statistical distribution
extracted from 1,000 traps. The uncertainties caused by using
a limited number of traps is relatively small and the selection
of CDF model dominates the uncertainty in RTN amplitude
prediction and modelling.
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