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ABSTRACT We propose a new fractional-order (space and time) total variation regularized model for
multiplicative noise removal in this research article. We use the regularly varying fuzzy membership degrees
to characterize the likelihood of a pixel related to edges, texture regions, and flat regions to improve model
efficiency. This approach is capable of maintaining edges, textures, and other image information while
significantly reducing the blocky effect. We opt for the option of local actions. In order to efficiently find
the minimizer of the prescribed energy function, the semi-implicit gradient descent approach is used (which
derives the corresponding fractional-order Euler-Lagrange equations). The existence and uniqueness of a
solution to the suggested variational model are proved. Experimental results show the efficiency of the
suggested model in visual enhancement, preserving details and reducing the blocky effect while extracting
noise as well as an increase in the PSNR (dB), SSIM, relative error, and less CPU time(s) comparing to other
schemes.

INDEX TERMS Fractional-order total variation, time and space fractional derivative, Grünwald-Letniko
derivative, Caputo derivative, multiplicative noise, fuzzy membership degrees.

I. INTRODUCTION
I mage restoration is an inverse problem that has been
extensively explored in the fields of image processing and
computer vision. A real captured image may be degraded
by some unavoidable random elements. These undesir-
able factors are known as noise and can be of various
nature. The primary objective of the de-noise is to extract
these unexpected elements from the image. In this way,
themethod of approximating the undiscovered image of inter-
est from the degraded image given is recognized as restor-
ing the image and has many applications in various fields.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chih-Yu Hsu .

Applications involving reconstruction operations vary from
materials science, astronomy, genetics, chemicals, human-
ities, geophysics, hydrology, mechanics, remote sensing,
and other areas, including imaging methods [1]. In recent
years, several methods such as variational, Fourier, wavelet,
Laplace, fractional Fourier transforms, singular value decom-
position filters, non-local filters, anisotropic diffusion etc.
have been applied in various image restoration problems for
suppressing noise [2]. Several noise types, such as addi-
tive (Gaussian) noise [3], impulse noise [4], Cauchy noise [5],
and Poisson noise [6], were investigated in the literature.

Noise is typically modelled as Gaussian noise in various
image processing methods: given a true u image and is
expected to be distorted by the n additive (Gaussian) noise.
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The target is to restore u from f = u + n data. There
are numerous successful approaches to handle this issue.
Stochastic methods, wavelet methods, principal component
analysis-based methods, and variational methods presented
in [7] are among the many significant ones. The variational
model contains two titles; a data fitting term and a filter
(regularizer). It is understandable that variational systems
have been taken into consideration by explicitly estimating
the reflection of the fundamental scenario and sometimes
showing successful outcomes in the image noise removal
query. Total variation technique has been commonly used for
the image restoration process owing to the edge preservation
and image restoration process. The image structure is framed
as a function belonging to the bounded variation space (BVS)
in (1) the ROF model and hence supports a constant func-
tion in the bounded variation space that normally contributes
to the staircase effect, (ii) Better image features and infor-
mation cannot be maintained by the ROF model [8]. The
L2-norm cannot differentiate between various oscillating
components with various frequencies, for instance noise and
texture, according to [9], and thus the textures are cleaned
with noise during the image recovery process. For more
details see [10], [11].

Practically speaking, there are other kinds of noise also,
for example, multiplicative noise likewise contaminates an
image. In this work, we concentrate on the problem of remov-
ing multiplicative noise (That is integral to the study of coher-
ent frameworks of imaging and occurs in various practices).
Particularly, the restoration of medical, synthetic aperture
radar (SAR), synthetic, real-life, and general images [12].
Supposition is if any multiplicative noise η has degraded the
actual image u, so the goal is to get u for the information f =
uη that carries a Gamma law with a mean of 1 and variance is
a function of the imagemagnitude [13]. Its probability density
function (PDF) can be expressed as below.

Gη =
1
0(k)

ηk−1e−a; {k > 0}, (1)

where a Gamma function is 0(•) and an integer is by k .
Multiplicative noise (also recognized as speckle) is

inescapably preceded by images proliferated by coherent
imaging frameworks like synthetic aperture radar (SAR),
medical, and laser images owing to the coherent nature of dis-
sipating phenomena [14]. The multiplicative noise interferes
seriously with higher assignments, for example, target detec-
tion or object recognition, image segmentation, image clas-
sification, and image enhancement, and so forth. Because of
the coherent structure of the image capture process, the noise
range is populated by the actual picture in the multiplicative
noise models and is portrayed by non-Gaussian probability
density functions, withholding the fundamental models of
Gamma and Rayleigh [15]. The variance, which is a function
of the transmitted signal [16], is non-Gaussian, independent,
and temporally dependent. Consequently, the expulsion of
multiplicative noise is an exceptionally testing assignment
analyzed with Gaussian noise [17]. To the best of our

knowledge, the famous de-speckling approaches include
non-local filtering, wavelet-based, spatial and varia-
tional [18]. In this study, we will concentrate on the
variational approach based on fractional-order for the
reconstruction of images contaminated with multiplicative
noise. As far as we could remember, there are a few varia-
tional approaches concerned about the issue of multiplicative
noise removal [19], [20]. For further details, the readers are
referred to [21]–[25].

Fractional calculus is a fast developing mathematical sub-
ject, which gives a significant tool for non-local field theories
and as such fractional-order PDEs based methods established
to be a robust tool for image, signal, video, and optical
fringe processing [26]. The primary aim behind this devel-
opment is the aim that the use of fractional calculus in image
restoration problems would encourage an increasingly suc-
cessful and efficient technique to deal with staircase impact
and fine-scale features issues. In recent years, the idea of
fractional operator and measure has been considered widely
in numerous engineering fields such as electrochemistry,
control theory, neuronal model, and so on [27]. In image
restoration problems, fractional-order derivative-based oper-
ators have a great capacity to handle fine-scale character-
istics such as edges and textures. They are additionally
applied to enhance the quality of images in edge detection,
segmentation, restoration, shape analysis, tracking, pattern,
face, and action recognition. Furthermore, lengthy memory
is a significant feature of fractional order differentiation
and is a predominant difference between integer-order and
fractional-order differentiation [28].

The traditional strategies for image restoration problems
do not appropriately estimate images involving edges. An
approach depends on the total variation minimization norm is
implemented in [7] to examine this effect. This scheme was
able to obtain a desirable settlement between the removal of
noise and the preservation of edges. The images come about
because of the use of this approach in the presence of noise
anyway will in general produce the purported blocky effects
on the images as it supports a piecewise constant solution in
bounded variation space. The image characteristics in the true
image may not be adequately obtained in this way, and incli-
nations may provide piecewise constant sections. In research
papers and books, various techniques have been developed
to reduce the blocked outcomes, thus preserving sharp jump
discontinuities. The enhanced total variation (TV) schemes
are divided into two classes; the high-order derivative and the
derivative of the fractional-order. For instance, a fourth-order
partial differential equation-based image de-noising model
was introduced by [29]. It has been demonstrated that this
model can manage the staircase issue. In any case, it acti-
vates the indication of uplifting impact and the creation of
edge artifacts. An enhanced fourth-order PDE model based
on [30], [31] has been developed to deal with this issue.

Several fractional-order derivative-based models were pre-
sented in [32]–[34] for Gaussian noise and multiplica-
tive noise removal as a trade-off within the first order
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FIGURE 1. a) True image 2562; b) Degraded image with σ2 = 0.03; c) Denoised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result respectively.

TABLE 1. Performance of the proposed model (M1) on synthetic images of size (2562) and (5122) contaminated by multiplicative noise of variance
σ2 = 0.03 and 0.2 in terms of PSNR (db), SSIM, relative error and CPU time (s) results.

TABLE 2. Performance of the proposed model (M1) on natural images of size (1820× 720), (2562) and (5122) degraded by multiplicative noise of
variance σ2 = 0.02,0.2 and 0.3 and L = 5, regarding PSNR (db), SSIM, relative error and CPU time (s) results.

total variation regularized models and high order deriva-
tive based models, and thus used for super-resolution and
image restoration [9]. By correctly choosing the order of
the derivative, they will ease the disagreement between stair-
case effect reduction and edge conservation. In addition,

the fractional-order derivative driver has a "non-local" behav-
ior on the ground that the fractional-order derivative at a
position is centered on the features of the whole function and
not merely the values in the vicinity of the [35] point, which
is useful for enhancing the presentation of the preservation
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FIGURE 2. a) Given image 5122; b) Noisy image with σ2 = 0.2; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result.

of the texture. Experimental findings reveal that writing [38]
has demonstrated that the fractional-order derivative operates
properly to retain textures and reduce the impact of the stair-
case effect. Pu et al. in [39] addressed the kinetic physical
value of the fractional-order derivative and suggested frac-
tional investigation models for image texture data. In [40],
it has been shown that the fractional-order derivative oper-
ator complies more with the oblique inhibition theory of the
biological visual framework than the integer-order derivative.

In this study, we consider a discrete class of fractional-order
derivative introduced by Grúwald-Letnikov (G-L). The
fractional-order derivative is indicated as function opera-
tor ∇α , that can be stated as under.

∇
α
x18(x1, x2) = lim

1x1→0+

∑
k≥0

(−1)kCk
α8(x1 − k1x1, x2)

(1x1)α

∇
α
x28(x1, x2) = lim

1x2→0+

∑
k≥0

(−1)kCk
α8(x1, x2 − k1x2)

(1x2)α
(2)

where Ck
α =

0(α+1)
k!0(α−k+1) is the binomial generalized coeffi-

cient with 0(•) is the Gamma function. Until constructing

the finite difference approximate equation of the proposed
model, the following concepts of fractional derivative theory
are formulated.
Definition 1: The Riemann-Liouville (R-L) fractional-

integral operator Jβ is given as

Jβ8(x1) =
1

0(β)

∫ x1

0
(x1 − t)β8(t)dt;β > 0, x1 > 0 (3)

Definition 2: The Caputo’s fractional-order partial deriva-
tive operator C∇βa of order β is formulated as

C
∇
β
a8(x1) =

1
0(m− β)

∫ x1

0

8m(x1)
(x1 − t)β−m+1

dx1;β > 0 (4)

with m − 1 ≤ β ≤ m,m ∈ N , where x1 > 0. Caputo’s
fractional partial derivative of order β being employed
to discretize the time-fractional diffusion equations. This
time-fractional order derivatives are used to preserve edges
in highly oscillatory regions [38].

The goal of this paper is to propose a new fractional-order
(space and time) total variation regularized model for remov-
ing multiplicative noise and a fast methodology for achiev-
ing a numerical solution. In order to develop the proposed
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FIGURE 3. a) Original image 1820× 720; b) Noisy image with L = 5; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result
respectively.

model efficiency, the fractional-order total variation based
regularizer is coupled with the inconstant fuzzy member-
ship degrees (FMDs) to increase the probability of a pixel
connected to edges, textures and flat regions contributing to
better restoration results. The combined strategy works well
to preserve image information while substantially reducing
the effect of the staircase through the noise removal process.
For more reliable restoration results, we take the values of
the parameters adaptively and presented their automatic tuned
values in figures given below. The existence and uniqueness
of a solution to the recommended model are also provided.
We communicate simulation findings which show that the
suggested model has created a remarkable development in
the quality of the restored pictures, both qualitatively and
quantitatively.

The entirety of the article is structured as follows.
Section 2 examines in detail the three fuzzy membership
degrees used in the planned work to boost the outcomes
of the reconstruction. In section 3, our newest fractional-
order, total variational model to answer the question is pre-
sented and illustrates its existence and uniqueness. For the
solution of non-linear Euler Lagrange fractional-order PDEs,

a semi-implicit gradient descent scheme is used in section
4.Some reconstruction results of natural and synthetic images
are provided in section 5 to display the efficiency of the
proposed model. Finally, in section 6, we end with some
closing remarks and recommendations for future studies.

II. FUZZY MEMBERSHIP DEGREES (FMDs)
Focused on [35], we adopt the given three FMDs for each (i, j)
pixel to express the likelihood of a pixel combined to sides,
textured, and smooth areas.

1) THE FMD MATRIX OF EDGES
The primer recovered image ur mostly consists of edges and
flat regions. The edges can be detected by utilizing the edge
pointers, for example, the Canny edge detector. In any case,
because of the blocky effect brought about by the total vari-
ation filter, the observed edges frequently consist of pseudo
edges. The Gaussian filter is utilized to distribute suggested
pseudo edges before the Canny edge locator. The binary
suggestive function of the edges can be described as

ϒE = 3(χ1 ∗ ur ) (5)
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FIGURE 4. a) True image 2562; b) Noisy image with σ2 = 0.02; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result respectively.

where 3(•) indicates a Canny edge detector, χ1 is a 2-D
Gaussian window, and ∗ is a convolution.
In any circumstance, the pointed edges are usually not

accurate in reality. In practice, the pixels around the point
edges are compared to the real edges. To handle this, we rep-
resent the FMD to characterize the occurrence of each pixel
of the image relates to edges. The FMD matrix (4) of edges
marked as 4E = [4E (i, j)]Ni,j=1 can be formulated by

EB = χ2 ∗ ϒE ,

4E (i, j) =
EB(i, j)

max
i,j=1,2,...,N

{EB(i, j)}
(6)

where χ2 denotes 2-D Gaussian window of size 52. Recently,
some new schemes have been utilized for edge detection for
instance, multiscale gradient edge detection and hybrid edge
detection method and hence some good results have been
obtained. For further details, see [36], [37].

2) THE FMD MATRIX OF TEXTURED REGIONS
In this research article, the threshold is first discussed and
a tentative indicative feature ϒT pre of the textured regions is

adaptively obtained iteratively as in [35]. Anyhow, the regions
showed by ϒpre

T have isolated points or fragments which
cannot be ordered into textured regions. The modified binary
suggestive function of the textured areas has therefore been
formulated as

ϒT (i, j) = 1, (χ1 ∗ ϒ
pre
T )i,j ≥ 0.5,

= 0, otherwise , (7)

where χ1 represents 2-D Gaussian window. Likewise, in the
case of edges, pixels close to the textured areas detected to
relate to the actual textured areas which often include edges.
To differentiate between these two distinct items, we describe
the FMD matrix of textured regions denoted as (4T ) can be
defined as

TBlur = (1−4E ).(χ2 ∗ ϒT ),

4T (i, j) = TBlur (i, j)/ max
i,j=1,2,...,N

{TBlur (i, j)}, (8)

where χ2 indicates the 2-D Gaussian window of
size 5× 5.
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FIGURE 5. a) True image 2562; b) Degraded image with σ2 = 0.2; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result respectively.

3) THE FMD MATRIX OF FLAT REGIONS
Wepresume three types of regions in this article (edge, texture
and flat) and one must be the sum of the probability of each
variable relating to them. Therefore, centered on (6) and (8),
the FMD matrix 4F of the flat regions can be expressed in
the form

4F (i, j) = 1−4E (i, j)−4T (i, j) (9)

In this section, the FMDs defined the transit step by step at the
boundary regions between the edges, the textured and smooth
regions, thus reducing the fragment impact caused by the hard
threshold.

III. THE PROPOSED IMAGE RESTORATION MODEL (M1)
Motivated by the advantages of fractional order total variation
regularizer (FOTVR), a new fractional-order (space and time)
total variation regularized model combined with fuzzy mem-
bership degrees (FMDs) is recommended for the restoration
of images corrupted with multiplicative noise. This model
utilizes the benefits of FOTVR and FMDs, contributing
to outstanding de-noised outcomes, since in the presence

of newly adopted data fitting term, fractional-order total
variation-based regularizer works well to minimize blocky
effect, retain sharp edges, low gradient structures, and tex-
tures. The model obtained has the advantage of retaining
more outstanding picture regions, including edges, textures,
and other fine elements, contributing to a more realistic
scene while reducing the effect of stairs in smooth areas.
Therefore using this model, better changes in PSNR and
SSIM values are achieved. The given fractional-order based
variational energy functional is proposed to restore a given
image degraded with multiplicative noise

û = argmin
u∈BV α(�)∩L2(�),u>0

{
E(u) =

∫
�

|∇
αu|dxdy+ D(f , u)

}
(10)

The first term Rα(u) =
∫
�
|∇
αu|dxdy ≈

∑
i,j

{|∇
α
x ui,j| +

|∇
α
y ui,j|} is the regularizer (filter) and BV α(�) = {u ∈

L1(�) : Rα(u) < +∞} is the fractional-order bounded
variation space of functions. The second term D(f , u) is the
data fitting term that evaluates the distortion of the connection
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FIGURE 6. a) True image 2562; b) Degraded image with σ2 = 0.3; c) Denoised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result respectively.

TABLE 3. Performance of the proposed model (M1) on medical images of size (2562) and corrupted by multiplicative noise of variance σ2 = 0.08, and 0.1
and L = 5 regarding PSNR (db), SSIM, relative error and CPU time (s) results.

between u and the observation f and is derived from theMAP.
We assume the noise model, based on the work in [25] and is
modeled as follow.

f = u+
√
uη (11)

where f is the image captured, u is the actual image, η is
the multiplicative noise distributed under Rayleigh. Using the
logarithmic transform z = logu ⇐⇒ u = ez we can use the
subsequent data fitting term along similar lines to Ref. [25]
as

D(f , u) =
∫
�

( f
2

(
f 2e−z + z− 2f + ez

)
+ z

)
dxdy (12)

Use the data fidelity term in (12) and then using the exponen-
tial transformation u→ eu for the data fidelity term (12). The
energy function (10) can then be reformulated as below.

û = argmin
u∈BV α(�)∩L2(�),u>0

{
E(u)

=

∫
�

|∇
αu|dxdy

+λ

∫
�

( f
2

(
f 2e−u + u− 2f + eu

)
+ u

)
dxdy

}
(13)

where, BV α(�) is the fractional-order bounded variance
function space. The first term is the term for regularization
that decides the quality of the u image. λ > 0 is a parameter
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FIGURE 7. a) True image 2562; b) Degrade image with σ2 = 0.08; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result respectively.

of regularization. By calculus of variation, the minimization
of (13) resulted in the following non-linear Euler Lagrange
equation

(−1)α∇α ·
(

∇
αu√

|∇αu|2 + ε

)
+λ
( f
2
(1+ eu − f 2e−u)+ 1

)
= 0 in �,

∂u

∂−→n
= 0 on ∂�.

(14)

Thus, to prevent singularity, ε > 0 shows the regularized
parameter that is chosen near 0. As an evolution parameter,
the solution scheme employs a parabolic equation regarding
time.

∂βu
∂tβ
= (−1)α∇α ·

(
∇
αu√

|∇αu|2 + ε

)
+λ
( f
2
(1+ eu − f 2e−u)+ 1

)
(15)

where β ∈ (0, 1) is the time fractional derivative. Next,
we present a theorem regarding the uniqueness of the pro-
posed model (M1) solution.

Theorem 1: There is a special minimizer in the proposed
model (13) at BV α(�) ∩ L2(�).
This theorem’s key aim is to prove the uniqueness of the
model suggested. To prove the theorem, we require the fol-
lowing mathematical results.
Lemma 1: The space BV α(�) is a Banach space.
Lemma 2: (Lower semi-continuity) Let {uk (x)} be a

sequence from BV α(�) which converge in L1(�) to a func-
tion u(x). Then Rα(u) ≤ lim

k→+∞
infRα(uk ).

Lemma 3: The regularizer Rα(u) is convex.
Proof of the previous lemmas can be obtained from lines
equivalent to those of Ref. [38].

Proof: The functional function (13) has a special min-
imizer at BV α(�) ∩ L2(�), at BV α(�) = {u ∈ L1(�) :
Rα(u) < +∞}, and is the domain of functional variance
bounded by fractional order. According to the optimization
theory, the strict convex and coercive properties of an objec-
tive functional is responsible for the incomparable minimizer.
The BV α(�) norm is constructed as ‖u‖BV α = ‖u‖L1+R

α(u)
whereas BV α(�), Lemma is a Banach space:Lemma:1 and
Lemma:3 is a convex space:Rα(u). the strict convex and
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FIGURE 8. a) Given image 2562; b) Noisy image with σ2 = 0.1; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result respectively.

coercive properties of an objective functional is responsible
for the incomparable minimizer. The manipulative value of
E(u) with u ∈ L1(u) matches the value of E(u) → +∞ as
‖u‖BV α → +∞. We have D(u, f ) ≥ 0 for (13). It means
that ‖u‖ ≤ E(u) is up to a constant. The coercive condition,
thus, proved to be in BV α(�) ∩ L2(�) Moreover, the lower
semi-continuity is set to Rα(u) by adding Lemma:2. For
D(u, f ) ≥ 0, the lower semi consistency still holds. In the
end, we conclude that (13) has a lower semi-continuous and
coercive solution by typical arguments as E(u). The unique-
ness of solution of (13) depends on the formal non- linear
Euler-Lagrange equation. Let us denote

Ḋ(u, λ) = λ
( f
2
(1+ eu − f 2e−u)+ 1

)
(16)

Describe the appropriate reference energy Eref(u) for energy
E(u) as below.

Eref(u) =
∫
�

|∇
αu|dxdy+

∫
�

(
D(u, λ

)
dxdy (17)

It is easy to establish that the non-linear Euler-Lagrange
equation for Eref(u) is (14). We have

D̈(u, λ) = λ
( f
2
(eu + f 2e−u

)
+
f
2

(
1+ eu − f 2e−u

)
+ 1

(18)

We consider that f > 0 in L∞(�) and u is a denoise energy
minimizer for E(u), so u is special if 0 < u < f + (f 2 +
f )0.2. We also deduce that D̈ > 0 and D are strictly convex.
Also Rα(u) is convex by Lemma:3. The functional E(u) is
now convex, and Eref(u) is globally convex and has a special
minimizer. This completes the proof.

To solve the non-linear fractional-order (space and time)
Euler-Lagrange equation, we introduce the semi-implicit gra-
dient descent scheme in the next section (15).

IV. NUMERICAL IMPLEMENTATION
For the solution of the fractional-order (space and time)
non-linear Euler Lagrange equation (15) associated with
functional minimization (13), the semi-implicit gradient
descent scheme (SIGDS) is implemented in this section. The
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FIGURE 9. a) Given image 2562; b) Noisy image with L = 5; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result
respectively.

iteration process is not stable if dt is too big and consumes
time if it is too small. Assume that the equation (15) is unique
and has sufficiently smooth solution under u(x, y, 0) = u0
and the symmetric conditions

un
−1,j = un0,j, unN+1,j = unN ,j, j = 0, 1, 2, · · ·N ;

uni,−1 = uni,0, uni,N+1 = uni,N , i = 0, 1, 2, · · ·N . (19)

where N × N indicates picture dimension. The grid sizes in
space and time directions for the finite difference scheme are
characterized as h = 4x, k = 4y and t = 4t , respectively,
for all positive entities m and n. To construct the solution
domain uniformity grid network, let the grid points in the
space interval be defined as xi = ih, yj = jk , where i =
0, 1, 2, ..withm, j = 0, 1, 2, .N , and the time interval’s grid
points are represented as tn = n4t = nτ, n ≥ 1. For optimal
results, we choose α ∈ [1, 2] and β ∈ (0, 1) adaptively.
Moreover, the Grünwald-Letnikov fractional order partial
derivatives are used on the variables x and y. The finite

fractional difference can be formulated as

∇
α
x ui,j =

K−1∑
k=0

C (α)
k ui−k,j

∇
α
y ui,j =

K−1∑
k=0

C (α)
k ui,j−k (20)

Let ∇
α

x ui,j and ∇
α

y ui,j be the adjoint operators of ∇
α
x ui,j and

∇
α
y ui,j and are formulated by

∇
α

x ui,j =
K−1∑
k=0

C (α)
k ui+k,j ∇

α

y ui,j =
K−1∑
k=0

C (α)
k ui,j+k (21)

where C (α)k = (−1)kC (α)k , the binonomial coefficient is
C (α)k = 0(α+1)

0(k+1)0(α−k+1) , and 0(•) denotes the feature of
Gamma. It is also possible to calculate the coefficients of
C (α)k from C (α)0 = 1, C (α)k = (1 − α+1

k )C (α)k − 1, k =
1, 2, 3 · ·K − 1 recursively. The estimated third order com-
putation of the Caputo’s fractional partial derivative can be
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FIGURE 10. a) Given image 2562; b) Corrupt image with σ2 = 0.08; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ respectively.

constructed as

Dβt u
n
i,j
∼=

τ−β

0(2− β)

n∑
s=0

bs(u
n+1−s
i,j − un−si,j )

where bs= (s+ 1)1−β−s1−β and s = 0, 1, 2, . . . n; n ≥ 1.

(22)

Now (15) becomes

(−1)α∇α ·
(

∇
αui,j√

|∇αui,j|2 + ε

)
+λ
( fi,j
2
(1+ eui,j − f 2i,je

−ui,j )+ 1
)

(23)

τ−β

0(2− β)
(un+1i,j − u

n
i,j)+

τ−β

0(2− β)

n∑
s=1

bs(u
n+1−s
i,j − un−si,j )

= (−1)α∇α ·
(

∇
αui,j√

|∇αui,j|2 + ε

)
+λ
( fi,j
2
(1+ eui,j − f 2i,je

−ui,j )+ 1
)

(24)

u(n+1)i,j = u(n)i,j −
n∑
s=1

bs(u
(n+1−s)
i,j − u(n−s)i,j )+ 0(2− β)τβ

×

[
(−1)α

{
∇
α

x ·

( ∇
α
x u

(n)
i,j√

|∇αu(n)i,j |
2 + ε

)

+∇
α

y ·

( ∇
α
y u

(n)
i,j√

|∇αu(n)i,j |
2 + ε

)}
+λ
( fi,j
2
(1+ eu

(n)
i,j − f 2i,je

−u(n)i,j )+ 1
)]

(25)

Moreover to improve the process of noise removal and pre-
serving more image details, we apply an idea to produce the
modified degraded image by feed more edges and textures
back to the corrupted image. Accordingly, we can get an
additive residual image f − u(n), once obtain a noise free
image u(n). Therefore, for the subsequent iteration stage,
an advanced image G(n) is generated by adding the weighted
image ω(n)(f − u(n)) to the given degraded image f , which
is G(n)

= f + ω(n)(f − u(n)), where ω(n) is referred to as
the weighting matrix, u(0) = f and ω(0)

= 1 (the matrix
of ones). Note, here we can adopt different weighting matrix
according to the given data fitting term. To obtain better
restoration results and image details, we choose adaptively
the parameters αi,j and λi,j as

αi,j = 4E (i, j)+ 1.7 4T (i, j)+4F (i, j) (26)

×

[1.3(Pprei,j − PpreFmax)
PpreFmin − P

pre
Fmax

+
1.7(Pprei,j − P

pre
Fmin)

PpreFmax − P
pre
Fmin

]
λ
(n)
i,j =

1
σ 2N 2

N∑
k,l=1

∣∣∣ 2eu
(n)
k,l (G(n−1)

k,l − e
u(n)k,l )

fk,l(2u
(n)
k,l + e

2u(n)k,l − f 2k,l)

∣∣∣ (27)

where PpreFmin = min
1≤i,j≤N

{Pprei,j |4F (i, j) 6= 0}, PpreFmax =

max
1≤i,j≤N

{Pprei,j |4F (i, j) 6= 0}, σ 2 is the noise variance, N 2 is the

image size and Pprei,j is the local variance of the residual image
at pixel (i,j). Hence, (25) can be reformulated as follows

u(n+1)i,j = u(n)i,j −
n∑
s=1

bs(u
(n+1−s)
i,j − u(n−s)i,j )+ 0(2− β)τβ

×

[
(−1)α

{
∇
α

x ·

( ∇
α
x u

(n)
i,j√

|∇αu(n)i,j |
2 + ε

)
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Algorithm 1 Algorithim for SIGDS

1. Input the given noisy image f , the parameters ε = 10−5,
τ > 0 λ > 0, β ∈ (0, 1)
2. Initialized value u(0) = f and ω(0)

= 1, for n = 1, 2, 3, . . .;
3. Calculate modified degraded image G(n)

= f + ω(n)(f −
u(n));
4. Calculate u(n+1) according to (28);
5. Check if ‖û−u‖

2

‖u‖2
≤ Tol; then stop;

6. Update the weight matrix ω(n) as follows;

ω
(n)
i,j = 4F (i, j)[c1 + c2]

+4E (i, j)[c2 + c3]+4T (i, j)[c3 + c4]− 1 (29)

here, the parameters c1, c2, c3, c4 are defined by,

c1 = max{0.7,
Ppremin
PpreFmean

c0},

c2 = c0,

c3 = min{1.9, (
PpreTmean
PpreFmean

})1.5c0,

c4 = min{1.9, (
Ppremax
PpreFmean

})2c0

with

c0 = max{0.05, 1− e−
0.01
α2 },

where, Ppremin = min
1≤i,j≤N

{Pprei,j },P
pre
max = max

1≤i,j≤N
{Pprei,j } and

PpreFmean = mean
1≤i,j≤j

{Pprei,j |4F (i, j) 6= 0},

PpreTmean = mean
1≤i,j≤j

{Pprei,j |4T (i, j) 6= 0}

and then denote n = n+ 1 and go to step-3;
7. Outcome result z = z(n+1)β1

.

+∇
α

y ·

( ∇
α
y u

(n)
i,j√

|∇αu(n)i,j |
2 + ε

)}

+λ
(n)
i,j

(G(n)
i,j

2
(1+ eu

(n)
i,j − G2(n)

i,j e
−u(n)i,j )+ 1

)]
(28)

The numerical solutions of u(n+1)i,j and u(n)i,j are defined from
the given initial and symmetric boundary conditions (19).
In order to get u(n+1)i,j , the right hand side computation of (28)

should be performed. The solution u(n+1)i,j of (28) is repre-
sented as a denoised image with better PSNR and SSIM
values. To conclude, the iterative method is performed in the
steps given as follows.

V. EXPERIMENTAL RESULTS AND ANALYSIS
Some image restoration outcomes are given in this part of
the paper to confirm the achievement of the suggested model
M1 and a fast algorithm for its numerical solution. The
numerical results are contrasted with the schemes for M2,
M3, and M4. In this experiments, multiplicative noise car-
rying a Gamma distribution with a mean one and Rayleigh

distribution (i.e. with error variation σ 2
= [0.01 − 0.3] and

the number of looks L = 5) contaminates the image provided.
The suggested model is applied to various images containing
(two synthetic, eight natural, five medical, and six SAR) of
size [2562− 5122, 1820× 720] respectively. The values of α
and λ are tuned adaptively according to the image type and
size. It is noted that α ∈ [1, 2] and λ ∈ [0.5, 5000] according
to image type and size. The adapted values of α and λ are
displayed in the figures given below. All simulations reported
here are implemented in MATLAB-R2013a and all analyzes
have been conducted on Intel(R) Core(TM) i5-3230M CPU
@2.60GHz 2.60GHz, 4.00Gb RAM and 64-bit operating
system. In this article, two methods to test the outcomes of
denoising are considered. The first is the peak signal to noise
ratio PSNR (dB) for measuring the quality of the picture. This
measure can be formulated as

PSNR(db) = 10log10
[ m2

1
N×N

N∑
i=1

N∑
j=1

(û− u)2

]
(30)

The other is the structural similarity index (SSIM), which
measures the structural detail similarity between u and û. The
SSIM is defined by

SSIM (u, û) =
(2µûµu)(2σûu + a2)

(µ2
û + µ

2
u + a1)(σ

2
û + σ

2
u + a2)

(31)

where µu and µu are the mean measurements of images u
and û, σu and σu indicate their standard deviations, and σu
is the co-variance of u and û. Furthermore, a1 = (0.01d)2

and a2 = (0.03d)2 are carried, where d is the dynamic range
(255 for 8-bit grayscale images). The SSIM value range is
[0, 1] with one value for the ideal standard. CPU time(s) used
by these algorithms to determine the numerical efficacy of
the algorithms under consideration after the iterations are
finished. For all the numerical schemes, we utilize the alike
end condition as under

Relative Error =
‖û− u‖2

‖u‖2
≤ [10−4, 10−6] (32)

where m is the image’s biggest pixel value, u is the real
picture, and û is the denoted image.

A. SYNTHETIC IMAGES
Wefirst approximate the effectiveness of the suggestedmodel
(M1) utilizing two synthetic images with a scale of 2562 and
5122. The images are distorted by multiplying noise with
noise variances σ 2

= 0.03 and 0.2 separately. The recon-
struction outcomes in Fig.1 and Fig.2 show that the suggested
approach seems to preserve the image features effectively and
thereby provides images that look more natural. In addition,
the appropriate PSNR (dB), SSIM, relative error, number of
iteration steps and CPU time(s) results in Fig.1, Fig.2 and
Table.1 demonstrate that our approach performs improved
latent (denoising) images reliably and efficiently. It is also
noted that the proposed model retains image edges, textures
and does not create artifacts along the edges.
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FIGURE 11. a) Given image 2562; b) Degrade image with σ2 = 0.06; c) De-noised image; d) Residual
image; e) Adaptive value of α; f) Adaptive value of λ respectively.

TABLE 4. Performance of the proposed model (M1) on SAR images of size (2562) and corrupted by multiplicative noise of variance σ2 = 0.08 and 0.06 in
terms of ENL(A), ENL(B), ENL(C) and EPI results.

B. REAL-WORLD IMAGES
To prove further the better performance of the proposed
model qualitatively and quantitatively, in Fig.3–8, we present
denoising results for natural images with size range from
2562 to 1820× 720. The images are degraded with different
noise variance levels σ 2

= 0.02, 0.2, 0.3 and L = 5.
The corresponding PSNR (db), SSIM, relative error, iter-
ation steps and computational time results are also dis-
played in Table. 2 and Figs.3(g,h, i)–8 (g,h,i), respectively.
Adaptive automatically tuned values of α and λ are shown
in Figs. 3(e,f)–8 (e,f). Our recovered results subtle image
features while at the same time avoids staircase artifacts suc-
cessfully. Overall, our method can obtain better restoration
outputs with optimal PSNR (db), SSIM, relative error results
and computational CPU costs respectively.

C. MEDICAL IMAGES
This section focuses on testing denoising potential of the
proposed model (M1) on three MRI (brain and kidney) medi-
cal images. The images having size 2562 are contaminated
with different noise variance levels σ 2

= 0.08, 0.1 and
L = 5, for details see Figs.7, 8, and 9. The adaptive values
of α and λ can be observed from Figs. 7(e,f), 8(e,f), and
9(e,f). The residual image results in Figs. 7(d), 8(d), and 9(d)
show that the model (M1) can preserve image edges, textures

and other features quite well. The output results in Table.3,
Figs. 7(c,g,h,i), 8(c,g,h,i), and 9(c,g,h,i) demonstrate that the
proposed method (M1) produces images that look more nat-
ural, reduces staircase artifacts effectively and give optimal
PSNR, SSIM, relative error and CPU time (s) values.

D. SAR IMAGES
Furthermore, in order to test the ability of model
M1 for multiplicative noise (speckle) removal, several
tests have been carried out on true SAR-images (where
the noise is supposed to support Gamma distribution)
(where the noise is supposed to support Gamma distri-
bution). The results are seen in Figs.10, 11, 12, and 13.
As in Figs.10-11, the indicated (clean) image is not recog-
nized, so the related PSNR and SSIM values cannot be evalu-
ated. In this case, we use the same number of looks (ENL) and
the Edge-Preserving Index (EPI) as the criterion for scientific
evaluation. Large ENL means a greater opportunity for noise
removal in flat areas, and a larger EPI infers better edge con-
servation efficiency. The ENLs are evaluated in the regions
ENL(A)(10, 50, 50, 120), ENL(B)(85, 125, 135, 185), and
ENL(C)(130, 160, 25, 60). The results are shown
in Figs.10(c)-11(c) and the computed indexes in Table.4.
Outputs have shown that the proposed approach can provide
an optimal high (EPI and ENL) with low computational
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FIGURE 12. a) Given image 2562; b) Noisy image with σ2 = 0.1; c) De-noised image; d) Residual image;
e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result with
number of iteration steps respectively.

TABLE 5. Achievement of the proposed model (M1) on SAR images of size (2562) and corrupted by multiplicative noise of variance σ2 = 0.1, and 0.2
regarding PSNR (db), SSIM, relative error and CPU time (s) results.

time and can preserve edges and textures showed by residual
images in Figs.10(d)–11(d).

In Figs.12–13, the real SAR images having size 2562 are
contaminated by speckle with different noise variance σ 2

=

0.1, 0.2. From the restoration results given in Figs.12–13 and
the PSNR, SSIM, relative error and CPU time values given
in Table.5 and Figs.12(g,h,i)–13(g,h,i), one can check that the
proposed method (M1) is able to get better de-noised images
and recover smooth regions, avoiding staircase effects as well
as discontinuous at object boundaries.

E. COMPARISON TO PREVIOUS DE-NOISING METHODS
In this portion, we present some experimental findings to
demonstrate the effectiveness and potential of the suggested

model (M1). The outputs obtained are confronted with those
of the FLG-model (M2) [41], the HMW-model (M3) [42] and
the DRS-model (M4) [43].

1) FLG-MODEL (M2)
Using the MAP estimation technique of MAP,
W. Feng et al. [41] recommended a variational model based
on TGVγ 2 to remove multiplicative noise is given by

u? = argmin
u

{
α1

∫
�0

(u+ fe−u)dxdy+ TGV 2
γ (u)

}
,

with u?final = eu
?

(33)

where the first term is the data fitting term which is derived
from MAP and α1 is the regularization parameter. TGV 2

γ as
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FIGURE 13. a) Given image 2562; b) Contaminated image with σ2 = 0.2; c) De-noised image; d) Residual
image; e) Adaptive value of α; f) Adaptive value of λ; g) PSNR result; h) SSIM result; i) Relative error result
with number of iterations respectively.

defined in (34) is the regularization term.

TGV 2
γ (u) = min

v∈V
γ1‖∇u− v‖1 + γ0‖ε̄(v)‖1 (34)

primal-dual algorithm was employed to compute minimizer
of (33). For more details, the interested reader is refereed
to [41].

2) HNW-MODEL (M3)
By using the alternating minimization algorithm [12],
the numerical solution of the HMW-model is computed as
under.

min
z,w
=

[ N×N∑
i,j=0

(
zi,j + fi,je−zi,j

)
+α1|zi,j − wi,j|22 + α2TV (wi,j)

]
(35)

where the parameters α1, α2 and the stopping criterion of the
HMW model (M3) are selected as suggested in [42].

3) DRS-MODEL (M4)
Applying the MAP approach, Steidl et al. [43] considered the
following convex image restoration model as

u? = argmin
u∈BV ,u>0

{∫
�

(u-f logu)dxdy+ γ
∫
�

|∇u|dxdy
}
(36)

where the data fitting term is shown by the first term,
while the regularization parameter is γ and the second
term is known as the total variational regularizer. The min-
imizer of the energy functional is computed by employing
the Douglas-Rachford splitting methods. For more details
see [43].

4) PGD-MODEL (M5)
Thanh et.al suggested the new TV-based scheme [44] to
remove the mixed Poisson-Gaussian noise from the images.
The functional for this scheme is given as under.

L(u, τ ) =
∫
�

|∇u|dxdy+ τ
{ λ1
2σ2

∫
�

(v− u)2dxdy
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FIGURE 14. a) True image 5122; b) Degraded image with σ2 = 0.08; denoised image c) M1; d) M2; e) M3; f) M4; g) Adaptive value
of α; h) Adaptive value of λ; i) Original image; comparison of the performance of M1, M2, M3 and M4 methods with j) PSNR;
k) SSIM and l) Relative error results respectively.

+λ2

∫
�

(u− vln(u))dxdy− k
}
, (37)

where τ is known as Lagrange multiplier. Here, λ1 > 0
and λ2 > 0. The solution of (37) result in the given
Euler-Lagrange equation.

λ1

σ 2 (v− u)+ λ2(1−
v
u
)− µ

∂

∂x

(
ux√

u2x + u2y

)

−µ
∂

∂y

(
ux√

u2x + u2y

)
= 0. (38)

The Lagrange multipliers method have been utilized to solve
equation (38). For more information, the readers are refereed
to [44].

5) MNRNRTVWF-MODEL (M6)
Chunyan et. al proposed a model [45] for multiplicative noise
removal and found some good restoration results. The model

for multiplicative noise removal is

min
u,α,v

F(u, α, v) =: f (u) + g(α, u)+ h(v, u), (39)

where α, and v are the two auxiliary variables. Also

f (u) = < u,flogu, 1 >,

g(α, u) = λ1
n1∑
i=1

ϕ1(αi)+
β1

2
‖α −Wu‖2,

and

h(v, u) = λ2
n2∑
i=1

ϕ2(Div)+
β2

2
‖u− v‖2.

Althoughmodel (39) is yet nonconvex, the functionF(u, α, v)
is strongly convex concerning u, α, and v under some con-
ditions. respectively. The component-wise strong convexity
provides the numerical ability for solving the nonconvex
problem. The authors then utilized an alternating minimiza-
tion scheme to solve the problem (39). Beginning of an intro-
ductory guess u0, then a new sequence was obtained which is
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FIGURE 15. a) Original image 5122; b) Degraded image with σ2 = 0.08; denoised image c) M1; d) M2; e) M3; f) M4;
g) Adaptive value of α; h) Adaptive value of λ; i) original image; comparison of the performance of M1, M2, M3 and
M4 methods with j) PSNR; k) SSIM and l) Relative error results; restored results by m) M1; n) M2; o) M3; p) M4 respectively.
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FIGURE 16. a) True image 5122; b) Degraded image with σ2 = 0.03; denoised image c) M1; d) M2; e) M3; f) M4; g) Adaptive
value of α; h) Adaptive value of λ; comparison of the performance of M1, M2, M3 and M4 methods with i) PSNR; j) SSIM
and k) Relative error results; l) Region of interest; restored result by m,q) M1; n,r) M2; o,s) M3; p,t) M4 respectively.
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FIGURE 17. a) True image 5122; b) Degraded image with σ2 = 0.1; denoised image c) M1; d) M2; e) M3; f) M4; g) Adaptive
value of α; h) Adaptive value of λ; comparison of the performance of M1, M2, M3 and M4 methods with i) PSNR; j) SSIM and
k) Relative error results; l) Region of interest; restored result by m) M1; n) M2; o) M3; p) M4 respectively.
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FIGURE 18. a) True image 5122; b) Noisy image with σ2 = 0.03; denoised image c) M1; d) M2; e) M3; f) M4; g) Adaptive
value of α; h) Adaptive value of λ; comparison of the performance of M1, M2, M3 and M4 methods with i) PSNR; j) SSIM and
k) Relative error results; l) Region of interest; restored result by m) M1; n) M2; o) M3; p) M4 respectively.
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TABLE 6. Comparison of the performance of the M1, M2, M3 and M4 methods on images of size (5122) degraded by multiplicative noise of variance
σ2 = 0.08,0.03 and 0.1 in terms of PSNR and SSIM.

TABLE 7. Comparison of the performance of the methods: M1, M2, M3 and M4 on images of size (5122) corrupted by multiplicative noise of variance
σ2 = 0.08,0.03 and 0.1 in terms of relative error and CPU time (s).

given as under.

(u0, α0, v0), (u1, α1, v1), (u2, α2, v2), (uk , αk , vk ) . . . . . . .

generated by

uk+1 = argminu < u,flogu, 1 > +
β1

2
‖αk

−Wu‖2 +
β2

2
‖uk − v‖2

αk+1 = argminα g(α, uk+1) = λ1
∑n1

i=1 ϕ1(αi)

+
β1

2
‖α −Wuk+1‖2

vk+1 = argminα h(v, uk+1) = λ2
∑n2

i=1 ϕ2(Div)

+
β2

2
‖u− v‖2, for k = 1, 2, . . .

(40)

For further information, see [45].

6) AMRHOTVIG-MODEL (M7)
Dang et. al proposed Higher order model [46] for multipli-
cation noise removal using the alternating directionmethod
of multipliers(ADMM)and hence some effective restoration
results have been obtained. The proposed model is stated as
under.

argmin
u

{ ∫
�

|∇u|2dx + k
∫
�

|∇
2u|2dx

+
λ(v)
2

∫
�

|u− v|22dx
}
, (41)

with

λ(v) =
µ

1+ τmaxρ |Gρ ? ∇v|22
,

where Gρ = 1
25ρ2

exp
(
−

x21+x
2
2

2ρ2

)
. Including each value of

scale parameter ρ, the authors obtained a similar value of
expression |Gρ ?∇u|2.After assessing all values of |Gρ ?∇u|2
in all of scales ρ, they took the they took the maximum value
|Gρ ? ∇u|22. This value was employed for determining the

value of the regularization parameter λ in the model. The
authors then used the alternating directionmethod of multi-
pliers(ADMM) to solve (41). For further details, see [46].

7) EXAMPLE-01
Twomedical images namely the X-ray and fingerprint images
of size 5122 are degraded with multiplicative noise of noise
variance σ 2

= 0.08 are utilized as test images. The main
concept of the model (M1) is to exploit the benefit of the
FOTV regularizer and the fuzzy membership degrees to
obtain images that look more natural. In Figs.14 and 15,
we compared the de-noising results of the M2-model,
M3-model, and M4-model with the recommended
model (M1). The model (M1) yields better restoration results
comparing to other methods since it preserves edges, textures,
and other fine details whereas at the same time decreasing the
blocky effect as well. The α and λ adaptive parameters are
described in Fig14(g,h)–15(g,h). Furthermore, the results are
given in Tables. 6–7, and Figs.14(j,k,l)– 15(i,j,k), clarify that
the method (M1) delivers better PSNR, SSIM and relative
error values of restored images compared t]o other methods.

8) EXAMPLE-02
The Barbara and Lena images of size 5122 with noise
variance σ 2

= 0.03, 0.1 are used as test images.
In Fig.16–Fig.18, we present the recovered pictures, flat
sections, and texture sections achieved by applying (the M1,
M2, M3, and M4) models. The comparing PSNR, SSIM.
relative error and CPU time results are also mentioned
in Figs.16(i,j,k)–18(i,j,k) and Tables.6–7. The adaptive tuned
values of α and λ are also showed in Figs.16(g,h)–18(g,h).
In particular, the black color rectangles showed
in Figs.16(l)–18(l) indicate segments of specific concern
in every scene which are zipped in Fig.16(m,n,o,p,q,r,s,t),
Figs.17(m,n,o,p) and 18(m,n,o,p), in order to display the
better results of the potential model (M1) comparing

VOLUME 9, 2021 43595



M. A. Khan et al.: Novel Fractional-Order Variational Approach for Image Restoration Based on FMDs

FIGURE 19. a) original image 2562; b) noisy image with σ2 = 0.02; denoised image c)M1; d)M5; e) M6; f) M7; g)adaptive value of α;
h) adaptive value of λ; comparison of the performance of M1, M5, M6 and M7 methods with i) PSNR; j) SSIM and k) relative error
results; l) region of interest; restored result by m) M1; n) M5; o) M6; p) M7 respectively.

to other competing methods. The findings shown
in Figs.16(c,d,e,f)–18(c,d,e,f) and Tables.6–7 clearly demon-
strates that the suggested model (M1) retains sharp edges,
textures and at the same time minimizes the blocky effect bet-
ter than FLG-model (M2) [41], the HMW-model (M3) [42]
and the DRS-model (M4) [43]. Furthermore, the numerical

outputs in Table. 6–7 demonstrate that the model (M1)
can efficiently improve the PSNR, SSIM, relative error of
recovered images better than compared to other schemes.
Therefore, it is fair to conclude that the model (M1) is
better than other models in the sense that it has sharp edges,
piecewise smooth intensities and reduces the blocky effect.

43596 VOLUME 9, 2021



M. A. Khan et al.: Novel Fractional-Order Variational Approach for Image Restoration Based on FMDs

FIGURE 20. a) original image 2562; b) noisy image with σ2 = 0.01; denoised image c)M1; d)M5; e) M6; f) M7; g)adaptive value of α;
h) adaptive value of λ; comparison of the performance of M1, M5, M6 and M7 methods with i) PSNR; j) SSIM and k) relative error
results; l) region of interest; restored result by m) M1; n) M5; o) M6; p) M7 respectively.

TABLE 8. Comparison of the performance of the M1, M5, M6 and M7 methods on images of size (2562) degraded by multiplicative noise of variance
σ2 = 0.02,0.01 in terms of PSNR and SSIM.
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TABLE 9. Comparison of the performance of the methods: M1, M5, M6 and M7 on images of size (2562) corrupted by multiplicative noise of variance
σ2 = 0.02,0.01 in terms of relative error and CPU time (s).

9) EXAMPLE-03
The Cameraman and Pepper images of size 2562 with
noise variance σ 2

= 0.02, 0.01 are selected as test
objects. In Figs.19–20, we present the restored images,
flat regions and texture regions achieved by applying (the
M1, M5, M6 and M7) models. The comparing PSNR,
SSIM. relative error and CPU time outputs are also shown
in Figs.19(i,j,k)–20(i,j,k) and Tables.8–9. The adap-
tive tuned values of α and λ are also mentioned in
Figs.19(g,h)–20(g,h). In particular, the black color rectan-
gles showed in Figs.19(l)–20(l) indicate segments of special
interest in each scene which are zoomed in Figs.19(m,n,o,p)
and 20(m,n,o,p), in order to show the results of the poten-
tial model (M1) comparing to other competing meth-
ods. The results shown in Figs.19(c,d,e,f)–20(c,d,e,f) and
Tables.8–9 clearly demonstrate that the proposed model (M1)
yields better restoration results since it preserves sharp edges,
textures and at the same time reduces the staircase effect bet-
ter than M5, M6 and M7. Furthermore, the numerical results
in Tablse.8–9 demonstrate that the model (M1) can efficiently
improve the PSNR, SSIM, relative error of recovered images
better than compared to other methods. Hence, it is concluded
that the model (M1) is best in the sense that it has sharp edges,
piecewise smooth intensities, and minimizing the staircase
effect better than other models.

VI. CONCLUSION AND FUTURE WORK
In this article, a new fractional-order (space and time)
total variation regularized model for multiplicative noise
removal is introduced and develop a semi-implicit gradient
descent numerical algorithm for computing its numerical
solution. To develop the proposed model better performance,
the changing fuzzy membership degrees are defined gradu-
ally to characterize the likelihood of a pixel relating to edges,
textured and flat regions, and hence this strategy performs
well for reducing the fragmenting effect. Through several
examples, we showed that the proposed model produces opti-
mal results over other methods. Experimental outcomes (on
synthetic, natural, medical, and SAR images) showing the
better potential of our method than other methods in preserv-
ing edges, textured regions, flat regions, and eliminating the
blocky effect. The applications of the proposed method can
be extended to tackle image segmentation, image inpainting,
image dehazing, image deblurring problems, and Rayleigh
noise as well which occurs in ultrasound images.

In this work, we employ just the Canny edge detector
and the local variance. For instance, when we approximate
the textured region, we ignore some texture characteristics

of pixels such as scales, direction, etc. In the next work,
we require to enhance the structure detector methodology
more to point out the structures adaptively in distinct routes
and scales and thenmake the proposed algorithm perform bet-
ter. Furthermore, the proposed method is still not a hundred
percent effective for avoiding the staircase effect. To tackle
this issue, we will improve the proposed method and algo-
rithm to effectively and efficiently handle this problem.

We shall also proceed in the area of deep mathematical
analysis of the model and proving the convergence of the
techniques and optimizing the order of the equation used for
the de-noising. Developing some fast schemes for solving
differential equations derived from the minimization of the
energy functional might be considered in future research.

We have used the adaptive method to select the best value
of lambda for all the numerical simulations in this article
which is sometimes quite hard to choose the best-selected
value. This problem is under intense study and results will
be reported in the subsequent paper.
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