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ABSTRACT As a refined finite element model takes much effort to build and tune to simulate the building
structure’s response under seismic effects, many rapid estimation methods were proposed to predict the
engineering parameters. These methods include simplified structure models, response spectrum, interstory
drift spectrum, andmachine learningmethod. This study proposes a method that combines the interstory drift
spectrum and a deep learning method to estimate the maximum interstory drift ratio (MIDR). The proposed
method includes two approximations. Firstly, use the interstory drift spectrum to estimate the MIDR as a
first approximation. Since the differences exist between the interstory drift spectrum and the true responses,
the interstory drift spectrum’s adjustment is necessary. The second approximation uses a deep convolutional
neural network (DCNN) to tune the first approximation to predict the MIDR under a new seismic event.
In the training process of the DCNN, 30 reinforced concrete buildings’ time history analyses results and
38 interstory drift spectrums were fed into the DCNN. The proposed method is also compared with four
artificial neural network models and one support vector machine model to show its advantages. The results
indicate that the DCNN could learn the relationship between the interstory drift spectrum and the time history
analyses results and make a reasonable prediction of MIDR. Besides, the proposed method is used in MIDR
estimation of 30 more detailed finite element models of steel moment-resisting frames. The results indicate
that the methodology could give a reasonable estimation of the buildings’ MIDR of new seismic events.

INDEX TERMS Convolutional neural network, seismic response prediction, interstory drift spectrum, deep
learning, data-driven.

I. INTRODUCTION
In history, seismic disasters have caused countless lives and
economic losses to humans. Engineers are working on seis-
mic disaster prevention and reduction in many fields, includ-
ing structure design, monitoring, vibration control. Because
a refined finite element model (FEM) needs time to be
built and tuned, researchers proposed different methods to
estimate building structures’ response under seismic effects
rapidly, including simplified models, acceleration spectrum,
and machine learning methods.

Many simplified models were proposed to calculate the
displacement and force demand for building structures in the
design stage. To fulfill this task, researchers proposed differ-
ent simplified models. Moehle [1] used a response spectrum
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analysis method to estimate the reinforced concrete build-
ing’s maximum inelastic response displacement. Miranda [2]
proposed an equivalent continuum structure model consist-
ing of a flexural cantilever beam and a shear cantilever
beam to simulate a multistory building’s behavior. Miranda’s
team developed this well-known model in the following
works, including lateral stiffness variations’ influence on
interstory drift demands [3]; assessment of residual displace-
ment ratios [4]; equivalent linear methods to estimate max-
imum deformation [5]; buildings’ behavior under near-fault
pulse-like ground motions [6]. Unlike the above methods,
Hori’s team focuses on the integrated earthquake simula-
tion (IES), including the earthquake propagation in the field.
Hori [7] put forward the earthquake computational method to
analyze the wave propagation process in the ground, calculat-
ing strong groundmotions of a target site. Latcharote et al. [8]
developed this method and utilized the simplified model of
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four structure types to conduct the seismic risk evaluation
in Sendai city, Japan. Sahin et al. [9] conducted the IES for
Istanbul. In comparison, Lu’s team [10]–[12] collect large
amounts of experiments and developed a multiple-degree-
of-freedom (MDOF) shear model for rapid regional seismic
simulation, which could simulate the seismic response of dif-
ferent structure types. Lu et al. [10] increased the computing
speed of the model using parallel computing conducted on
GPU. Xiong et al. [11] developed this model by proposing
a nonlinear multiple degree-of-freedom flexural-shear model
to simulating tall buildings’ responses. Xiong et al. [12] dis-
cussed the parameter determination in the MDOF model and
proposed a damage assessment scheme; the MDOF model
was validated through three individual tests and one observed
seismic damage statistic.

Interstory drift is also a vital engineering parameter in
building design and monitoring. Monitoring the interstory
drift could evaluate buildings’ damage states. Like the
response spectrum could give a direct indication of the accel-
eration demand of earthquake ground motions, the inter-
story drift spectrum could estimate the interstory drift rapidly
based on building periods and damping characteristics [13].
Iwan [13] put forward the interstory drift spectrum for the first
time. He simplified the building structure as a continuous lin-
ear shear beam and studied the wave propagation in the beam
caused by the seismic events. The generated interstory drift
spectral could represent the relationship between interstory
drifts and fundamental periods or damping ratios. One draw-
back of this model is that it needs both velocity time histories
and displacement time histories of ground motions. However,
Kim and Collins [14] pointed out that, in Iwan’s model,
the residual drift existed at the base in some ground motions
when the structure’s fundamental period was small. There-
fore, researchers developed the interstory drift spectrum using
other methods. Chopra and Chintanapakdee [15] used modal
analysis to generate the interstory drift spectrum; they sug-
gested the modal participation number should be larger than
5 for a better simulation. Gülkan and Akkar [16] proposed
calculating the ground story interstory drift ratio using the
ground acceleration, which simplified Iwan’s method [13].
Miranda and Akkar [17] also used modal analysis to generate
the drift spectrum. They suggested that the first six modes
should be considered for a better simulation for buildingswith
periods longer than 1.2s. However, the model shape depended
on the composite beam model [2], which was different from
Chopra’s model [15]. Shodja and Rofooei [18] proposed a
lumped mass beam model to generate an interstory drift
spectrum that could consider height-wise stiffness reduc-
tion. Neam and Taghikhany [19] used the ‘‘Mixed-effects
model’’ to derive a regression model of 851 strong-motion
records and study site parameters’ effects on the interstory
drift spectrum. Guo et al. [20] put forward a finite element
model for the composite beam [2] and a self-similar interstory
drift spectrum; the self-similar interstory drift spectrum was
evaluated under the idealized pulses and near-fault ground
motions.

With the development of computer hardware like CPU,
GPU, and storage, Machine Learning (ML) and Deep Learn-
ing (DL) make breakthroughs in recent years. As ML algo-
rithms performwell in processing large amounts of data, their
application in seismic response prediction is spontaneous.
Artificial Neural Network (ANN) is an ML algorithm to
obtain the relationship between input and output through a
multilayer perceptron. Lautour and Omenzetter [21] used an
ANN model to predict seismic-induced structural damage.
In their work, the ANN model’s input parameters include
13 structure parameters and six seismic parameters. Kalman
Šipoš et al. [22] used ANN to predict framed-masonry
structural elements’ seismic behavior and conduct a sensi-
tivity analysis of the essential factors. To distinguish the
different seismic events, Morfidis and Kostinakis [23] used
14 seismic parameters representing ground motions’ prop-
erties; they evaluated the weights of 14 seismic parameters
in the network. They also estimate the maximum interstory
drift ratio (MIDR) of new seismic events using two ANN
models [24], with 14 seismic parameters used in the input.
Mangalathu et al. [25] used an ANN model to generate
bridge-specific fragility curves.

However, the above three methods have some disadvan-
tages. Although both the simplified model and the interstory
drift spectrum could give a rapid estimation of the MIDR,
differences between the true response and the estimation
may exist due to the modeling error or building informa-
tion absence like stiffness, damping ratio, material behavior.
Tuning these parameters is time-consuming work that will
take many human efforts. The ML method usually has a
good prediction performance when the features have been
used in the training set. When the features are quite different
from those in the training set, the prediction results always
perform poorly. For example, the ML method has a relatively
bad performance in predicting structure response under new
seismic events, which have not been used in the training set.

Recently, the DL is much developed, especially in image
recognition and data process. The Convolutional Neural
Network (CNN) has some advantages: sparse interactions,
parameter sharing, and equivariant representations [26].
Based on the data characteristics, CNN could handle different
kinds of works. Two-dimension (2D) CNN often handles
image-related problems such as image identification, image
reconstruction. For example, Li et al. [27] propose a convolu-
tional encoder-decoder network to detect crack from concrete
images. Zhang et al. [28] put forward a multi-point dis-
placement monitoring method based on a full convolutional
neural network. Although the acceleration signal or other
monitoring signals are always one-dimension (1D) signals,
some researchers construct some ingenious data structures to
import into 2D CNN. Modarres et al. [29] used the modal
strain energy to construct the honeycomb panels’ damage
index. The damage index pictures were imported into a
CNN to classify the damage conditions into three types.
Cofre-Martel et al. [30] collected ten different transmissi-
bility functions measured on a structural beam to generate
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FIGURE 1. The flowchart of the proposed method.

images with 10∗96 pixels. After feeding the images into the
CNN, the network was trained and verified through two dif-
ferent experiments. Yu et al. [31] adopted frequency domain
signals of several sensors to compose 2D images, which were
import into a CNN for damage identification. Dong et al. [32]
construct a CNN to distinguish two seismic waveforms of
microseismic events and blast.

In contrast, 1D CNN could handle time-variant data like
monitoring data, cardiogram cardiograph electrocardiogram.
Fan et al. [33] used CNN to recover the lost vibration
data in structural health monitoring. A deep CNN network
named SHMnet proposed by Zhang et al. [34] could process
the vibration data to detect the bolted connection damage.
Guo et al. [35] utilized multiple convolutional layers to
construct a 1D CNN. It is combined with multiple residual
learning modules; the network could extract the damaged
features from the noisy and incomplete model shapes.

This study combines the interstory drift spectrum and a
DLmethod to estimate the buildings’ MIDR to overcome tra-
ditional rapid estimation methods’ drawbacks. Two approxi-
mations are made to predict the MIDR. First, use Miranda’s
interstory drift spectrum (MIDS) to give a first approximation
of the MIDR. Second, use the DL method to tune the MIDS
and give a second approximation of theMIDR so that the pre-
diction will be more precise. The flow chart of the proposed
is shown in Figure 1.

This study proposes a data-driven method based on DCNN
to estimate the buildings’ MIDR under new seismic events.
First, the interstory drift spectrum of 38 seismic events
was calculated. Simultaneously, time history analyses (THA)
of 30 reinforced concrete (RC) buildings were conducted

under 38 seismic events. A DCNN model was designed
according to the data structure of the interstory drift spectrum.
Meanwhile, the MIDS and the THA results were imported
into the DCNN as the input and output. Compare the DCNN’s
predictions with the THA results to verify the DCNN’s feasi-
bility. Besides, the proposed method was compared with four
ANN models and one support vector machine model to show
its robustness. Finally, the proposed method was verified
through 30 more detailed steel moment-resisting buildings’
FEMs.

II. PROPOSED APPROACH
This section will introduce some conceptions and some
model details, including a basic conception of the interstory
drift spectrum, two kinds of time history analyses, twoDCNN
models, four ANN models, and one support vector machine
model. At last, the framework of the proposed method is
summarized. In this study, there are two assumptions: 1.
The materials of FEMs are elastic. 2. The time history anal-
yses only consider one direction of the buildings’ seismic
response.

A. INTERSTORY DRIFT SPECTRUM
MIDS is used in this study, and it is based on Miranda’s
composite beam model [2], [3], [17]. Using interstory drift
spectrum, buildings’ MIDR could be obtained based on fun-
damental period. Roughly speaking, the composite beam
model comprises a flexural cantilever beam and a shear can-
tilever beam. As shown in Figure 2, the two beams are con-
nected by some axially rigid members so that the horizontal
force could transmit, with the same lateral deformation at
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FIGURE 2. A scheme of the composite beam model.

a certain height. The corresponding descriptions had been
presented in the previous studies [2], [3], [17], [36], but they
are also depicted for a better understanding. The following
equations do not consider the height-wise stiffness variation.

The paper [36] gives the representation of the model shape
φi (x), and the derivative of the mode shapes φ′i (x) of the
composite beam model (x is a non-dimensional height as
x = z/H, H is the building height.):

φi (x) = sin (γix)−
γi

βi
sinh (xβi)− ηi cos (γix)

+ ηi cosh (βix) (1)

φ′i (x) = γi cos (γix)− γi cosh (xβi)+ ηiγisin (γix)

+ ηiβi sinh (βix) (2)

where two non-dimensional parameters are defined as:

βi =

√
α2 + γ 2

i (3)

ηi =
γ 2
i sin (γi)+ γiβi sinh (βi)

γ 2
i cos (γi)+ β2i cosh (βi)

(4)

Moreover, α is defined as a ratio of shear rigidity to flexural
rigidity:

α = H

√
GA
EI

(5)

where GA is the shear beam’s shear rigidity, EI is the flexural
beam’s flexural rigidity. In (3), γi is the eigenvalue of i th
mode of (6):

2+

(
2+

α4

γ 2
i β

2
i

)
cos (γi) cosh (βi)

+

(
α2

γiβi

)
sin (γi) sinh (βi) = 0 (6)

Besides, the modal participation factor 0i is expressed as:

0i =

∫ 1
0 φi (x) dx∫ 1
0 φ

2
i (x) dx

(7)

The interstory drift ratio (IDR) at height x and time t can be
approximated as:

IDR (x, t) ≈
1
H

m∑
i=1

0iφ
′
i (x)Di (t) (8)

FIGURE 3. An explanation of MIDR.

where m is the model number considered,Di (t) is the relative
displacement response of a single degree of freedom system
subjected to a ground acceleration üg (t), with a period Ti,
modal damping ratio ξi of i th mode. The single degree of
freedom system’ damping ratio of each mode is 0.05 in this
study. The interstory drift spectrum is defined as the MIDR
along the height x and the vibration period t .

MIDR = IDRmax = max
∀x,t

IDR(x, t) (9)

In this study, the first six modes were considered in the
calculation because paper [17] concluded that the six modes
of vibration are enough to obtain MIDR demands for all
fundamental periods.

From (1) to (9), with a certain fundamental period,
the MIDS depends on the stiffness ratio α and the damping
ratio ξi. The height-wise stiffness variation is also an essen-
tial factor because the original building usually has stiffness
variation, which is not easy to be simulated in the theoretical
derivation. Researchers have to assume the stiffness variation
shape like linear, parabolic to consider its influence on build-
ings’ dynamic behavior [3], [18], [37], [38].

B. TIME-HISTORY ANALYSIS (THA)
1) THE MULTISTORY CONCENTRATED-MASS SHEAR MODEL
This study first adopts the multistory concentrated-mass
shear (MCS) model proposed by Lu [10]–[12] to conduct
THA under seismic effects. In an MCS model, each floor
of a building is simplified as a concentrated mass. Once
the building details like structure type, floor number, floor
area have been identified, the MCS model could generate an
OpenSees [39] script. Finally, engineering parameters such as
MIDR, roof displacement, acceleration time-history of each
floor could be calculated by the FEM.

MIDR, which is a common engineering parameter, can
be illustrated in Figure 3. Due to the simplicity of the
MCS model, the 30 RC building models could be gener-
ated quickly, and thus it is used for the preliminary veri-
fication. The RC building, corresponding to structure type
C1 (concrete moment frame) in HAZUS [40], is used first.
Because this study only considers the elastic demand, each
floor’s bilinear hysteretic material model is not used. Besides,
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FIGURE 4. The SMRF buildings’ FEMs.

TABLE 1. The building attributes in the MCS models.

the lumped mass of each floor is the same as 106kg.
Some empirical formulas have already regressed the relation
between fundamental periods and building height, which is
monotonically increasing. Thus, the only variable is the floor
number varied from 1 to 30 resulting in 30 different funda-
mental periods. There are 30 building FEMs in the simulation
(TABLE 1). Gathering the calculation results of 30 buildings
could identify a discrete interstory drift spectrum (DIDS).

The external load of 30 FEMs is the seismic effects on
the foundation node. There are 38 seismic waves on the
soil site downloaded from PEER [41]. The information and
parameters of all seismic events are listed in TABLE 2. Each
wave has already been scaled to the one-tenth of its origin
peak ground acceleration to avoid the inelastic response.
Besides, only the fault normal (FN) component is considered
in the THA.

2) THE STEEL MOMENT-RESISTING FRAME FEM
Except for the MCS models, use 30 more detailed steel
moment-resisting frame (SMRF) FEMs (Figure 4) to verify
the proposed method. These models conducted the THA,
resulting in MIDR as an input in the DCNN model. These
SMRF buildings have a uniform lateral stiffness along with
the building height.

The details of the material properties are listed in TABLE
3. 30 SMRF buildings’ differences are mainly the story height

FIGURE 5. Fundamental periods with respect to building heights.

(1-30 story). The higher the SMRF, the bigger the fundamen-
tal period is.

The fundamental periods of the two models are shown in
Figure 5. The fundamental periods of the MCS models are
close to the empirical formula [42]:

T1 = 0.0853H0.75 (10)

where H is building height in meters, T1 is the fundamental
period. In contrast, the periods of the SMRFmodel are greater
than that of the MCS model.

The SMRF models use the Rayleigh damping ratio. The
first mode and third mode’s damping ratios are assumed as
4%. 30 SMRF buildings will be subjected to the 38 ground
motions in Table 2 without scaling. The calculations were
conducted using OpenSees software. The above SMRF mod-
els are based on one OpenSees example [43].

C. DEEP CONVOLUTIONAL NEURAL NETWORK
The basic concepts of DCNN could be found in the
references [29], [44], including the convolution layer,
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TABLE 2. Details of the ground motion records.
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TABLE 3. The material properties of the SMRF buildings.

FIGURE 6. The DCNN1’s configuration.

convolutional kernel, activation function, training, drop out.
These basic conceptions are not described in this article to
avoid repetition.

The networks used below are inspired by the autoencoder.
The simplest autoencoder is a multilayer network with an
attempt to copy its input to its output. Thus, the middle of
the hidden layer or the bottleneck layer has the least neurons
through a multilayer architecture. Attribute to this structure,
low dimension features could be drawn out of raw data.
Autoencoder is competent in signal reconstruction, dimen-
sionality reduction, and feature learning [26]. Autoencoder
has many engineering applications like data anomaly auto-
matically [45], wave pattern recognition [46]. When autoen-
coder is combined with CNN, the first half needs convolution
operations to decrease the dimension. At the same time,
the left half need deconvolution operations to increase the
dimension. The problem in this study also involves finding
the relationship between the input (MIDS) and the output
(DIDS) and reconstructing the input. Although the input and
the output dimension are not the same, convolution operations
and deconvolution operations are also kept in the architecture.
Additionally, two networks that only have convolution oper-
ations (denoted as C1 and C2) are used for comparison.

The framework of the DCNN in this study could be
described as follows. There are two DCNNs denoted as

DCNN1 and DCNN2. DCNN1 processes the MCS models’
results; DCNN2 processes the SMRFmodels’ data. The main
difference between the two models is the length of the input
data. Figure 5 shows that, in DCNN1, the 30 MCS models’
fundamental periods vary from 0.2s to 3.62s. The MIDS’s
fundamental periods’ selection varies from 0.2s to 3.78s with
an interval of 0.02s (180 data) to include period 3.62s in
the dataset. In contrast, in DCNN2, the 30 SMRF models’
fundamental periods range from 1.38s to 5.82s. Similarly, the
corresponding MIDS’s fundamental periods start from 0.02s,
end at 5.94s (288 data).

The architecture of DCNN1 is illustrated in Figure 6. The
parameters of DCNN1 are determined through experience
and trial and error. DCNN1 has six layers in total; the shape
of the input layer and the output layer are 180×1 and 30×1,
respectively. In the middle of the network, the data character
varies with the convolutional kernel size. After the input layer,
128 convolutional kernels, with a size of 10×1 (1 is the kernel
depth) and a stride of 2, were used to conduct convolution
calculation with the input layer’s data. Each kernel generates
one channel of the feature map in the next sub-sampling layer,
and the depth of the convolutional layer equals the number of
the kernel [31]. Between the input layer and layer 2, there
is a dropout layer to avoid overfitting. The dropout obeys a
Bernoulli distribution with a probability of 0.2. Subsequently,
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FIGURE 7. Two networks only have convolution operations.

FIGURE 8. The DCNN2’s configuration.

64 convolutional kernels with size 10 × 128 (128 is the
kernel depth) and stride of 3 were used to do convolution
calculation with layer 2. The feature maps have structures of
45 × 64 in layer 3. Layer 4 is the bottleneck of the DCNN
due to its shortest data length (15). To sum up, the first
half contains convolutional layers. The data size decreases
from 180 to 15 in the down-sampling process, but the feature
maps’ number increases alongwith the convolutional kernels’
number.

The second half uses deconvolutional layers (or transposed
convolutional layers) to increase the data length. Deconvolu-
tional layers could convert a coarse input tensor into a dense
output tensor. The details of the deconvolution calculation

could be found in the paper [44], section 3.3. The decon-
volution calculations in layer 4 and layer 5 have strides
2 and 1, respectively, which result in the increase of the data
size. In layer 5, use only one deconvolutional kernel with
size ten and depth 128 so that the output layer will have a
data size of 30 × 1. The details of the rest could be seen
in Figure 6.

Additionally, two networks only have convolution opera-
tions as comparisons of the DCNN1, as shown in Figure 7.
C1 has the simplest architecture with only one middle layer.
By contrast, C2 has more layers with descending dimensions.
The gradually descending dimensions are fulfilled through
different strides and zero-padding strategies.
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Additionally, the DCNN2’s configuration is shown in Fig-
ure 8. The configuration is similar to the DCNN1 except for
a different input data size (288) and a deeper network (eight
layers). Accordingly, the convolutional kernel size and the
feature map size are different in each layer. There is one thing
to be noted, in the convolution and deconvolution operation
of the two networks (DCNN1 and DCNN2), the zero-padding
setting is ‘‘same,’’ which means the input and the output have
the same dimension in convolution operation when the stride
is 1.

Before the training process, the raw data were regularized
through linear scaling to prevent overfitting, as shown in (11):

xscaled =
x − xmin

xmax − xmin
(11)

where x is the MIDS value, xmin and xmax are the minimum
and maximum value, xscaled is the scaled value. After reg-
ularization, the MIDS will be scaled to the interval [0, 1].
Besides, the loss function of the network is mean square error
(MSE) [47]. The optimization algorithm used is adaptive
moment estimation (ADAM) [29] aiming to find the direction
where the loss function could be decreased, and the kernels
could be tuned accordingly.

Because there are only 38 seismic waves in the dataset,
38-fold cross-validation is used in training. In other words,
37 waves were used as the training set; the left one was used
as the validation set. Therefore, the training was conducted
38 times to test performance. During the training process,
early stopping was used, with patience set 100. It means that
the training process stops when the validation loss does not
decrease for 100 epochs. Early stopping could prevent the
overfitting effectively. Too many epochs in the training may
result in over fitting if the stop epoch is just set a large num-
ber. The network was conducted in software PyCharm using
Python library Keras [48] to build, train, and evaluate the
model. Each model spends about 3min in training, conducted
on a computer with intel R©CoreTMi7-4790 CPU, 32G RAM.

D. ARTIFICIAL NEURAL NETWORK MODEL
In this study, the proposed method is compared with four
ANN models. ANN could be recognized as a multilayer
perceptron [49]. The output of each perceptron could be
identified through equation (12):

yk = f (
∑
i

wixi + bk ) (12)

where xi is the input value, wi is the weight, bk is bias, f is
the activation function. Then, yk could be used as the input
of the perceptron in the next layer. ANN has been success-
fully used in civil engineering and seismic response estima-
tion [22], [23], [50], [51]. To estimate the building’s seismic
response, the four ANN models acquire the characteristics of
the models proposed before [21], [23], [24]. In the models
before, the features used in ANN involve two parts. One part
includes structure parameters, which aim to learn the struc-
tural differences. The other part includes seismic parameters,

TABLE 4. 38 Ground motions’ seismic parameters.

which attempts to consider ground motion’s characteristics.
Thus, the ANN models used here consider both the structure
parameters and the seismic parameters. There are 14 seis-
mic parameters to discriminate each seismic event. These
seismic parameters were obtained using software SeismoSig-
nal [52] as shown in TABLE 4.

The 30 MCS models only have differences in story num-
ber, which can also be reflected by the fundamental period.
Consequently, the first two ANN models (denoted as M1 and
M2) choose the fundamental period as a structure param-
eter. M2 has one more hidden layer than M1, as shown
in Figure 9. The added one hidden layer aims to add the
network’s depth, improving the ability to find a nonlinear
relationship. However, ANN will not obtain the best perfor-
mance by simply adding the hidden layer number according
to the experiences in designing an ANN model [45]. In the
middle of the network, there are 20 neurons in each hidden
layer. The output layer has only one neuron (MIDR) because
the M1 and M2 aim to predict the buildings’ MIDR. The
nonlinear relationship between the input and the output is
realized through a multilayer perceptron.

In contrast to M1 and M2, the other two ANN models
(denoted as M3 and M4, as shown in Figure 10) have one
more input neuron named MIDS of a certain fundamental
period (MIDSFP). MIDSFP could give a first estimation
of the MIDR using the interstory drift spectrum. Based on
one MIDSFP value, one structural feature, and 14 seismic
features, the M3 and the M4 are expected to estimate the
MIDR better.

E. SUPPORT VECTOR MACHINE MODEL
Support vector machine (SVM) is also used in this study for
comparison. SVM is a widely used supervised learning algo-
rithm, which could be used in classification and regression.
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FIGURE 9. The architecture of the first two ANN models. (a) M1 has two hidden layers. (b) M2 has three hidden layers.

FIGURE 10. The architecture of two ANN models. (a) M3 has two hidden layers. (b) M4 has three hidden layers. (MIDSFP: MIDS of a certain
fundamental period).

SVM has many applications in engineering, such as seismic
vulnerability assessment[53], [54], micro-seismic events, and
blast discrimination [55]. A more detailed description of
SVM could be found in the Appendix of the paper [53].

This study also used one SVMmodel to predict the MIDR.
The training set used 14 seismic parameters, fundamental
period, MIDSFP as features, and DIDS as the class value.
Besides, the radial basis function (RBF) was used as the
kernel function. Finally, use the trained model to predict the
MIDR.

F. THE FRAMEWORK OF THE PROPOSED METHOD
A detailed framework of the proposed method could be
explained as follows, as shown in Figure 11. First, the MIDSs
of all seismic events were calculated according to Miranda’s
model [3], [36]. The MIDSs of 38 earthquakes were calcu-
lated from fundamental periods 0.2s to 10s with an interval
of 0.2s (491 data). The modal damping ratio ξi is 0.05 for
each mode, and the MIDS is an average of four cases with
α = 0, 3, 7, 30. Two kinds of FEMs have different fun-
damental periods ranges (0.2-3.62s and 1.38-5.82s). Thus,
two different parts of the MIDSs (180 data and 288 data
out of 491 data) were selected as the input of two DCNNs.

Besides, the THAs of two kinds FEMs were conducted for
38 seismic recordings. TheMIDR and the natural frequencies
of 30 buildings could be recorded in THA. As a result,
the DIDS could be generated by gathering the THA results.

Second, the MIDS and DIDS were fed into the DCNN
as the input and output. The network was trained along the
direction of decreasing the MSE. During the training process,
in the 38 cross-validations, 37 seismic events’ results were
used as a training set, and the one left was used as a validation
set. This process looped 38 times as every seismic event was
used as a validation set once. Early stopping was used in the
training process to control the training stopping time.

Third, the trained network is used for regression. The
MIDS of the left one, which was not used to train the DCNN,
was fed into the trained network. The output is regarded as
an estimation of the interstory drift spectrum (EIDS). The
network was assessed by comparing the EIDS with the THA
results.

III. RESULTS AND DISCUSSION
The first section shows that MIDS and DIDS have differ-
ences. In the second section, show the DCNN1’s results,
including the training history and prediction accuracy. In the
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FIGURE 11. The architecture of the proposed method.

third section, use four related ANN models and one SVM
model for comparison. Finally, discuss the DCNN2’s perfor-
mance.

A. THE RESULTS OF MIDS AND DIDS
Based on Miranda’s theory, the MIDS of 38 seismic record-
ings were calculated. At the same time, the DIDS could be
identified through the MCS models. Take two seismic events
as examples (Figure 12). There are differences between the
two methods. From Figure 12a, the largest MIDR happens
with the natural frequency around 0.5s in seismic event No.1.
The DIDS has the same tendency except for periods larger
than 1s as the DIDS is higher than MIDS. In Figure 12b,
the MIDS is significant at 0.5s and 2.2s in seismic event
No.24. However, the DIDS has a different trend as the MIDR
is significant within the interval 2s-3.6s.

Miranda had already summarized the different structure
types and their corresponding α [3] as follows: shear wall
buildings usually have values of α between 0 and 2; buildings
with dual structural systems consisting of a combination of
moment-resisting frames and shear walls or a combination
of moment-resisting frames and braced frames usually have
values of α between 1.5 and 6; whereas moment-resisting
frame buildings usually have values of α between 5 and 20.
The structure type used in the THA is the concrete moment
frame, which is close to α = 7, according to the above
categories. However, MIDS with α = 7 is not close to the
DIDS in both two cases. The MIDSs of four α (0, 3, 7, 30)
all deviate from the MIDS tendency, which implies that other
factors will influence the MIDS.

The differences between the THA and the theory
are mainly in three aspects: 1. Stiffness ratio α, 2.

The height-wise flexural stiffness and shear stiffness form
variation, and 3. The damping ratio of each mode. Manually
adjusting these parameters is a blind trial and error process,
which will be a time-consuming task to turning parameters
involved in the theory, as there will bemany different stiffness
variation schemes for each α and different damping ratios ξi.
Therefore, there will be errors to estimate the MIDR of the
THA only using the MIDS. Because the number of stiffness
variation schemes and damping ratio ξi are vast, this study
uses a data-driven method to tune the MIDS and give an
estimation of the MIDR as the second approximation.

B. THE RESULTS OF THE DCNN1
Take the following steps to estimate the MIDR. First, cal-
culate the MIDS of each seismic event based on Miranda’s
theory through (1) to (9). The MIDSs of the four α (0, 3, 7,
30) were averaged as a final MIDS. Second, gather the results
of the MCSmodels to obtain the DIDS of each seismic event.
Thirdly, train the DCNN1 using the MIDS and DIDS as the
input and output. When the MSE of the DCNN1 converged,
the network would be well trained. Finally, use the trained
DCNN1 to make a regression.

Use two cases (No. 12 and No. 20) for explanations. For
seismic event No.12, the MIDSs of left 37 seismic events
were used in the training set; the MIDS of No.12 was used
as an input of the regression. From the training history in
Figure 13, the MSEs of the two cases decrease quickly in
the first 100 epochs while converging around 600 epochs.
The validation loss decreases alongwith the training loss. The
difference between the training loss and the validation loss is
small during the training process, whichmeans the overfitting
did not happen.
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FIGURE 12. The results of MIDS and DIDS. (a) Seismic events No.1. (b) Seismic events No.24.

FIGURE 13. Training history of two cases. (a) Seismic event No.12. (b) Seismic event No.20.

The networks’ predictions of the two cases are shown
in Figure 14. The DCNN1’s prediction is much better than
MIDS. Although there are still small differences between the
DCNN1 and the MCS model, the two lines have a similar
trend. The differences between DCNN1 and MCS model are
much smaller than the differences between the MIDS and
MCS models.

As mentioned above, the MIDS in the validation set
has not been used in the training process. Therefore,
the DCNN1 learned the nonlinear relationship between the
MIDS and theMCSmodel. The DCNN1 increased theMIDR
when the period is greater than 1s. In conclusion, the pro-
posed method could give a reasonable estimation of the
MIDR of new seismic events.

Overall, the proposed method includes two estimations.
The first estimation utilizes MIDS to estimate the MIDR
based on Miranda’s theory approximately. The second esti-
mation uses DCNN1 to learn the relationship between the
MCS models and MIDS. The results have shown that the
proposed method has good performance in prediction.

Firstly, DCNN1 is compared with C1 and C2, as shown
in Figure 15a. Clearly, DCNN1 has lower prediction errors.
A deeper architecture of the C2 even has an opposite
effect on the prediction. Therefore, the architecture, which

has both convolution operations and deconvolution opera-
tions (DCNN1), performs better than the architecture with
only convolution operations (C1 and C2). Thus, only the
DCNN1 is used in the following discussion.

Secondly, compare the six models’ prediction (DCNN1,
M1, M2, M3, M4, and SVM model) with the MCS models’
results. The MSE values between the MCS models and six
models are shown in Figure 15b; the vertical coordinates
use logarithmic coordinates to show the discrepancy clearly.
Figure 15b shows that the DCNN1 has the smallest value in
most cases. The small MSE values indicate that the DCNN1’s
predictions are closest to the MCS models. The MSE of the
M3 and the M4 are larger than the DCNN1, which means
worse performance. In contrast, M1 and M2 have the worst
performance. The MSE differences between the M1 and M2
(or M3 and M4) are almost the same, which means a deeper
network of ANN does not significantly improve the predic-
tion accuracy. Besides, MSEs of the SVM model are almost
between M1 and M3, which means SVM has greater error
than M3 and M4.

To further verify the effectiveness of the DCNN1, the pre-
diction results of the DCNN1,M3, andM4 are comparedwith
MCS models in two scatter plots (Figure 16). In one scatter
plot, if the prediction is close to the MCS models, the scatter
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FIGURE 14. The estimation of the DCNN1.

FIGURE 15. MSE comparison of each case. (a) DCNN1 with two CNN models C1 and C2; (b) DCNN1 with five machine learning models.

FIGURE 16. Scatter plots of two cases.

points will distribute along the line ‘‘y = x.’’ Additionally,
linear regression was used to fit the scatter points of each
method. Generally, the model is better when the scatter points

locate adjacent to ‘‘y = x.’’ Figure 15 shows MSE of case
No.12 is close to the average (1.66 × 10−8); case No.20 has
the biggest MSE (9.24 × 10−8). Take these two cases as
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FIGURE 17. R2 of each model of all cases.

examples to compare the models. The M1 and M2 are not
shown in the scatter plot due to the worst MSE.

Clearly, the SVM model has the worst performance in
these two cases. The SVM model overestimates the MIDR
in No.12. By contrast, the left three models predict the MIDR
well. From the linear fitting lines of the three models, the per-
formance descending order is M3, DCNN1, and M4.

Whereas case No.20 is quite different from case No. 12.
In case No.20, the scatter points are more dispersive than
case No. 12. The prediction points of the SVM model are
dispersive in No.20. Thus, the SVM model has the worst
performance. In addition, the scatter points of DCNN1 are
more concentrated among the three models. Furthermore,
the fitted line of DCNN1 is close to ‘‘y = x.’’ When the
MIDR is less than 0.0025, the M3 and M4 overestimate the
MIDR; when the MIDR is greater than 0.0025, the M3 and
M4 underestimate the MIDR. To sum up, DCNN1 is the best
among the three models in case No.20.

Nevertheless, the above discussions of Figure 16 are qual-
itative analyses. Quantified indexes are needed to verify the
robustness of each model. Index R2 could illustrate the linear
regression quality, as shown in (13):

R2 = 1−

∑
i
(
ŷ(i) − y(i)

)2∑
i
(
ȳ− y(i)

)2 (13)

where ŷ(i) is the predicted MIDR, y(i) is the MIDR of THA, ȳ
is the MIDR’s average. The scatter points have a more linear
relationship if the R2 is big. Until the R2 reaches 1, all scatter
points locate on the fitted line, which means the linear regres-
sion will be perfect. Figure 17 shows that the DCNN1 has
the largest R2 than other five models. The average R2 of the
DCNN1, M1, M2, M3, M4 and SVM are 0.78, 0.41, 0.41,
0.74, 0.74, 0.40. This indicates that the DCNN1’s scatter
points are more concentrated near the fitted line than the
four ANNmodels and the SVMmodel. Therefore, DCNN1’s
fitted lines could represent the tendency of the scatter
points well.

However, a large R2 just means the scatter points are more
concentrated around the fitted line. It does not mean the fitted
line is near ‘‘y = x.’’ For example, scatter points could
also be concentrated, while they do not concentrate around

‘‘y = x.’’ The slopes and intercepts of five models of 38 cases
are calculated (Figure 18) to qualify the difference between
‘‘y = x’’ and all fitted lines. DCNN1’s slope values are closer
to 1, and DCNN1’s intercept values are closer to 0. Therefore,
the DCNN1’s fitted lines are close to ‘‘y = x.’’ Additionally,
there are fewer fluctuations of the DCNN1 in both slope
and intercepts. By contrast, the four ANN models and the
SVMmodel are not stable in different cases as the slopes and
intercepts fluctuate. The standard deviations of the slopes of
the DCNN1,M1,M2,M3,M4, and SVM are 0.17, 0.43, 0.47,
0.34, 0.34, and 0.38, respectively; and the standard deviations
of intercepts are 1.55 × 10−4, 5.55 × 10−4, 5.54 × 10−4,
3.07 × 10−4, 2.87 × 10−4, 2.53 × 10−4, respectively. The
M3 and M4 are more stable than the M1 and M2 mainly
due to the feature chosen. In the architecture of M3 and M4,
the MIDSFP gives a reasonable initial value of the MIDR.
Consequently, the MIDSFP improves the robustness of the
ANN model significantly.

Although the M3 andM4 addMIDSFP as an input feature,
its robustness is still worse than DCNN1. One reason for
this phenomenon is that the 14 seismic parameters could not
represent all characteristics of a seismic event. The reason
why the MIDS could represent the seismic characteristics is
that the MIDS used time history analysis (Di (t) in (8)) of a
single degree of freedom to consider the effects of the ground
motions, which will be better than the 14 seismic parameters.
Another reason is that the ANN model just used one value
of the MIDS, and this value just represents one fundamen-
tal period of a structure. For the good performance of the
DCNN1, the MIDS, which has a wide range of fundamental
periods, could represent the seismic characteristics better than
one specific period.

In conclusion, the scatter points of the DCNN1 are concen-
trated; its fitted lines are closer to ‘‘y = x.’’ The above indexes
imply that the errors between the THA and the prediction
of the DCNN1 are small. Therefore, the DCNN1 has a good
ability to predict the MIDR of new seismic events.

C. THE RESULTS OF THE DCNN2
Figure 19 shows the results of the DCNN2. The difference
between the MIDS and SMRF is vast due to two damping
types (MIDS: the damping ratio of each mode is 0.05; SMRF:
Rayleigh damping, the damping ratio of the first mode and
third mode are 0.04). Besides, the MIDS and the SMRF
have two different fundamental period ranges (0.02s-5.94s
and 1.38s-5.82s). The fundamental period range selection is
crucial because theMIDS’s curve varies along with the range.
The similar tendency between the SMRF and DCNN2 means
the interstory drift spectrum’s characteristics are similar in the
two ranges.

The DCNN2 could predict the MIDR’s tendency well.
From Figure 19, the DCNN2 learns the relationship between
the MIDS and SMRF. The DCNN2 increases the MIDR
when the MIDS’s periods are larger than 2s; it decreases the
MIDR in the MIDS’s period range 0-2s. As a result, the main
tendency of the SMRF has been predicted by the DCNN2.
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FIGURE 18. The slope and the intercept of the fitted lines in the scatter plots.

FIGURE 19. Two cases of the DCNN2.

Nevertheless, the prediction lacks details of the fluctuation.
Therefore, the DCNN2 acts as a low-pass filter and removes
the MIDS’s high-frequency fluctuation.

The drawback of the DCNN2 is the greater MSE than
the DCNN1. Figure 19 shows the MSEs of the two cases
are 2.13×10−6 and 7.34×10−5. Case No.20 has a larger
MSE than case No.12, mainly due to a larger amplitude of
MIDR (MIDRmaximumofNo.12: 0.015; No.20: 0.076). The
explanations of the drawback are as follows. First, the MCS
model’s ground motions are scaled one-tenth of its origin,
whereas the SMRF models’ ground motions are not scaled.
Thus, the SMRF models’ MIDR is larger than MCS models’,
leading to larger MSEs. Second, because SMRF models not
only have horizontal translation modes but also have rotation
modes and vertical translation modes. The SMRF models are
more complicated than the composite beam (Figure 2) and
the MCSmodel. Therefore, the DCNN2’s predictions deviate
from the SMRF models’ results.

The results of the DCNN2 indicate that the proposed
method could predict the MIDR of more detailed structures.
The DCNN2 could predict the tendency of the interstory drift
spectrum well.

IV. CONCLUSION
This study’s essence is a novel approach using a data-driven
method to predict the building’s MIDR under seismic effects.
The approach includes two approximations: 1. UseMiranda’s
interstory drift spectrum to give a first approximation of new
seismic events; 2. Use a trained DCNN to tune the MIDS
given by the first approximation and give a prediction of the
interstory drift spectrum as the second approximation. The
results turn out that the proposed method’s prediction accu-
racy is good. Based on the investigation above, conclusions
could be drawn as follows:

1. In order to estimate the buildings’ MIDR under seismic
effects, Miranda’s interstory drift spectrum was used.
However, there are differences between MIDS and the
FEMdue to the stiffness variation, damping ratio value,
and stiffness ratio α. 38 THA were conducted, and
each case contains 30 buildings with 30 different story
numbers, corresponding to 30 different fundamental
periods. The results of 30 THA in one seismic event
could identify one DIDS. It has been shown that the
differences betweenDIDS andMIDS exist, and it could
not beminimized by only adjusting the stiffness ratio α.
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2. The proposed data-driven method uses DCNN to learn
the relationship between the MIDS and the MCS
models. Both the MIDS and MCS models’ results
were imported into the DCNN1 for training. In the
38-fold cross-validation, the THA results of 37 seis-
mic events were used as the training set, and the
left one was used as the validation set. The trained
DCNN1 predicted the left case’s MIDR. The results
showed the DCNN1 could give a reasonable prediction
of the MIDR so that the DCNN1 learned the nonlinear
relationship well in the training process. Therefore,
the proposed method could predict the MIDR of a new
seismic event well.

3. To further show the advantages of the DCNN1, four
ANNmethods and one SVMmodel were used for com-
parison. The first two ANN models (M1 and M2) used
one structural parameter and 14 seismic parameters to
predict a new seismic event’s MIDR. The other two
ANNmodels (M3 andM4) added one MIDS value as a
new feature in the input. The SVMmodel has the same
input features as M3 and M4. Four indexes, which are
MSE (between the prediction and the DIDS), R2, slope,
and intercept of a fitted line, assessed these methods’
prediction performance. The results turn out that MIDS
is a vital feature leading to lower MSEs. Thus, M3 and
M4 are much better than M1 and M2. The SVM
model’s performance is betweenM1 andM3. However,
M3 and M4 have low robustness compared with the
DCNN1. The DCNN1 has the best performance in
prediction with smaller errors and better stability.

4. The results turn out the DCNN2 could predict the
tendency of the SMRF models well. The DCNN2 has
more layers based on the input data length (288 data).
In the DCNN2 design, the selection of the fundamental
periods is essential. Due to the SMRF models’ com-
plexity, theMSE is larger than theMSE of DCNN1 and
MCS models. The DCNN2’s performance verifies that
the proposed data-driven method could predict the
more detailed FEM’s MIDR.

This study’s future extension is to take more complex
building structure models, different structure types, and other
field conditions into consideration in the deep learningmodel.
Later, several models should be built on different field condi-
tions. In the future, it is a task to integrate different models
into one model, which is competent in various field con-
ditions. Besides, only the elastic demand of MIDR is con-
sidered in this study. However, the building structure will
experience a nonlinear stage when the ground motion is
fierce. Therefore, it is necessary to consider the material
nonlinear, whether by a statistical study [5], a FEM [56] or
other methods. Additionally, this study just uses MIDR as the
engineering parameter. Many other engineering parameters
are also crucial under seismic evets like acceleration, residual
displacement, fundamental frequency. Proper deep learning
networks could be designed to predict these engineering
parameters, which should be studied in future work.
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