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ABSTRACT This paper presents a first study on solution representation learning for inducing greater
alignment and hence positive transfers between distinct multi-objective optimization tasks that bear discrep-
ancies in their original search spaces. We first establish a novel probabilistic model-based multi-objective
transfer evolutionary optimization (TrEO) framework with solution representation learning, capable of
activating positive transfers while simultaneously curbing the threat of negative transfers. In particular, well-
aligned solution representations are learned via spatial transformations to handle mismatches in search space
dimensionalities between distinct multi-objective problems, as well as to increase the overlap between their
optimized search distributions. We then showcase different algorithmic instantiations and case studies of
the proposed framework in applications spanning continuous as well as discrete optimization; illustrative
examples include multi-objective engineering design and route planning of unmanned aerial vehicles. The
experimental results show that our framework helps induce positive transfers by unveiling useful but hidden
inter-task relationships, thus bringing about faster search convergence to solutions of high quality in multi-
objective TrEO.

INDEX TERMS Transfer evolutionary optimization, solution representation learning, multi-objective
optimization, probabilistic model-based search.

I. INTRODUCTION
The human ability to learn is a masterpiece of natural evo-
lution that has yet to be fully duplicated in artificial systems.
When presented with a new task, our brain has the natural ten-
dency to retrieve and reuse knowledge priors acquired from
related experiences, thereby speeding up our problem-solving
process [1]. In the modern era of data-driven optimization,
fueled by growing amounts of data and seamless informa-
tion transmission technologies, it is becoming increasingly
important for machines to embody the ability to learn from
experiences as well, especially when dealing with complex
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real-world problems [2]–[5]. To this end, a recent computa-
tional paradigm known as transfer evolutionary optimization
(TrEO) [6], [7] has emerged to encompass methods that auto-
matically leverage past problem-solving knowledge to boost
optimization efficiency. Under the TrEO label, novel evolu-
tionary algorithms (EAs) have been designed to incorporate
inter-task learning mechanisms, which enable the exploita-
tion of useful information from related tasks [8]–[12].

An increasing number of works are devoted to inves-
tigating the effectiveness of TrEO algorithms in a
multitude of real-world applications, including last-mile
logistics [13], [14], machine learning [15], [16], neuro-
evolution [9], and complex engineering design [17]–[19],
to name just a few. Given the promising results that have

41844
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2058-6574
https://orcid.org/0000-0002-5294-9299
https://orcid.org/0000-0002-6080-855X
https://orcid.org/0000-0002-4480-169X
https://orcid.org/0000-0003-4795-5843
https://orcid.org/0000-0001-9186-6472


R. Lim et al.: Solution Representation Learning in Multi-Objective TrEO

been obtained, there is now growing research attention placed
on multi-objective TrEO tasks as well [17]–[24]. This trend
is ushered by the complexity of multi-objective problems
(MOPs) and their ubiquity in the real-world, which together
incentivize TrEO approaches. However, we note that despite
the potential for performance speed-up, the effectiveness of
TrEO algorithms in actual practice could be hampered by the
occurrence of harmful negative transfers or the scarcity of
beneficial positive transfers [7], [25].
A typical assumption in existing TrEO methods is that

the source and target tasks share significant overlap in the
features of their respective search spaces (e.g., dimensional-
ity), as well as the optimum distribution of solutions in those
spaces [25]. Consequently, exploiting knowledge from the
source task leads to positive transfers which enhance perfor-
mance in the target search. However, in many applications
it is possible that useful inter-task relationships are concealed
by unaligned solution representations – characterized by (a) a
mismatch between source and target dimensionalities, or (b) a
lack of overlap between optimized source and target solution
distributions, or both; thus causing reduced positive trans-
fers or even increased negative transfers. This concern is
especially potent for real-world multi-objective TrEO set-
tings, given the diverse problem characteristics encountered
for MOPs.

On one hand, there is a handful of TrEO research exploring
ways to increase positive transfers between distinct optimiza-
tion problems [26]–[28]. A noteworthy example is the autoen-
coding evolutionary search paradigm with learning across
heterogeneous problems [26]. This approach learns linear
transformations of solutions in continuous search spaces,
showing promising results of transferring the transformed
solutions for a range of multi-objective benchmark problems.

On the other hand, there exist other TrEO methods which
are dedicated to curbing the occurrence of negative transfers
[9], [10], [20], [29]. One prominent approach is the adaptive
model-based transfer EA (AMTEA) [9], which has the ability
to suppress undesirable negative transfers from dissimilar
sources. The AMTEA captures the degree of source-target
similarity via the optimal online stacking of their respec-
tive (probabilistic) search distribution models [30], and uses
this similarity to determine the extent of inter-task knowl-
edge transmission. However, the efficacy of the AMTEA
highly depends on the solution representation spaces in which
the source and target tasks are defined. Unaligned solution
representations can cause the conservative cancellation of
potentially beneficial knowledge transfers between otherwise
related problems in the probabilistic TrEO setting, as will be
further elaborated in Section III-A.

In this paper, we develop the core idea of learning solu-
tion representations that induce greater alignment and hence
positive transfers between distinct multi-objective optimiza-
tion tasks that bear discrepancies in their original search
spaces. In particular, well-aligned solution representations
are learned via search space transformations to (a) handle
arbitrary mismatch in source-target dimensionalities, as well

FIGURE 1. An illustration of the proposed TrEO framework that comprises
a solution representation learning module to induce positive transfers,
as well as a source-target similarity capture mechanism to mitigate
negative transfers.

as to (b) increase the overlap between optimized search distri-
butions of source and target tasks. Moreover, we emphasize
the joint effect of activating positive transfer while simultane-
ously guarding against negative transfer, in order to achieve
the desired performance boost in TrEO algorithms. To the
best of our knowledge, there is little previous work in the
literature on synergizing these dual effects.

Taking this cue, we establish a novel multi-objective TrEO
framework with solution representation learning, synergized
with an adaptive probabilistic model-based inter-task simi-
larity capture mechanism to sieve out the threat of negative
transfers; Fig. 1 provides an illustration of the proposed
framework. Note that the sieving mechanism even serves as
a safeguard in cases of inaccurately learned representations,
which could be caused by the lack of sufficient target search
data required for the training process.

The unique facet of solution representation learning in our
framework thus lies in the incorporation of spatial transfor-
mation strategies that promise to uncover useful but hidden
source-target relationships. In particular, we propose to learn
search space mapping functions with the goal of inducing
increased positive correlations across performance indicators
in multi-dimensional objective space of distinct optimization
tasks.

The following points summarize the main theoretical and
algorithmic contributions of this paper.
• Anovel probabilistic model-basedmulti-objective TrEO
framework with solution representation learning is
devised to promote positive transfers while simultane-
ously mitigating negative transfers.

• Different algorithmic instantiations of our framework
are proposed in the context of multi-objective continu-
ous optimization tasks as well as a class of combinatorial
optimization problems.

• A range of numerical studies are carried out to ver-
ify the efficacy of our methods. The achieved perfor-
mance advantage is demonstrated not only for complex
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benchmark functions, but also for practical examples in
vehicle crashworthiness design and in the route planning
of unmanned aerial vehicles.

The remainder of this paper is organized as follows.
Section II provides preliminary information about probabilis-
tic model-based TrEO algorithms and multi-objective evo-
lutionary optimization. Section III establishes our proposed
probabilistic model-based multi-objective TrEO framework,
and describes the key novelty of the solution representa-
tion learning module. Thereafter, Section IV and Section V
present algorithmic instantiations and numerical case studies
of this framework for continuous and combinatorial optimiza-
tion domains, respectively. Finally, Section VI concludes the
paper and points to directions for future research.

II. PRELIMINARIES
In this section, we first discuss a probabilistic model-based
view of TrEO. A formal definition of multi-objective opti-
mization and a brief review of multi-objective evolutionary
algorithms are presented thereafter.

A. PROBABILISTIC VIEW OF TrEO
From the perspective of probabilistic model-based evolution-
ary search, an optimization task T with objective function
f (x) can be formulated as:

max
p(x)

∫
X
f (x)p(x)dx, (1)

where x ∈ X is a candidate solution vector in search
space X , and p(x) denotes the underlying probability
distribution model of the population. (In Eq. (1), we
assume objective function maximization without loss of
generality.)

Given the approximate nature of the evolutionary opti-
mization procedure, the search is deemed to have converged
satisfactorily near to the global optimum f ∗ of T once we
successfully identify a search distribution model p∗(x) that
satisfies: ∫

X
f (x)p∗(x)dx ≥ f ∗ − ε, (2)

where ε is a positive but small convergence threshold.
Traditional EAs are designed to solve optimization prob-

lems from scratch without considering past problem-solving
experiences. In contrast, the emerging TrEO paradigm ush-
ers in a novel breed of algorithms that aim to exploit
knowledge priors from previously solved source tasks to
boost the optimization efficiency of the target task at hand.
In what follows, we briefly discuss probabilistic model-based
TrEO, which is a representative approach equipped with the
salient ability to curb negative influences from dissimilar
sources.

Let us assume there to be available T − 1 source
tasks, denoted as {T1, T2, . . . , TT−1}, and their correspond-
ing set of optimized search distribution models to be
{p∗1 (x) , p

∗

2 (x) , . . . , p
∗

T−1 (x)}. Given the above, Eq. (1) for

the optimization of a target task TT can be reformulated as
[7],

max
w1,w2,...,wT ,pT (x)

∫
X
fT (x)·

[
T−1∑
S=1

wS ·p∗S (x)+wT ·pT (x)

]
·dx,

(3)

where fT (x) is the target objective function, pT (x) is the target
search distribution model, wS is the transfer coefficient of
source S ∈ {1, . . . ,T − 1},

∑T
i=1 wi = 1 and wi ≥ 0∀i ∈

{1, . . . ,T }.
According to [7], it is assumed that X now represents

a unified search space in which all the source and target
tasks are defined. As a result, the target mixture model[∑T−1

S=1 wS · p
∗
S (x)+ wT · pT (x)

]
in Eq. (3) can be built

through the optimal stacking of source and target models
in the unified space X , which provides the transfer coeffi-
cients values. In particular, the transfer coefficients in the
t th iteration of a probabilistic model-based TrEO algorithm
can be obtained by solving the following out-of-sample log-
likelihood maximization program:

max
w1,w2,...,wT

∑
∀x∈PT (t)

log
(∑T−1

S=1
wS · p∗S (x)+ wT · pT (x|t)

)
,

(4)

where PT (t) and pT (x|t) are the target population data and the
current target search distribution model, respectively, at iter-
ation t . Note that Eq. (4) can be resolved to optimality via
the stacked density estimation procedure [30] that utilizes the
classical expectation-maximization algorithm.

Probabilistic TrEO progresses by iteratively generating
populations of candidate solutions through sampling the built
target mixture models. Hence, solving Eq. (4) provides the
transfer coefficients wS that capture the source-target sim-
ilarity, and subsequently mandates the extent to which the
sources influence the target search. A larger wS suggests
that the corresponding source’s optimized search distribution
p∗S (x) overlaps more significantly with the target population,
thus supporting source-to-target knowledge transfers at little
threat of any harmful interactions. In contrast, a smaller wS
reflects the dissimilarity in the source and target population
distributions, thereby preemptively curtailing the transfer of
solutions from the corresponding source task TS .
Most importantly, the idea behind probabilistic TrEO

is that if there exists even a single source, say TS ′ ∈
{T1, T2, . . . , TT−1}, such that p∗S ′ (x) ≈ p∗T (x) – where p

∗
T (x)

is the (a priori unknown) optimized target distribution – then,
setting wS ′ close to 1 and sampling from the resultant mixture
model would instantly yield near optimal solutions to the
target task TT . The potential for rapid optimization, given
the availability of relevant knowledge priors, thus motivates
the TrEO paradigm.

B. MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION
The statement of Eq. (1) considered a scalar-valued objec-
tive function f (x). However, many real-world problems often
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involve multiple objectives of interest (that are possibly con-
flicting), hence giving rise to the field of multi-objective
optimization [31]. The optimization of a target task TT with
m conflicting objectives can be formulated as follows [32]:

max
x

FT (x) =
(
f 1T (x) , f

2
T (x) , . . . , f

m
T (x)

)
, (5)

where x = (x1, . . . xd ) is a d-dimensional solution vector
and FT is a vector of m target objective functions f iT (x) , i ∈
{1, . . . ,m}.
Conflicting objectives in an MOP can generally not be

concurrently optimized, thus introducing trade-offs. For this
reason, multi-objective optimizers typically solve for a set
of alternative solutions that constitute the Pareto-optimal set,
instead of returning just a single optimal solution. Multi-
objective EAs (MOEAs), by virtue of their population-based
search strategy, have gained increasing popularity for solving
MOPs as they are able to attain a reasonable approximation
to the entire Pareto set in a single run. Some of the most
widely used MOEAs today include the Pareto dominance-
based NSGA-II [33] and SPEA2 [34], the decomposition-
based MOEA/D [35], [36], and the preference-based PBEA
[37], to name a few.

Just like traditional EAs, most existing MOEAs start their
search from scratch without any attempt to exploit potentially
useful knowledge priors. The recent emergence of the TrEO
paradigm has however seen several novel algorithms applied
to boost multi-objective optimization performance, by lever-
aging knowledge from related problems [9], [10], [20], [26].
Nonetheless, these TrEO works have solely focused either on
(a) learning inter-task solution mappings as a bid to increase
positive transfers, or on (b) curbing detrimental negative
transfers from unrelated sources. An approach to jointly
address both issues is sorely lacking in the literature. It is with
the aim of filling this gap that we put forward the framework
in Section III.

III. PROBABILISTIC MODEL-BASED MULTI-OBJECTIVE
TrEO WITH SOLUTION REPRESENTATION LEARNING
A. MOTIVATION
Probabilisticmodel-based TrEO, as discussed in Section II-A,
offers the capability to curb negative transfers by assigning
low values of transfer coefficients to dissimilar sources. Note
in Eq. (3) that the inter-task similarity capture mechanism
works based on the assumption that the source and target solu-
tions and models have been encoded in a unified search space
X . However, in practice, the source and target problems may
be characterized by search spaces XS (with dimensionality
dS ) and XT (with dimensionality dT ), respectively, that are
seemingly unaligned – that is, there is either (a) a mismatch
in their dimensionalities (i.e., dS 6= dT ), or (b) a large gap
between their respective optimized search distributions (i.e.,
p∗S (xS ) 6≈ p∗T (xT )), or both.

Unaligned solution representations nevertheless do not
imply that the tasks are unrelated, as their representations
may simply be concealing their true relationships. Consider,

for example, objective functions (of distinct tasks) that are
negatively correlated, representing a definitive inter-task rela-
tionship that could be exploited by a transfer optimizer if
appropriately gleaned. However, under such circumstances,
the existing probabilistic TrEO algorithms would merely
negate the transmission of source priors, leading to the con-
servative cancellation of knowledge transfers. Hence, in the
presence of unaligned solution representations, solely focus-
ing on blocking negative transfers would discount potential
positive transfers that are useful for the target search.

With the above in mind, in this paper, we put forward
the core idea of learning solution representations that induce
greater alignment and hence positive transfers between dis-
tinct optimization tasks in TrEO.Moreover, we emphasize the
importance of activating positive transfers while jointly miti-
gating the threat of negative transfers in achieving the desired
performance advantage of TrEO algorithms. To this end, we
develop a novel probabilistic TrEO approach synergized with
solution representation learning.

B. PROBABILISTIC TrEO WITH SOLUTION
REPRESENTATION LEARNING
In our approach, we realize the solution representation learn-
ing through source-to-target mapping functions, denoted
hereafter asMS , whichmap any source solution xS ∈ XS from
its original search space XS to the target search space XT .
In this setup, the source-to-target spatial transformations are
learned with the specific aim of achieving well-aligned solu-
tion representations (detailed instantiations will be discussed
in Section IV and Section V). With this crucial enhancement,
probabilistic TrEO algorithms will be capable of inducing
positive transfers by (a) handling source-target dimensional-
ity mismatch, and (b) increasing the overlap between source
and target optimized search distributions, while also reducing
negative transfers from unrelated knowledge priors.

In accordance with Eq. (3), the probabilistic model-based
TrEO formulation inclusive of theMS can be restated as:

max
w1,...,wT ,pT (xT )

∫
XT

fT (xT )

·

[
T−1∑
S=1

wS ·p∗MS
(xT )S + wT ·pT (xT )

]
·dxT ,

s.t.,
T−1∑
S=1

wS + wT = 1 and wS ,

wT ≥ 0∀S ∈ {1, 2, . . . ,T − 1}, (6)

where xT ∈ XT is a target candidate solution, MS : XS →

XT , and p∗MS
(xT ) is the transformation of p∗S (xS ) under the

mappingMS . The transformed source model p∗MS
(xT ) can be

obtained via simple Monte Carlo approximation; the proce-
dure is given as a pseudocode in Algorithm 1.

Likewise, modifying Eq. (4), the transfer coefficients
wS ,∀S ∈ {1, 2, . . . ,T − 1} are obtained by solving the
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following mathematical program:

max
w1,w2,...,wT

∑
∀xT∈PT (t)

log
(∑T−1

S=1
wS · p∗MS

(xT )

+ wT · pT (xT |t)
)
. (7)

We contend that under appropriately constructed mapping
functions MS , sampling the resultant target mixture model[∑T−1

S=1 wS · p
∗
MS

(xT )+ wT · pT (xT )
]
in Eq. (6) ismore likely

to yield good solutions for the target task TT when knowledge
transfers occur (i.e., wS > 0). In other words, our approach
makes possible the activation of positive transfers through the
source-to-target mappingMS , while simultaneously reducing
negative transfers by sampling the optimal mixture model.

Algorithm 1 Transforming the Source Models via Simple
Monte Carlo Approximation
Input: Original source models p∗S (xS ), ∀S ∈ {1, . . . ,T − 1}
Output: Transformed source models p∗MS

(xT ), ∀S ∈

{1, . . . ,T − 1}
1. For each p∗S (xS )
2. Sample N solutions xS in XS
3. ApplyMS : XS → XT to obtain N transformed

source solutions xT = MS (xS )
4. Build a probabilistic model of the transformed

source solutions to obtain the transformed source
model p∗MS

(xT )
5. End For

C. THE PROPOSED MULTI-OBJECTIVE TrEO FRAMEWORK
Following from Section III-B, we now put together a novel
probabilistic model-based multi-objective TrEO framework
with solution representation learning; detailed in Algo-
rithm 2. In our framework, we assume (without loss of gen-
erality) the popular NSGA-II [33] to be the base optimizer.
Hence, the concepts of non-dominated sorting and crowding
distances to evaluate the relative fitness of candidate solutions
in multi-dimensional objective spaces are adopted herein.
We label the resultant multi-objective TrEO algorithm as the
MOTrEO+MS .
The inputs to Algorithm 2 include m target objective func-

tions FT (xT ) =
(
f 1T (xT ) , f

2
T (xT ) , . . . , f

m
T (xT )

)
, a database

of knowledge priors (data and optimized probabilistic mod-
els) drawn from T − 1 source tasks, and the transfer interval
1. Given the inputs, the MOTrEO+MS proceeds as follows.
At the start of optimization, a target population PT (t = 1) of
size N is initialized (lines 1–2). The fitness of each solution
is evaluated with respect to the target objectives FT (line
3). Based on their objective values, the relative fitness of
candidate solutions is ascertained via non- dominated sorting
and crowding distances across all subsequent iterations of the
algorithm. During non-transfer iterations, standard crossover
and mutation operators are applied on the parent populations
PT (t) to generate the offspring population CT (t) (lines 5–6).

When the transfer iterations are triggered by the user-
defined parameter 1, the source-to-target mapping MS is
first learned using both the target population data PT (t)
and the knowledge priors extracted from the source database
(lines 7–8). The learned MS is then applied to obtain the
transformed source models p∗MS

(xT ) (line 9); see Algo-
rithm 1. Accordingly, the target mixture model comprising
each p∗MS

(xT ) and the current target model pT (xT |t) is built,
followed by the sampling of the mixture model to gener-
ate CT (t) (lines 10–11). The new population PT (t + 1) for
the next iteration is selected from the combined populations
PT (t)

⋃
CT (t), based on an elitist selection strategy (lines

13–15). The entire evolutionary process repeats until the
stopping condition is satisfied.

We note that other existing MOEAs can also be imple-
mented into our proposed framework as the base multi-
objective optimizer, by simply modifying the evolutionary
operators and selection steps. Furthermore, different types
of search space transformations can be integrated into the
solution representation learning module of our framework.
In the subsequent sections, we present two algorithmic
instantiations to learn solution representations in the context
of continuous and combinatorial optimization, respectively.
Computational experiments are also conducted to showcase
the efficacy of our methods, using practical case studies in
multi-objective engineering design as well as in the route
planning of unmanned aerial vehicles.

IV. METHODOLOGY AND CASE STUDIES IN CONTINUOUS
OPTIMIZATION
This section first motivates and describes our methodology
for learning solution representations in continuous search
spaces. The resultant multi-objective TrEO algorithm syn-
ergized with the proposed solution representation learn-
ing method is then experimentally validated using complex
benchmark problems as well as a real-world case study of
vehicle crashworthiness design.

A. LEARNING SOLUTION REPRESENTATIONS IN
CONTINUOUS SPACES
Consider a TrEO setting in which high quality solutions
from a source task of dimensionality dS are transformed
(using a source-to-target mapping MS ), and transferred to
a target problem of size dT . Existing work has shown
promising results of learning transformed source solu-
tion representations through linear mapping functions [26],
[38]. Although such linear transformations work well when
dT≤ dS , the source’s optimized search distribution model
p∗MS

(xT ) in the linearly transformed space becomes degen-
erate when dT> dS – as p∗MS

(xT ) will be supported only on
a lower dS -dimensional subspace. Notably, the probabilistic
mixture model in Eq. (6) can no longer be built given degen-
erate priors.

To address the aforementioned issue, some simplistic
approaches have been proposed in the literature, including
padding additional variables to the solution representations
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Algorithm 2Multi-Objective TrEOWith Solution Represen-
tation Learning (MOTrEO+MS)
Input: Source database; FT ; 1
Output: Pareto set and optimized search distribution for TT
1. Set iteration t = 1
2. Initialize a population PT (t)of N solutions in XT
3. Evaluate each xT in PT (t) w.r.t. FT
4. While stopping condition not met do
5. If mod(t,1) 6= 0 then
6. Generate offspring population CT (t) from PT (t)

using recombination and mutation operators
7. Else
8. LearnMS : XS → XT ,∀S ∈ {1, 2, . . . ,T − 1}

using PT (t) and knowledge priors from the source
database

9. Update each p∗MS
(xT ) using the correspondingMS ;

refer to Algorithm 1
10. Obtain w1,w2, . . . ,wT by solving Eq. (7), then

build the target mixture model using all p∗MS
(xT )

and pT (xT |t)
11. Sample the mixture model to obtain offspring

CT (t)
12. End If
13. Evaluate each xT in CT (t) w.r.t. FT
14. Elitist selection of top N solutions from

PT (t)
⋃
CT (t) based on non-dominated sorting

and crowding distances, to form PT (t + 1)
15. Set t = t + 1
16. End While

[26] or probabilistic models [9] of the source task. However,
in many cases of unaligned solution representations (e.g.,
p∗S (xS ) 6≈ p∗T (xT )), these simple approaches are unlikely
to suffice in unveiling beneficial inter-task relationships;
thereby reducing the potential for positive transfers. In order
to handle arbitrary mismatch between source and target
dimensionalities (i.e., dT> dS and dT≤ dS ) as well as to
increase the overlap between their optimized search distribu-
tions, we thus propose the source-to-target mapping function
MS as a fast non-linear spatial transformation. Under the
proposed non-linear mapping, the transformed source model
p∗MS

(xT ) will not be degenerate even when dT> dS ; hence,
making possible the activation of positive inter-task transfers.

Our proposed non-linear mapping function MS takes the
form of a two-layer feedforward neural network:

MS (xS; θ) = ψ2
(
ψ1 (xS)

)
, (8)

where θ represents the neural network parameters, while
ψ1 and ψ2 are the first and second layer transformations,
respectively.

In our approach, the mappingMS is learned using the target
and source population data at designated knowledge transfer
iterations. Taking motivation from [26], we assume that the
source data PS (t) = {xS,1, . . . , xS,N } of population size N
had been archived at every iteration t of an MOEA, when

FIGURE 2. (a) The preference relationship between solutions in a
multi-objective setting (assuming objective function maximization).
(b) Source and target populations monotonically aligned according to
decreasing order of preference.

solving the source task TS of dimensionality dS . Further,
we adopt the preference relationship between solutions based
on the concepts of nondominated front (NF) and crowd-
ing distance (CD) that are lexicographically considered in
a multi-objective optimization setting [33]; given the com-
mon knowledge of these terms in the associated literature,
we refrain from providing a detailed discussion about them
herein for the sake of brevity. Accordingly, a solution x1 is
preferred over another solution x2 if any one of the following
conditions holds true [39]: (i) NF1 < NF2 or (ii) NF1 = NF2
and CD1 > CD2; see Fig. 2(a). This preference relationship
shall be assumed hereafter for evaluating and ranking solu-
tions in PS (t) as well as in the target population (as was also
done in Algorithm 2).

In the optimization of a target task TT of dimensionality
dT , let the target population data at iteration t be PT (t) =
{xT ,1, . . . , xT ,N }. A necessary step for learning a mapping
MS between PS (t) and PT (t) is to first sort the solutions in
both PS (t) and PT (t) according to the preference relationship
defined above. This induces a monotonic alignment between
the source and target population sets, as shown in Fig. 2(b).
Preferred solutions in the source data are matched with those
in the target data, and vice versa, thereby facilitating the
discovery of source-to-target mappings that tend to induce a
high ordinal correlation (on the preference relationship scale)
across tasks in the transformed solution representation space.
Assuming the Pareto sets of the source and target tasks to
be located in the regime (i.e., not far from the underlying
distribution) of PS (t) and PT (t), respectively, transforming
optimal solutions of the source with MS could then help
generate optimal solutions to the target as well.

Given the motivation and data alignment procedure above,
the MS in Eq. (8) is learned through the following two-layer
transformations:

ψ1 (xS) = σ (A1 · xS + b), (9)

and,

MS = ψ2
(
ψ1 (xS)

)
= A2 · ψ1 (xS), (10)
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FIGURE 3. An illustration of the methodology to learn solution
representations in continuous spaces, using a two-layer feedforward
neural network.

where matrices A1 ∈ Rdh×dS and A2 ∈ RdT×dh contain the
neural network’s weighting terms, b is a bias vector, and σ
is the non-linear sigmoidal activation function; dh represents
the number of neurons in the hidden layer.

In the spirit of [40] supporting fast learning, we randomly
assign and then fix the elements of A1 in Eq. (9). Thereafter,
the elements of A2 in Eq. (10) are obtained using the follow-
ing closed-form expression:

A2=PT ·
[
ψ1 (Ps)

]tr
·

(
ψ1 (Ps)·

[
ψ1 (Ps)

]tr
+λ·Idh

)−1
,

(11)

where [·]tr symbolizes a matrix transpose, Idh is an identity
matrix of size dh, and λ is the L2 regularization coefficient of
network parameters. Fig. 3 gives an illustration of the solution
representation learning via the proposedMS .
In accordance with Eq. (6), the learned MS is applied to

the source model p∗s (xs) to obtain the transformed source
model p∗MS

(xT ) via simple Monte Carlo approximation; refer
to Algorithm 1. In our implementation for continuous opti-
mization problems, the p∗MS

(xT ) and the current target model
pT (xT |t) are actualized as multi-variate Gaussian distribu-
tions. The target and transformed source models are then used
in the stacked density estimation procedure [30] to build the
mixture model [

∑T−1
S=1 wS · p

∗
MS

(xT ) + wT · pT (xT |t)] in the
target search space XT ; see Eq. (6).

With reference to our multi-objective TrEO framework
(Algorithm 2) in Section III, the proposed mappingMS forms
the key component of the solution representation learning
module, while the resultant multi-objective TrEO algorithm
is similarly labeled as the MOTrEO + MS . In the following
sub-sections, the performance advantage of our algorithm is
experimentally verified.

B. AN EXAMPLE OF COMPLEX MULTI-OBJECTIVE
BENCHMARKS
Herewefirst showcase the effectiveness of theMOTrEO+MS
using complex multi-objective benchmark problems charac-

TABLE 1. Experimental results for the multi-objective benchmark tasks
after 50,000 function evaluations. In bold are the best results (values with
95% confidence level based on the Wilcoxon signed-rank test are marked
with ‘‘∗’’). Results are reported based on 20 independent runs of all
optimizers.

terized by varying degree of discrepancies between the source
and target tasks [41].

1) EXPERIMENTAL SPECIFICATIONS
Table 1 (leftmost column) shows the problem configuration
of nine multi-objective TrEO tasks considered in this study.
The source and target dimensionalities are set to dS = 10 and
dT = 20, respectively. The four-letter problem configuration
represents the known degree of discrepancies between the
source and target tasks (i.e., TS and TT , respectively). Each
configuration comprises the extent of intersection (overlap)
between the Pareto sets of TS and TT , as well as a degree
of similarity between the fitness landscapes of TS and TT .
For instance, we have: (i) CIHS:complete intersection with
high similarity; (ii) PIMS: partial intersection with medium
similarity; and (iii) NILS: no intersection with low similarity.
Readers are referred to [41] for the full details of these
benchmark problems.We expect that a smaller extent of inter-
section between source-target Pareto optimal solutions (i.e.,
‘‘no’’ < ‘‘partial’’ < ‘‘complete’’ intersection), and a lower
degree of similarity in the fitness landscapes (i.e., ‘‘low’’ <
‘‘medium’’ < ‘‘high’’ similarity) will increase the scope for
the MOTrEO + MS to unveil useful but hidden inter-task
relationships.

Four optimizers1 are considered for comparison in this
example. They are: (i) the base optimizer NSGA-II (with-
out knowledge transfer) [33], (ii) NSGA-II+MS which is
a recently proposed TrEO algorithm [26] adapted using
the non-linear mapping function MS in Section IV-A,
(iii) AMTEA which is the state-of-the-art probabilistic
model- based TrEO algorithm without solution representa-
tion learning [9], and (iv) our proposed MOTrEO+MS . All
search populations of size N = 50 consist of real-coded
solutions. The optimizers employ simulated binarycrossover,
polynomial mutation (with probability 1/dT ) and tournament

1Codes for the implementation of all the considered algorithms are avail-
able at www.github.com/raylim-sg/MOTrEO.git
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FIGURE 4. Convergence trends for the complex multi-objective benchmark tasks in Table 1. Results are for distinct problem configurations: ‘‘high
similarity’’ (leftmost column), ‘‘medium similarity’’ (central column), ‘‘low similarity’’ (rightmost column), ‘‘complete intersection’’ (top row),
‘‘partial intersection’’ (middle row), and ‘‘no intersection’’ (bottom row). The shaded regions span one standard deviation on either side of the
mean (based on 20 independent runs).

selection. The transfer interval is set to1 = 2, at which target
mixture models with multi-variate Gaussian components are
built and sampled in the AMTEA and the MOTrEO+MS . For
the two-layer neural network in the NSGA-II+MNL

S and the
MOTrEO+MS , we set the number of neurons in the hidden
layer to dh = 2dT . The inverted generational distance (IGD)
[42] is used as the multi-objective performance indicator to
quantify the solution quality returned by all algorithms. A
single-run of each algorithm is terminated after 50,000 func-
tion evaluations.

2) RESULTS AND DISCUSSION
Table 1 summarizes average IGD values returned by the four
optimizers after 20 independent runs. The MOTrEO+MS has
outperformed the other algorithms in 8 out of 9 cases, among
which it has achieved significant difference in 4 cases. The

convergence trends are illustrated in Fig. 4 for all the cases,
while the transfer coefficients patterns are shown in Fig. 5 for
three representative cases, namely, CIHS, PILS and NILS.
Looking at CIHS, PIHS and NIHS with high inter-task simi-
larity even in the original solution representation spaces, our
expectation is closely borne out by the almost equivalent con-
vergence rates between the AMTEA and the MOTrEO+MS ,
as well as their comparable transfer coefficients obtained; see
Fig. 4(a), (d), (g), and Fig. 5(a). This observation is explained
by the high similarities between source and target function
landscapes, which leaves little to be gained through learning
solution representations in the MOTrEO+MS .
In contrast, the MOTrEO+MS significantly outperforms

the other algorithms in PIMS, PILS, NIMS and NILS. The
results are attributed to the increased degree of discrepancies
between the source and target tasks in those cases, giving rise
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FIGURE 5. The transfer coefficients learned by the AMTEA and the MOTrEO+MS in three cases. (a) CIHS. (b) PILS. (c) NILS.

to the scope for solution representation learning to unveil hid-
den source-target relationships. Moreover, the multimodality
of the target tasks in PILS and NILS increases their difficulty
substantially, which further incentivizes the solution repre-
sentation learning in the MOTrEO+MS . The performance
advantage of our algorithm is clearly manifested in its sig-
nificantly higher convergence rates and transfer coefficients
obtained; see Fig. 4(f), (i) and Fig. 5(b), (c), respectively.

Positive transfers are empirically identified when an algo-
rithm’s convergence rate is boosted. Hence, we can say
that the MOTrEO+MS ’s performance advantage is attributed
to the presence of positive transfers, which in turn imply
larger transfer coefficients. The theoretical developments in
[9] in fact show that the learning of transfer coefficients in
probability mixture model-based search explicitly reduces
negative inter-task interactions, relative to the no-transfer
case. Take PILS and NILS as examples. We observe that the
MOTrEO+MS ’s enhanced convergence rates are accompa-
nied by larger transfer coefficients, whereas the AMTEA’s
slower convergence is accompanied by near-zero transfer
coefficients; as shown in Fig. 4 and Fig 5. For NILS in par-
ticular, the synergistic effect of activating positive transfers
while jointly mitigating the threat of negative transfers is
demonstrated in Fig. 6, where larger transfer coefficients are
obtained only when the learned mappingMS is effective. In a
nutshell, observing both (a) an enhanced convergence rate,
and (b) larger transfer coefficients obtained, are good indi-
cators of the target search benefitting from positive transfers
from the available sources.

To further affirm that the effectiveness of theMOTrEO+MS
is indeed by virtue of positive transfers induced by the source-
to-target mapping MS (and is not a spurious artifact of intro-
ducing diversity through knowledge transfers from external
sources), we consider an additional MOEA that transfers
the solutions sampled from a random source model (RSM),
which we label as the MOTrEO(RSM). The RSM takes the
form of a uniform distribution defined over the search space,
which is solely intended for introducing diversity into the tar-
get population. It is worth noting that in the MOTrEO(RSM),
the amount of knowledge transfers is determined by the
transfer coefficients obtained in the MOTrEO+MS , which

FIGURE 6. The transfer coefficients derived in the MOTrEO+MS are large
only when the learned mapping is effective in inducing positive transfers.
The effectiveness of MS learned is measured by the average Euclidean
distance between the transformed source solutions and their
corresponding nearest target Pareto optimal solution. For instance,
the effectiveness of MS is considered to be ‘‘high’’, ‘‘medium’’ or ‘‘low’’
when the distances are ‘‘< 0.3’’, ‘‘0.3 – 0.5’’ or ‘‘> 0.5’’, respectively.

ensures that both algorithms receive the same extent of
solution transfers from external sources. Results show that the
convergence trends of the MOTrEO(RSM) are only compa-
rable to those of the NSGA-II (without knowledge transfers)
for all the problem configurations, which are consistently
worse than those of the MOTrEO+MS ; see Fig. 4. Therefore,
the efficacy of our proposed algorithm in inducing positive
transfers across tasks is verified in the experimental results.

C. A PRACTICAL CASE IN VEHICLE CRASHWORTHINESS
DESIGN
Following from the promising results for benchmark MOPs,
we now demonstrate the effectiveness of the MOTrEO+MS
in a real-world application of vehicle crashworthiness design.

Crashworthiness is an important quality of vehicle designs
that aims to reduce human injury in the event of collision
impact. The vehicle crashworthiness design optimization is
often a computationally expensive problem that involves
multiple objectives. In this case study, we consider the
minimization of three critical objectives, namely, the vehicle
mass, the jerk, and the vehicle toeboard intrusion. Readers
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can refer to [43] for the mathematical model and a detailed
description of this design problem.

Here, the multi-objective minimization program can be
simply stated as:

min F (x) = (fmass (x) , fjerk (x) , fintrusion(x)),

s.t., x = (x1, . . . , xd )T and 1mm ≤ xj ≤ 3mm, ∀j,

(12)

where fmass (x), fjerk (x) and fintrusion(x) are the objective func-
tions for vehicle mass, jerk and toeboard intrusion, respec-
tively, x is a candidate solution vector, d is the number of
design variables and xj refers to the jth design variable.
In real-world settings, it is possible that the source and

target tasks bear arbitrary discrepancies in their respective
search spaces. For instance, (a) having different number of
design variables (i.e., dS 6= dT ), and (b) lacking one-to-
one alignment between source and target design variables –
we refer to this scenario as µS 6= µT ; take for example,
xS = (x3, x1, x2)T and xT = (x1, x2, x3, x4, x5)T. Such mis-
alignments generally reduce the overlap of optimized search
distributions between the source and target problems, which
could lead to reduced positive transfers or even increased
negative transfers.

Despite the presence of the aforementioned discrepancies,
we contend that our proposed algorithm, by virtue of automat-
ically learning well-aligned solution representations, is able
to uncover useful inter-task relationships and induce posi-
tive transfers. To verify this, we conduct experiments using
distinct cases of the problem in Eq. (12) characterized by
arbitrary source-target discrepancies as described above.

1) EXPERIMENTAL SETUP
We consider three multi-source transfer scenarios as follows:
(i) Case 1: dT = dS1, dT = dS2 and µT 6= µS1, µT 6= µS2,
(ii) Case 2: dT > dS1, dT > dS2 and µT = µS1, µT 6= µS2,
and (iii) Case 3: dT = dS1, dT > dS2 and µT 6= µS1, µT 6=
µS2. The same four optimizers as Section IV-B are considered
for comparison. The population size in this case study is set
to N = 15 [43]. A single run of each algorithm is terminated
after 300 function evaluations. The average IGD values are
computed based on 20 independent runs, using the Pareto
front which is approximated beforehand with 20,000 function
evaluations of all the four optimization algorithms under
comparison.

2) RESULTS AND DISCUSSION
Table 2 gives a summary of the experimental results that are
averaged over 20 independent runs for all the three cases.
The highlight of Table 2 is that the MOTrEO+MS consis-
tently performs better than the other algorithms in terms of
solution quality and speed. Equipped with both the solution
representation learning module as well as the source-target
similarity capture mechanism, our algorithm achieves perfor-
mance enhancement through a favorable balance between the
activation of positive transfers and the concurrent reduction

TABLE 2. Results for the multi-objective vehicle crashworthiness design
tasks after 300 function evaluations. In bold Are the best results (values
with 95% confidence level based on the Wilcoxon signed-rank test Are
marked with ‘‘∗’’). Results Are reported based on 20 independent runs of
all optimizers.

of negative transfers. In contrast, without any source induced
search bias, the base (non-TrEO) NSGA-II is consistently
outperformed by the other optimizers.

Comparing the AMTEA and the MOTrEO+MS in Table 2,
relative to the NSGA-II, the AMTEA shows smaller improve-
ments in solution quality. The presence of unaligned source-
target solution representations in each case substantiates
the scope for our proposed solution representation learn-
ing method to unveil hidden source-target relationships. The
superiority of our algorithm is manifested in its higher con-
vergence rates and larger transfer coefficients obtained; see
Fig. 7(a), (b), (c) and Fig. 7(d), (e), (f), respectively. What
is more, despite executing the same solution representation
learning module, the MOTrEO+MS outperforms the NSGA-
II+MS in all cases. The NSGA-II+MS is not equipped with
the probabilistic model-based inter-task similarity capture
mechanism, thereby failing to adaptively control the extent
of knowledge transfers from the various sources to the target
task.

The numerical results of this case study confirm the effi-
cacy of our proposed MOTrEO+MS in inducing positive
transfers between distinct real-world MOPs defined in con-
tinuous search spaces. However, we note that other than
continuous optimization problems, there exists a plethora
of real-world applications of MOPs in domains of discrete
and combinatorial optimization. This brings us to the next
section where a novel algorithmic instantiation of solution
representation learning in multi-objective TrEO is proposed
for a class of combinatorial vehicle routing tasks.

V. A METHODOLOGY AND CASE STUDY IN
COMBINATORIAL VEHICLE ROUTING PROBLEMS
In this section, we first consider a practical TrEO scenario
in which the multi-objective route planning of unmanned
aerial vehicles benefit from past experiences of optimizing
ground-based vehicle routing problems (VRPs). We then
highlight the importance of solution representation align-
ment in the effectiveness of knowledge transfers between
distinct VRPs. To this end, we propose a novel methodology

VOLUME 9, 2021 41853



R. Lim et al.: Solution Representation Learning in Multi-Objective TrEO

FIGURE 7. Convergence trends for the target multi-objective vehicle crashworthiness design optimization task and the transfer coefficients
learned by the AMTEA and the MOTrEO+MS in Case 1: dT = dS1, dT = dS2 and µT 6= µS1, µT 6= µS2 (left column), Case 2: dT > dS1, dT > dS2
and µT = µS1, µT 6= µS2 (central column), and Case 3: dT = dS1, dT > dS2 and µT 6= µS1, µT 6= µS2 (rightmost column).

to learn well-aligned solution representations via source-
to-target spatial transformations, with the aim of unveiling
beneficial inter-task structural similarities. Computational
experiments are conducted to verify that our method can
effectively utilize knowledge priors from previously opti-
mized ground-based VRPs, to speed up the optimization
tasks of multi-objective route planning of unmanned aerial
vehicles.

A. A MULTI-OBJECTIVE LAST-MILE LOGISTICS EXEMPLAR
Recent years have seen the growing use of unmanned aerial
vehicles (e.g., drones) as an alternative to ground vehicles
(e.g., trucks) for last-mile delivery, as drones can be deployed
more swiftly at lower operating costs. Drone delivery route
planning commonly minimizes multiple objectives such as
the total distance travelled and the number of drones needed
to satisfy customer demands [44]. For the above reasons, it is
important to rapidly optimize multi-objective drone delivery
problems under essential operational requirements. Here we
put forward a TrEO case study that aims to boost the multi-
objective optimization efficiency of drone delivery planning
tasks, by exploiting knowledge priors from related ground-
based VRPs.

We note that it is common practice to solve drone delivery
tasks as 2-D variants of ground-based VRPs [44]. This is due
to similar problem characteristics involved, such as minimiz-
ing the total route distance under the constraints of capacity
and travel distance limits. In view of the aforesaid, we choose

the well-studied truck delivery route planning problems as
the source tasks in this study. Our choice is further motivated
by the abundance of past problem-solving experiences accu-
mulated in the domain of truck delivery planning [45]. The
following formalizes the source and target tasks for our case
study.

1) TRUCK DELIVERY (SOURCE) PROBLEM
Wedefine the source task on an undirected graphG = (V ,E),
where V = {vi} is the set of vertices (i.e., customer nodes)
and E = {eij} is the set of edges connecting vertices vi and
vj, for i, j = 1, . . . , dS , while dS is the number of customers.
The single depot is represented by vertex v0 which stations
K number of trucks. The vehicles are allowed to do multiple
trips that start and end at the depot, and they are constrained
by delivery capacity Q and maximum travel distance limit L
per trip. Each customer i has a known deterministic demand
cS,i and a distance zS,i from the depot. They are served by
vehicle k in route r , where k = 1, . . . ,K and r = 1, . . . ,R.
Let Dk,r be the distance travelled and Wk,r be the weight
capacity served by vehicle k in route r . The objective and
constraint functions are then formulated as follows:

min fS =
R∑
r=1

.

K∑
k=1

Dk,r ,

s.t., Dk,r ≤ L and Wk,r ≤ Q, ∀k, ∀r, (13)

where fS is the source objective function to minimize the total
truck distance travelled after serving all customer demands.
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2) MULTI-OBJECTIVE DRONE DELIVERY (TARGET) PROBLEM
We define the target task on an undirected graphH = (U ,A),
where U = {ui is the set of vertices and A = {aij} is the set
of edges connecting vertices ui and uj, for i, j = 1, . . . , dT ,
such that dT is the number of customer nodes. The single
depot is represented by vertex u0, at which each drone starts
and ends a route b. All the drones have a delivery capacity
q, a maximum travel distance l per route and a maximum
flight range from the depot h. Any customer j has a known
deterministic demand cT ,j and a distance zT ,j from the depot.
They can only be served once by a drone y in route b, where
y, b = 1, . . . ,B. We assume that the drones are not allowed
to do multiple trips due to their limited power capacity that
requires time-consuming battery recharging. As such, a total
of B number of drones is needed to complete B number of
routes. Further, let Dy,b be the distance travelled andWy,b be
the payload served by drone y in route b. We formulate the
objective and constraint functions as follows:

min
xT

F (xT ) =
(
f 1T (xT ) , f

2
T (xT )

)
,

s.t., f 1T = B, f 2T =
B∑
y,b

Dy,b,

q� Q, l � L, Wy,b ≤ q, Dy,b ≤ l and

zT ,j ≤ h, ∀y, ∀b, ∀j, (14)

where xT is a target candidate solution, f 1T and f 2T are the target
objective functions to minimize the number of drones and
the total flight distance, respectively. Eq. (14) accounts for
the essential operating constraints of real commercial drones
including smaller payload, shorter flight distance per route
and limited flight range from the depot [46].

B. LEARNING SOLUTION REPRESENTATIONS IN
PERMUTATION-BASED COMBINATORIAL SPACES
One of themost widely used solution representations in VRPs
is the permutation of customer node indices to determine
the order of visiting the customers. This permutation-based
representation is dependent on the index number assigned to
each customer node, as well as the geometric distribution of
nodes. Furthermore, we note that different real-world vehi-
cle routing tasks are likely to have different customer node
indices and distributions, despite possibly sharing structurally
similar optimal routes or sub-routes. This is likely to give rise
to unaligned solution representations between distinct routing
tasks, which could in turn reduce the effectiveness of TrEO.

To illustrate, consider the optimal routes of distinct source
and target vehicle routing tasks as seen in Fig. 8. The routes
could be encoded as permutation-based solution represen-
tations, such as [0, 1, 2, 3, 4, 0, 5, 6, 7, 8, 0, 9, 10, 11, 12, 0]
and [0, 1, 5, 0, 4, 6, 8, 3, 0, 9, 2, 7] for the source and target
VRPs, respectively [47]. Fig. 8 entails some structural over-
laps of source-target optimal sub-routes, which can be identi-
fied by the coloured customer nodes. Despite the existence of
such overlaps, the source and target solution representations
appear to be completely different because of the arbitrary

FIGURE 8. The importance of solution representation alignment in the
effectiveness of knowledge transfers between two distinct vehicle routing
tasks, featuring the overlap of their optimal sub-routes. (a) The known
optimal routes of source graph G. (b) The (a priori unknown) optimal
routes of target graph H .

indices assigned to their customer nodes. This suggests that
directly sampling and transferring solutions from the source
instance in Fig. 8(a) to the target instance in Fig. 8(b) is
unlikely to result in positive transfers, or it may even cause
negative transfers. Following from the above, it is clear that
the solution representation alignment is crucial to the success
of knowledge transfers between VRPs.

With that in mind, we propose a novel methodology to
learn well-aligned solution representations in permutation-
based combinatorial spaces, with the aim of inducing positive
transfers between distinct vehicle routing tasks. Specifically,
our method produces new source representations via a two-
step strategy as follows.
Step 1: A source-to-target mapping, denoted asMS , is first

constructed to match as closely as possible, the source and
target problems’ geometric distributions of customer nodes.
Under the mapping function MS , the source graph is first
scaled to a geometric size that is comparable with the target.
The source is then translated and rotated to align the centroid
and principal components of its customer distribution with
those of the target graph. The overall source-to-target spatial
transformation throughMS is mathematically defined as:

MS
(
xS,i

)
= αA · xS,i + b, ∀i,

s.t., α =

∑dT
j=1 zT ,j/dT∑dS
i=1 zS,i/dS

,

A =
[
cosθ −sinθ
sinθ −cosθ

]
, (15)

where xS,i ∈ R2×1 is the Cartesian coordinates vector of a
source node i ∈ {1, . . . , dS}, α ∈ RC is a scaling constant,
A is an angular rotation matrix, θ is the angle between the
principal components of the source and target graphs, and b ∈
R2×1 is a translation vector.
Step 2: Reassign the index numbers of all the source nodes

by copying the indices from the corresponding nearest target
nodes. If the source has more nodes than the target (i.e.,
dS > dT ), randomly assign a number i ∈ {1, . . . , dS} without
replacement to the remaining (dS−dT ) nodes. The new source
representation is thus learned.
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FIGURE 9. A graphical illustration of the proposed methodology to learn well-aligned solution representations for distinct VRPs. (a) The original source
and target graphs. (b) The source-to-target transformation MS in Step 1. (c) The source node index reassignments in Step 2.

Our proposed method is based on the intuition that the
transformations in Eq. (15) of Step 1, together with Step 2,
will lead to a closer alignment of customer nodes indices
and distributions between the source and target VRPs. As a
consequence, the learned source solution representations
will be more likely to capture any overlap of optimal
routes or sub-routes between the source and target tasks.
Fig. 9 illustrates the solution representation learning via our
proposed approach. Given the original source and target
graphs in Fig. 9(a) that may appear to lack transferrable sub-
routes, the MS in Step 1 attempts to match their geometric
distribution of customer nodes as shown in Fig. 9(b). Step
2 of our approach is depicted in Fig. 9(b), (c), where each
source node is assigned a new index number based on the
geometrically nearest target node.

Besides, it is worth noting that the mappingMS in Eq. (15)
preserves shortest paths, hence our method does not change
the optimal routes of the source in the transformed space. This
is proven in Lemma 1 below.
Lemma 1: The source-to-target transformations in Eq. (15)

preserve the source problem’s original graph structure and
shortest paths.

Proof: Firstly, the angular rotation, translation and com-
pression of a graph are rigid transformations that lead to direct
isometry. Secondly, the linear combination of isometries is
also an isometry. Since isometry preserves geometric struc-
ture [48], it is hence proven that theMS in Eq. (15) preserves
the source task’s original graph structure and shortest paths.

Here, we similarly label the resultant multi-objective TrEO
algorithm with the proposed solution representation learn-
ing methodology as the MOTrEO+MS . The following com-
putational experiments serve to verify the efficacy of our
algorithm in boosting the performance of the target multi-
objective optimization task of drone delivery route planning
defined in Eq. (14).

C. EXPERIMENTS
1) SOURCE AND TARGET INSTANCES
We generate vehicle routing instances from several exist-
ing VRP datasets [49]–[51]. For the truck delivery (source)

instances, we either consider the original datasets or modify
the datasets by removing an arbitrary number of customer
nodes. The dimensionalities of the source and target prob-
lems, denoted as dS and dT , respectively, are moderately large
with up to a few hundred customers. In our implementa-
tion, we generate new multi-objective drone delivery (target)
instances according to the following procedure: (i) create
a new target instance using only the Cartesian coordinates
of customer nodes from the original dataset; (ii) arbitrarily
transform the geometric distribution of customer nodes and
randomly assign an index number to each node; (iii) set the
drone travel distance limit l = 50, and randomly generate
the flight range h between [5, 10] in L2-norm distances, the
payload limit q between [20, 200] in kilograms, as well as
the customer demands cT ,j between [1, 5] in kilograms, for
j = 1, . . . , dT ; (iv) remove customer nodes located beyond
the range h. The drone constraints and customer demands
values are based on the specifications of real commercial
drones.

2) EXPERIMENTAL SETUP
Four optimizers2 are considered for comparison in this our
experiments. They are: (i) the base NSGA-II [33], (ii) a
multi-objective variant of the edge histogram-based sampling
algorithm (EHBSA) which is a probabilistic model-based
optimizer for combinatorial problems [52], (iii) the AMTEA
without solution representation learning [9], and (iv) our pro-
posedMOTrEO+MS . All search populations of sizeN = 100
consist of permutation-coded solutions. Excluding EHBSA,
the other algorithms execute optimized crossover (with prob-
ability 0.75) along with inversion or swap sequence mutation
(with probability 0.2) [53]. For EHBSA, the samplingwithout
template strategy is used with its default parameter settings.

The transfer interval is set to 1 = 5, at which target prob-
abilistic mixture models with edge histogram-based source
and target components [52] are built in the AMTEA and the
MOTrEO+MS . During non-transfer search iterations, both
AMTEA and MOTrEO+MS execute NSGA-II as the base

2Codes for the implementation of all the considered algorithms are avail-
able at www.github.com/raylim-sg/MOTrEO.git
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FIGURE 10. Convergence trends for the target multi-objective optimization task of drone delivery route planning, and the transfer coefficients
obtained by the AMTEA and the MOTrEO+MS , for target instances Golden_17 (left column), X-n214 (central column) and CMT4 (rightmost
column). The shaded regions span one standard deviation on either side of the mean (based on 20 independent runs).

MOEA. The MOTrEO+MS incorporates the solution rep-
resentation learning methodology described in Section V-B.
The solution quality achieved by all the optimizers is mea-
sured using the IGD performance metric [42]. A single-run
of each optimizer is terminated after 10,000 function evalu-
ations, whereas the true Pareto front is approximated at the
end of 100,000 function evaluations of NSGA-II.

3) RESULTS AND DISCUSSION
The average IGD values achieved by the four optimiz-
ers after 20 independent runs are provided in Table 3.
Fig. 10 depicts the convergence trends of all the optimizers
and the transfer coefficients obtained by the AMTEA and
the MOTrEO+MS , for 3 representative target instances. The
highlight of Table 3 is that the MOTrEO+MS performs sig-
nificantly better than all the other algorithms for all the six
cases. Moreover, the convergence rates of the MOTrEO+MS
are significantly enhanced in the early stages of the opti-
mization processes, as seen in Fig. 10(a), (b), (c). These
outcomes are attributed to the activation of positive transfers
in our algorithm, made possible by well-aligned solution
representations learned through the proposed source-to-target
transformation. For example, the larger wS values learned by
the MOTrEO+MS in Fig. 10(d), (e), (f) show that it is able to
uncover beneficial source-target structural overlap, which is
exploited to boost the target search. The superior performance
of theMOTrEO+MS is also explained by its ability to achieve

TABLE 3. Experimental results for the target multi-objective drone
delivery tasks after 10,000 function evaluations. In bold Are the best
results (values with ‘‘∗’’ achieve 95% confidence level based on the
Wilcoxon signed-rank test). Results Are reported based on
20 independent runs of all optimizers.

a complementary balance between inducing positive transfers
and mitigating harmful negative transfers.

In contrast, the AMTEA achieves second best performance
in 2 out of 6 cases, but it performs the worst in 3 out of 6
cases (i.e., M-n151, X-n214, X-n162). Without the solu-
tion representation learning module, the AMTEA’s perfor-
mance is adversely impacted by the extra efforts required
to sieve out negative transfers caused by unaligned source-
target solution representations. The AMTEA is also less
capable of facilitating positive transfers; as reflected by the
smaller wS values obtained in Fig. 10(d), (e), (f). These
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observations affirm the efficacy of our method in uncovering
useful routes or sub-routes that remain hidden in the original
search spaces of source tasks. The proposedMOTrEO+MS is
indeed more effective at leveraging related VRPs to enhance
the performance on multi-objective route optimization of
unmanned aerial vehicles.

In summary, this case study clearly demonstrates the util-
ity of solution representation learning for inducing positive
transfers between distinct but related vehicle routing tasks.

VI. CONCLUSION
This paper is motivated by the core idea of learning solu-
tion representations as the means to induce positive trans-
fers in TrEO for multi-objective optimization. Accordingly,
we established a probabilistic model-based multi-objective
TrEO framework that encompasses a novel solution repre-
sentation learning module. The framework enables the inte-
gration of methodologies to learn spatial transformations,
which are aimed at overcoming discrepancies between the
original search spaces of source and target tasks. The salient
feature of the resultant multi-objective TrEO algorithm is its
ability to promote positive transfers through learning well-
aligned solution representations that unveil useful but hidden
source-target relationships, while simultaneously mitigating
the threat of negative transfers.

Following from the proposed framework, we put forward
different algorithmic instantiations in the context of multi-
objective continuous optimization tasks as well as a class
of combinatorial optimization problems. In addition to rig-
orous comparisons on complex multi-objective optimization
benchmarks, we demonstrated the efficacy of our methods in
practical case studies ofmulti-objective engineering design as
well as the route planning of unmanned aerial vehicles. The
computational results affirmed that our proposed TrEO algo-
rithm was able to increase positive transfers of knowledge
priors from available source tasks, which led to enhanced
convergence rate and solution quality of the target problem.

In the future, one of our main research directions will be
to further expand the applicability of our approach to a wider
variety of real-world optimization problems (e.g., simulation-
based problems characterized by computationally expensive
function evaluations). It would also be interesting to explore
ways to improve the utilization efficiency of the available
source data.
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