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ABSTRACT For successful artificial music composition, chords andmelodymust be alignedwell. Yet, chord
conditionedmelody generation remains a challenging taskmainly due to its multimodality.While few studies
have focused on this task, they face difficulties in generating dynamic rhythm patterns aligned appropriately
with a given chord progression. In this paper, we propose a chord conditioned melody Transformer, a K-POP
melody generation model, which separately produces rhythm and pitch conditioned on a chord progression.
The model is trained in two phases. A rhythm decoder (RD) is trained first, and subsequently a pitch decoder
is trained by utilizing the pre-trained RD. Experimental results show that reusing RD at the pitch decoding
stage and training with pitch varied rhythm data improve the performance. It was also observed that the
samples produced by the model well reflected the key characteristics of dataset in terms of both pitch and
rhythm related features, including chord tone ratio and rhythm distribution. Qualitative analysis reveals the
model’s capability of generating various melodies in accordance with a given chord progression, as well as
the presence of repetitions and variationswithin the generatedmelodies.With subjective human listening test,
we come to a conclusion that the model was able to successfully produce new melodies that sound pleasant
in terms of both rhythm and pitch (Source code available at https://github.com/ckycky3/CMT-pytorch).

INDEX TERMS Attention mechanism, computer generated music, deep learning, melody generation, neural
networks.

I. INTRODUCTION
With the rapid development of machine learning techniques,
research applying them to numerous music information
retrieval tasks [1]–[4] can often be found. In particular,
the subject of music generation employing deep neural net-
works has been explored in diverse ways: creating various
forms of music including piano music [5], [6], lead sheet [7],
and multitrack MIDI [8]–[10], or modifying a given piece of
music with style transfer [11] or reinforcement learning [12],
to name a few.

In order for a piece of music to be pleasant to listen to,
chords and melody must be in harmony. It is essential to
capture the relationship between chords and melody in vari-
ous music composition tasks. Yet, chord conditioned melody
generation is challenging mainly due to its large search space
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and the absence of standard quantitative measures for per-
formance assessment. Most previous work had limitations in
terms of expressiveness of chords or suffered from generating
dynamic rhythm patterns adequately aligned with a given
chord progression.

Since Transformer [13] and its extensions showed impres-
sive results in many sequence modelling tasks [14], [15],
there have been several studies that have adopted the concept
of attention in the domain of music information retrieval
[16]–[18]. This paper focuses on the task of generatingmono-
phonic melody for K-POP music, conditioned on a given
chord progression. We introduce a novel chord conditioned
melody generation model, named CMT (Chord conditioned
Melody Transformer), and a training method for the model so
that it can generate a melody with appropriate rhythms for a
given chord progression.

The training procedure consists of two phases, and rhythm
and pitch decoders are jointly trained at both phases. At the
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first phase, training data are augmented through pitch shifts
to make the rhythm decoder robust against chord variations.
At the second phase, the rhythm decoder is retained from the
first phase and fine tuned, while the pitch decoder is newly
initialized. In particular, when producing melodies with the
trained model, rhythm generation precedes the generation of
each note’s pitch, as the pitch decoder utilizes the rhythm
decoder’s intermediate rhythm representation.

Experimental results show that the proposed two-phase
training approach as well as the data augmentation improve
the model’s performance. Quantitative analyses were con-
ducted against several metrics to experimentally show that
generated melodies are in harmony with given chord pro-
gressions and have characteristics similar to those of dataset.
It turns out that generated melodies adaptively follow chord
progressions, showing repetitions and variations. Further-
more, subjective listening test demonstrates that the proposed
model produces better melodies than the alternative model
considered.

II. RELATED WORK
A. CHORD CONDITIONED MUSIC GENERATION
Since chord and melody are two of the most essential ele-
ments that make up modern pop music, many studies have
been conducted to capture their relationships in music gen-
eration. While there have been various research results on
arranging a chord progression for melody [19]–[22], the task
of chord conditioned melody generation has been relatively
less investigated.

Brunner et al. [23] presented JamBot that consists of
two LSTMs (Long Short-Term Memory) [24] for generating
chord progressions and chord conditioned polyphonic music,
respectively. Predicted chords and piano-rolls were extracted
from MIDI data to respectively train chord and polyphonic
LSTMs. The heuristic applied to extract chords assumed that
the three most played notes of a bar are the notes that make up
the triad chord of the bar. This heuristic has drawbacks in that
the inferred chords are inaccurate and limited to only triads.
Furthermore, only the 50 most frequent chords were used
for training the chord LSTM, and the model was unable to
capture the relationship between different chords since chords
were symbolized as one-hot vectors.

MIDINet [25] explored a GAN (Generative Adversarial
Network) [26] framework to generate multitrack music in
three ways: from scratch, with chords, or with a priming
melody. With regard to the chord conditioned generation,
a CNN (Convolutional Neural Network) generator takes
random noises with additional chord vectors to produce
piano-roll matrices. Each chord of a bar is represented as
a chord vector with 13 dimensions: 12 dimensional one-hot
vector for a root note and an additional dimension to specify a
chord type, either major or minor. While such chord vectors
maintain the relationship between chords with respect to a
root note and a chord type, they can only express 24 triads.

Chord based rhythm and melody cross-generation
model (CRMCG) introduced by Zhu et al. [27] aims to

FIGURE 1. An example of chord, rhythm and pitch representations with
the first 2 bars of the song ‘‘I Have A Dream’’ from the movie ‘‘Mamma
Mia!’’. O, H and R stand for onset, hold, and rest, respectively.

build rhythms and melodies separately. It is composed of
a chord GRU (Gated Recurrent Unit) [28] and two auto-
encoders, one for rhythm and the other for melody. Both
rhythm and melody auto-encoders utilize GRUs for encoding
and decoding. Chords given every 2 bars pass through the
chord GRU. Together with the result of melody encoder,
outputs of rhythm encoder and chord GRU are then fed into
the rhythm and melody decoders, respectively. The model’s
downside compared to this work is that the chord vectors
are not fed into the rhythm decoder, not reflecting the fact
that the rhythms used for chords are closely related to that of
melodies.

Another attempt to disentangle rhythms and pitch classes
was made by Yang et al. [29]. Explicitly-constrained condi-
tional variational auto-encoder (EC2-VAE) extracts rhythm
and pitch latent variables from chord and melody. A rhythm
decoder estimates distributions over rhythm tokens from a
latent rhythm variable, and a global decoder receives the dis-
tributions to reconstruct melody. If the rhythm distributions
have been trained so that the probability of repeating preced-
ing rhythm patterns is high, generated melody would simply
repeat some rhythm pattern over and over again. Contrary
to EC2-VAE, the pitch decoder of CMT takes as input the
rhythm tokens sampled from the distributions of the rhythm
decoder. In this way, other rhythm tokens with lower proba-
bilities can also be sampled even if the rhythm distributions
were trained to repeat preceding rhythm patterns, leading to
more variations in rhythm.

B. ATTENTION MECHANISM AND MUSIC TRANSFORMER
The purpose of attention mechanism in tasks such as machine
translation is to compute how much weights should be multi-
plied to each element of a source sequence when generating
a target sequence. The situation in which the source sequence
is equal to the target sequence is called self-attention.
Transformer [13] is a sequence model that relies solely on
the self-attention and it showed outstanding performance
in machine translation. It has an encoder-decoder structure,
utilizing the self-attention for both encoder and decoder. The

42072 VOLUME 9, 2021



K. Choi et al.: Chord Conditioned Melody Generation With Transformer-Based Decoders

FIGURE 2. Structure of CMT (Chord conditioned Melody Transformer). (a) Flow diagram for the rhythm decoding and pitch decoding, which are
depicted as dotted lines and solid lines, respectively. ⊕ denotes concatenation and c , r , p stand for chord, rhythm, and pitch, respectively.
(b) Detailed architecture of the rhythm and pitch decoders. N identical self-attention blocks are stacked.

decoder needs an upper triangular mask to prevent attending
to succeeding elements, whereas no such masking is needed
in the encoder since the whole source sequence is available.

However, depending only on the self-attention without
convolution or recurrence results in loss of information about
the order in a sequence. To overcome this, Transformer injects
absolute positional encoding into the input. Shaw et al. [30]
suggested relative self-attention that models relative distance
between elements more explicitly. Unfortunately, since rela-
tive distance between every element pair needs to be com-
puted, memory complexity grows quadratically along with
the sequence length.

Huang et al. [16] came up with a memory efficient rel-
ative self-attention model so that it can be employed for
much longer sequences. As an application, the authors pre-
sentedMusic Transformer, a music generation model that can
capture long-term structures. It demonstrated state-of-the-art
performance in the task of piano music generation. Music
Transformer adopts Transformer’s decoder, except the fact
that the attention to the encoder’s output is omitted since there
is no encoder. We employ the same Transformer architecture
in our rhythm and pitch decoders.

III. METHODS
A. DATA REPRESENTATION
Representations of chord and rhythm in this paper are identi-
cal to those of [29]. Chords are symbolized by 12 dimensional
binary vectors. Each component of chord vector, c, corre-
sponds to an activated pitch class of a chord. On the other
hand, three dimensional one-hot rhythm vector r indicates
one of three types of rhythmic elements: onset of a note,
holding state of an onset note, and rest.

For pitch representation, we employed a 50 dimensional
one-hot pitch vector, denoted as p. The first 48 dimensions
respectively indicate the onset of MIDI pitch from 48 (C3)
to 95 (B6), and two additional dimensions signify holding

state and rest, respectively. Any data out of the pitch range
are shifted in octaves to fit within the range.

Figure 1 illustrates an example of the data representations
with the first 2 bars of the song ‘‘I Have A Dream’’. For the
sake of simplicity, unit time step in the example is assumed
to be the length of the 8th note in Figure 1, which differs
from our actual implementation of the minimum time length
of the 16th note.

B. MODEL ARCHITECTURE
Architecture of the model proposed in this work, CMT,
is shown in Figure 2. CMT consists of three modules: chord
encoder, rhythm decoder, and pitch decoder, denoted as Ec,
Dr, and Dp in the following definitions, respectively.
Let T be the total number of time steps. The goal of CMT

is to generate rhythm sequence r1:T = {r1, . . . , rT } and pitch
sequence p1:T = {p1, . . . , pT } auto-regressively from a given
chord sequence c1:T = {c1, . . . , cT }, where subscript indi-
cates the index of a sequence element. Embedding matrices
of chord, rhythm, and pitch, denoted as Mc, Mr , and Mp,
respectively, are multiplied to their corresponding vectors
before the vectors are fed into the modules.

1) CHORD ENCODER
The chord encoder (CE) takes the form of a bidirectional
LSTM (BLSTM) [31]. Replacing the self-attention encoder
in the Transformer with a BLSTM encoder led to reduction
in the fluctuation of loss values. CE’s output c̃1:T can be
formulated as follows:

c̃1:T = Ec(Mc · c1:T ) (1)

2) RHYTHM DECODER
The rhythm decoder (RD) consists of a stack of N
self-attention blocks, as depicted in Figure 2(b).When decod-
ing the t-th rhythm token for 2 ≤ t ≤ T , only the preceding
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rhythm sequence {r1, . . . , rt−1} is accessible and the remain-
ing T − (t − 1) tokens must be masked. The masked rhythm
sequence is then given as an input to RD, together with c̃1:t−1,
to yield r̂t :

r̂t = [Dr((Mr · r1:t−1)⊕ c̃1:t−1)]t (2)

where ⊕ denotes concatenation and subscript ’1 : t − 1’
indicates a sequence of tokens or vectors of length T with
T − (t − 1) masks at the end. Note that since the output
of a BLSTM contains hidden states from both forward and
backward directions, each non-masked vector in c̃1:t−1 is pro-
duced considering the whole chord sequence c1:T . An output
layer that consists of a fully-connected layer and a softmax
layer, is added to convert r̂t into probability distributions over
rhythm tokens, pr(r̂t ).

3) PITCH DECODER
The pitch decoder (PD) consists of another stack of N
self-attention blocks. At the decoding step of the t-th pitch
token, the whole sequences of both chord and rhythm, c1:T
and r1:T respectively, are available. Rather than training
another separate rhythm encoder, we reuse the intermediate
rhythm representation r̃1:T from RD:

r̃1:T = Dr((Mr · r1:T )⊕ c̃1:T ) (3)

After obtaining r̃1:t−1 from r̃1:T , together with c̃1:t−1 and
r̃1:t−1, PD receives a masked sequence p1:t−1 of length T ,
which consists of (t−1) preceding pitch tokens and T−(t−1)
masks. The output p̂t can be formulated as follows:

p̂t = [Dp((Mp · p1:t−1)⊕ c̃1:t−1 ⊕ r̃1:t−1)]t (4)

p̂t is also converted into probability distributions over pitch
tokens pr(p̂t ) after passing through another fully-connected
layer, followed by a softmax layer.

C. TWO-PHASE TRAINING
There are two loss terms for CMT, namely rhythm loss and
pitch loss. The training procedure for CMT is divided into two
phases. The first phase trains RD, and then PD is trained at
the second phase with the pre-trained RD. Since computing p̂t
requires r̃1:T , RD’s parameters are involved in minimization
of the pitch loss too. Since back propagating only the pitch
loss at the second phase might result in performance degra-
dation of the pre-trained RD, the sum of rhythm loss and pitch
loss is minimized at the second phase while RD and PD are
jointly trained as in [32], [33].

D. PITCH VARIED RHYTHM DATA
Since distribution of pitch classes depends on the key, differ-
ent keys in different training data may disrupt the training of
PD. There are two ways to overcome this difficulty: shifting
the pitch of melodies as well as chords by semitones from−5
to+6, resulting in 12 times more data, or shifting every song
into the same key. While being equivalent in the number of
original songs the model is trained with, the latter is much
more efficient in terms of time and computing resources.

Therefore, all the training data have been shifted into one key,
C for major and A for minor, respectively in this paper. PD
is trained to generate a melody in C major or A minor, and
melody in any other key can be produced by shifting the result
up or down by certain semitones.

On the other hand, as for rhythm, pitch varied dataset is
more valuable than the single key dataset when training RD.
Melodies in 12 different keys obtained by shifting the pitch
of one melody have same rhythm but differ only in pitch,
and the same is true for the chords. RD, which receives
only the chords as input, can be trained with 12 times more
instances that has the same starting time and duration of
chords, yielding the same ground truth rhythm labels but with
different chords. By training RDwith the pitch varied dataset,
we anticipate that RD will not only be trained to capture the
timing of chords but also be robust to their pitch classes.

IV. EXPERIMENTS
A. DATA
1) DATASET
All datasets for quantitative experiments in this work came
from EWLD (Enhanced Wikifonia Leadsheet Dataset) [34].
It is amusic leadsheet dataset ofmore than 5,000 scores. After
filtering out inappropriate genres for singing melody such
as traditional, piano, chorale, and scores that do not contain
chord or melody, approximately 4,000 scores were divided
into training / validation / test sets by ratios of 8:1:1.

For qualitative evaluation, models were trained on a cus-
tom K-POP score dataset. About 1,400 leadsheets of K-POP
melodies were acquired from a commercial sheetmusic web-
site and converted to MusicXML by use of commercial lead-
sheet recognition software. The ratios of training, validation,
test split were 8:1:1, respectively.

2) PREPROCESSING
All the songs were shifted to C major or A minor key. Songs
that contain key changes were split into multiple songs with
a single key each. Each of these splitted songs were consid-
ered as an independent song, except that they were grouped
together to be included in the same set when dividing the data
into training / validation / test sets.

Each song in the dataset was further divided into pieces of
music with 8 bars, with a sliding window of 4 bars. The unit
note consideredwas 16th note. As a result, therewere 128 unit
notes in each data instance. Moreover, data instances were
discarded if the melody does not satisfy any of the following
conditions: MIDI pitch range is limited to 4 octaves based on
the assumption that the range of human singing voice would
not exceed 4 octaves. For similar reasons, two consecutive
notes should not be more than one octave apart in pitch. The
percentage of the rest should be less than 25%, in other words,
32 time steps.

B. TRAINING AND GENERATION
Negative log-likelihood was employed as a loss function for
training of RD. For PD, focal loss [35] was employed to
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resolve the label imbalance problem since there were much
more tokens of holding state and rest than those of pitch onset.

Let pr(rt ) and pr(pt ) respectively be the output probabili-
ties of RD and PD for the ground truth labels. The total loss
L = Lr + Lp is to be minimized where rhythm loss Lr and
pitch loss Lp are respectively defined as follows:

Lr = −
T∑
t=2

log (pr(rt ))

Lp = −
T∑
t=2

(1− pr(pt ))γ log (pr(pt )) (5)

with focusing parameter γ = 2.
Our model was implemented with PyTorch. The embed-

ding dimensions of chord, rhythm, and pitch were 128, 32,
and 256, respectively. A single-layer BLSTMwith the hidden
dimension of 56 was employed as CE. For the rhythm and
pitch decoders, 8 (=N ) self-attention blocks of 16 heads were
stacked with dropout probability of 0.2. To enable stacking
identical self-attention blocks and concatenating embedding
vectors to modules’ outputs, the hidden dimensions of RD
and PD were respectively set to be 144 and 512. Adam opti-
mizer [36] was adopted as an optimizer. The initial learning
rate was 10−4, decaying with the factor 0.5 if the validation
loss does not decrease for more than 4 epochs, until the
minimum value of 10−6.

At generation stage, rhythm and pitch sequences were
decoded auto-regressively, implying that the t-th element of a
sequence was generated after the preceding (t − 1) elements
had been generated. Whereas ground truth rhythm sequence
was given as input when training PD, rhythm sequence gen-
erated by RD was fed instead during the melody generation
by PD. To generate melodies with dynamic rhythms rather
than with simple repetitions of a single pattern, rhythm tokens
were sampled with probability pr(r̂t ) at each time step t
instead of applying argmax. Pitch tokens were sampled with
top-5 sampling strategy for the same reason. At each time
step, a pitch token was sampled from one of the 5 most
plausible tokens based on the rescaled top-5 probabilities.

Since CMT is a variant of Transformer, it requires a seed
to generate a melody. To start constructing melody of 8 bars,
the first token was chosen heuristically depending on a given
chord sequence as follows. If there was no chord at the first
time step, the rest token was set as the first token for both
rhythm and pitch. Otherwise, the onset of the pitch corre-
sponding to the starting chord’s root note was set as the first
token.

C. EXPERIMENT SETTINGS
For CMT, five experiments with different settings were con-
ducted. The most basic setting was 1 phase (1P) training,
while the training procedure of the other settings was com-
posed of 2 phases (2P). At the first phase of 2P settings,
the effects of pitch varied rhythm data and the loss terms
were examined. We use the following abbreviation scheme

for referring to the settings: PV for training with the pitch
varied data and SK for training with the single key data. With
regard to the loss term, rhythm only (RO) settings and rhythm
with pitch (RP) settings were compared. As a result, the five
experiment settings considered were 1P, 2P-PV-RO, 2P-SK-
RO, 2P-PV-RP, and 2P-SK-RP, respectively.

During the first phase, CMT was trained with the pitch
varied rhythm data for PV settings while the single key data
were used for the training of SK settings. To ensure that the
model is trained with equivalent amount of data for both
settings, the number of maximum training epochs was 100 for
PV settings and 1,200 for SK settings. Only the rhythm loss
Lr was minimized for RO settings, while the loss term for RP
settings was L = Lr + Lp.
For the second phase of all 2P settings, the model was

trained with the single key data for 100 epochs. At the begin-
ning of the second phase, RD’s parameters trained from the
first phase were restored while the parameters of CE and PD
were initialized randomly. The learning rate of RD’s parame-
ters was fixed to 10−6. In the 1P setting, themodel was trained
with the single key data for the maximum of 1,300 epochs.

As an ablation study, two baseline models were compared
with CMT. First model is a vanilla Transformer. It consists
of only CE and PD, both of which are stacks of self-attention
blocks. Second model replaces the self-attention CE of the
first baseline model with a BLSTM. For both baseline mod-
els, there are no separate rhythm decoders, and PDs are
responsible for predicting pitch tokens directly.

V. EVALUATION
A. QUANTITATIVE EVALUATION
To assess whether or notmelody generationmodels have been
trained well, generated melodies were quantitatively evalu-
ated in the following four ways: examining token accuracy
and loss value, analyzing chord tone ratio, using MGEval
framework [37], and investigating bar rhythms.

1) VALIDATION ACCURACY AND LOSS
By referring to [38], [39], accuracy of predicting a token at
the next time step was employed as an evaluation metric for
model selection. For the two-phase training of CMT, RDwith
the highest validation rhythm accuracy, which mostly corre-
sponds to the model with the smallest loss value, was chosen
as the pre-trained model during the second phase.

While low pitch accuracy doesn’t necessarily mean that
the generated melody is not in harmony, high validation pitch
accuracy can be interpreted as the model’s ability to generate
melody that is harmonious with the chord progression. Two
types of pitch accuracies were calculated. The first type con-
siders all the 50 pitch tokens, including hold and rest. This is
an adequate measure for comparing the two baseline models.
However, predicting hold and rest tokens at the pitch decod-
ing step is trivial for CMT since PD takes the ground truth
rhythm sequence as input. When comparing different CMT
settings, the accuracy obtained without those two tokens
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TABLE 1. Validation accuracies and loss values of two baseline models and CMT in different experiment settings. The total loss L = Lr + Lp is the sum of
rhythm loss Lr and pitch loss Lp.

reveals the performance of PD more clearly. Accordingly,
to compute this second type of accuracy over the 48 onset
pitch tokens, the number of correctly predicted pitch tokens
was counted only when the corresponding rhythm token was
an onset.

The results of two baseline models and five settings for
CMT settings are reported in Table 1. Higher pitch accuracies
and lower pitch loss values of baseline 2 over baseline 1
explain the reason for choosing BLSTM as an encoder for
CMT, instead of self-attention blocks. All the CMT settings
yielded better results with respect to pitch, suggesting the
effectiveness of a separate rhythm decoder.

Comparisons between PV and SK settings show that train-
ing with the pitch varied rhythm data at the first phase
resulted in improvements in terms of both rhythm and pitch.
2P-PV-RO and 2P-PV-RP achieved higher accuracies than
their counterparts, 2P-SK-RO and 2P-SK-RP, respectively.
Even though the settings differ in training of the first phase
and only the RD’s parameters were retained at the sec-
ond phase, their pitch accuracies exhibit notable differences.
Accordingly, it can be inferred that accurate RD helps the
training of PD. The fact that the results of RP settings were
better than those of RO settings also supports the claim. It can
be interpreted as the effect of sharing intermediate rhythm
representations from RD at pitch decoding step.

2) CHORD TONE RATIO
To assess how well the generated melodies comply with
a given chord progression, we compared the chord tone
ratios for the test dataset and those for the results by CMT,
EC2-VAE [29], and the two baseline models. While the goal
of Yang et al. [29] was not melody generation, EC2-VAE was
considered as an alternative since it can produce melodies
from scratch by sampling latent variables from a latent space,
and in particular it took an approach most similar to ours in
terms of chord conditioning and separation of rhythm and
pitch.

CMT, EC2-VAE, and the two baseline models were all
trained with EWLD to generate melodies of 8 bars. Con-
ditioned on the chord progressions of the 2,950 test data
instances, 2,950 samples were constructed from each model.
Under the intuition that a harmonic melody would have
chordal notes especially on the first strong beat, we also
computed the chord tone ratio of the first beat of each bar,
along with the overall ratio.

TABLE 2. Mean values of chord tone ratios.

The average chord tone ratios computed from the test
dataset, CMT with 2P-PV-RP setting, two baseline models
and EC2-VAE are summarized in Table 2. For the test data
of EWLD dataset, 71.42% of notes were one of the notes
that make up the chord on their onset time on average. The
average chord tone ratios of two baseline models and EC2-
VAE were 50.43%, 68.82%, and 63.19%, respectively, which
are clearly lower than that of the test dataset. Conversely,
the average ratio of CMT was 72.53%, similar to that of the
dataset. This tendency appears to bemore evident in the ratios
for the first beats. From this result, it can be concluded that
CMT was trained to make good use of the chord information
and produce melody that is harmonious with the chord to a
similar level to that of the dataset.

3) MGEval FRAMEWORK
MGEval (Music Generation Evaluation) is a framework
developed by Yang and Lerch [37] to evaluate generated
music. It extracts nine metrics from a piece of music,
five of which are pitch-based features and four related to
rhythm. Each feature name and its abbreviation are specified
in Table 3.

TABLE 3. Features extracted in MGEval framework [37].
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TABLE 4. Results of applying the MGEval framework to the test dataset and the outputs by CMT and EC2-VAE, respectively. For M ∈ {MCMT,MEC2 } and
feature f , KLD indicates the Kullback-Leibler divergence between the two PDFs estimated from δf (Mtest,M) and δf (Mtest,Mtest), and OA stands for
the overlapping area.

Based on MGEval, we measured how much the statis-
tics of the generated music agree with those of the dataset
through carrying out pairwise cross-validation. We applied
the evaluation framework to the EWLD’s test dataset as
well as the music pieces generated by models, described
in Section V-A2. For all the features considered, the
Euclidean distances between all the possible pairs of two
music samples were computed.

Let Mtest, MCMT, and MEC2 respectively denote the test
dataset and the sets of music pieces produced by CMT and
EC2-VAE, respectively. d fij denotes the Euclidean distance
between the pieces i and jwith respect to feature f . For feature
f , two distance sets δf (Mtest,MCMT) = {d

f
ij |i ∈Mtest, j ∈

MCMT, ∀i, j} and δf (Mtest,Mtest) = {d
f
ij |i ∈ Mtest, j ∈

Mtest, ∀i, j s.t. i 6= j} were converted into probability den-
sity functions (PDFs), to obtain Kullback-Leibler divergence
(KLD) [40] as well as overlapping area (OA) values between
the two PDFs. If CMT was trained to be able to capture
the characteristics of the dataset well in terms of feature f ,
δf (Mtest,MCMT) and δf (Mtest,Mtest) would follow similar
distributions, resulting in small KLD and large OA. KLD
andOAbetween δf (Mtest,MEC2 ) and δf (Mtest,Mtest) were
computed in the same way.

Table 4 shows means and standard deviations for the
features (except for histograms and matrices) of the test
dataset, CMT, and EC2-VAE, along with the results of
distribution comparison between the test dataset and each
of the two models. The results show that CMT outper-
formed EC2-VAE in terms of both KLD and OA for
all the features considered. Visualization results for the
PDFs converted from three distance sets, δf (Mtest,Mtest),
δf (Mtest,MCMT), and δf (Mtest,MEC2 ), can be found in the
supplementary material.

4) BAR RHYTHM ANALYSIS
Furthermore, distributions of bar rhythms were examined.
In our data representation, one bar consists of sixteen time
steps and there are three kinds of rhythm tokens. Therefore,
the number of possible rhythm patterns in a bar is 316. For
every instance of 8 bars in the test dataset and a piece of music

produced by CMT and EC2-VAE, we counted the number
of different bar rhythms and compared the Jensen-Shannon
divergence [41] between distributions. Only CMT and EC2-
VAE were considered and not the baseline models mentioned
above, since the baselinemodels do not predict rhythm tokens
explicitly.

There were 1,219 different bar rhythms in the test dataset.
For the generated samples by CMT and EC2-VAE, the num-
bers of different bar rhythms were 2,259 and 3,532, respec-
tively. The total number of different bar rhythms in all three
sets was 5,419.

The Jensen-Shannon divergence [41] between the test
dataset and outputs by CMT was 8.14 × 10−2, which was
smaller than 2.17 × 10−1, the divergence between the test
dataset and EC2-VAE’s outputs. This indicates that the distri-
bution of bar rhythms generated by CMT is more similar to
that of the dataset.

FIGURE 3. Bar chart of rhythm patterns in the test dataset, CMT, and
EC2-VAE. 10 most frequent rhythms from the test data are sorted on the
x-axis by their frequencies and the y-axis indicates the counts of each
bar rhythm.

Figure 3 depicts the results in more detail. Out of 5,419 pat-
terns, 10 most frequent bar rhythms in the test dataset are
illustrated in bar charts. The dataset and CMT show a similar
tendency while EC2-VAE does not. Specifically, for the 2nd
most frequent bar rhythm, the pattern occurred for almost
2,000 times in the dataset and CMT’s generations, whereas
the occurrence was less than 500 for EC2-VAE. On the other
hand, for the 6th most frequent bar rhythm, the frequency was
less than 500 in the dataset and CMT’s generation results but
more than 1,000 in generation results by EC2-VAE.
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FIGURE 4. Melodies generated in accordance with chords in major and minor keys. (a) and (b) are different melodies generated from a single chord
progression in a major key. (c) and (d) are generated for another chord progression in a minor key, conditioned on the rhythms of (a) and (b),
respectively.

B. QUALITATIVE EVALUATION
1) VARIETY AND CHORD ACCORDANCE
Figure 4 demonstrates the capability of CMT to generate
various melodies that are consonant with given chord pro-
gressions. From the test instances of the custom score dataset
described in Section IV-A1, two chord progressions were
extracted, one in a major key and the other in a minor key.

Figures 4 (a) and (b) show the scores of two melodies
generated by CMT for a single chord progression in a major
key. CMTwas able to produce different outputs even with the
same input due to sampling strategy that substitutes argmax,
as explained in Section IV-B. The results of feeding the
rhythms of (a) and (b) into PD with a chord progression in
a minor key are presented in Figures 4 (c) and (d), respec-
tively. It can be observed that pitch progressions are adjusted
appropriately.

2) REPETITIONS AND VARIATIONS
Figure 5 depicts the samples of 8-bar music produced by
CMT, conditioned on randomly sampled chord progressions
from the custom score test set. Repeated rhythms within each
sample are depicted as the boxes with solid lines, and their
variations as the boxes of the same color but with dashed
lines.

In Figure 5 (a), the rhythm of the dotted 8th - 16th -
8th - 8th notes is repeated, marked as the solid red box.
Despite the same rhythm, the notes’ pitches differ slightly
from each other, leading to avoidance of boredom caused by
simple repetition of the same melody. Rhythm itself varies
from the original pattern, bordered by the dashed red boxes:
consolidation of the second (16th) and the third (8th) notes
into the dotted 8th note in the 4th bar, and fragmentation of
the first dotted 8th note into the 16th and the 8th notes in the
7th bar. Similar variations can also be observed in the green
boxes.

Repetitions that are longer than those of Figure 5 (a) can
be found in the orange boxes of Figure 5 (b). The 1st and 5th
bars have the same rhythms. The 2nd and 6th bars differ from
them only at the 4th beat, changing the 8th note to the rest of
the same length. Purple boxes reveal that rhythmic repetition

FIGURE 5. Examples of 8-bar music generated by CMT. Boxes with solid
lines represent repeated rhythms and those with dashed lines of the
same color indicate their variations. Arrows emphasize similar pitch
contours.

is not just limited to that of a fixed length. Figure 5 (c) shows
an example for the repetitions of pitch contours. Two types
of pitch contour patterns are repeated in three bars, depicted
as the blue and brown arrows, respectively. Note that similar
rhythm patterns can be observed in all the bars except the 8th.

3) HUMAN EVALUATION
We trained EC2-VAE with the custom score dataset as an
alternative model to compare with CMT. CMT and EC2-
VAE generated 15 pieces of 8-bar music each, which were
conditioned on the chord progressions from randomly sam-
pled test data instances. With additional 15 instances from
the test dataset, total 45 pieces of music were the candidates
of listening samples. 40 participants listened to three ran-
domly sampled pieces of music from each of the following
sets: test dataset, results generated by CMT and EC2-VAE,
respectively. Each participant was asked to rate each sample
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in a 5-point Likert scale, from 1 (very low) to 5 (very high).
Four criteria were chosen by referring to [25], [27], [29]:

1) Rhythm: Whether the rhythm sounds good or not.
2) Harmony: How harmonious the melody and chord pro-

gression are.
3) Creativity: How novel the melody is.
4) Naturalness: How much the music sounds like those

composed by human.
The results of human evaluation are visualized in Figure 6

as violin plots. CMT’s rhythm, pitch, and naturalness scores
were higher than those of EC2-VAE, suggesting that its results
sound better in terms of rhythm and pitch, and are also more
natural and sound like human made music. As for creativity,
CMT got higher scores than real melodies in the dataset. This
implies that CMT was not trained to simply copy the training
data, and also that the produced melodies are novel.

FIGURE 6. Result of human evaluation comparing ground truth dataset
(D), CMT (C) and EC2-VAE (E). The middle bars indicate the mean values.

In conclusion, CMT appears to be able to produce novel
melodies that are more natural and sound like human made
than those generated by EC2-VAE.

VI. CONCLUSION
This paper introduced a novel chord conditioned K-POP
melody generation model, named CMT, and proposed train-
ingmethods to improve its performance. Themodel generates
rhythm first, and then pitch sequence corresponding to the
rhythm. Comparisons between different experiment settings
proved that dividing the training procedure into two phases
and training with the pitch varied rhythm data were effec-
tive in improving the accuracy of both rhythm and pitch.
Evaluations with several quantitative metrics implied that the
distributions of the test dataset overlap more with those of
the proposed model’s results than those of the alternatives
considered in terms of both pitch and rhythm based features,
including chord tone ratios and bar rhythms. Examples of
generated music demonstrated the model’s ability to adap-
tively generate various melodies with repetitive and varying
patterns for a given chord. The results of human listening test
demonstrated that the melodies generated by the proposed
model were novel, harmonious, natural in rhythm, and sound
like music composed by human.

Yet, one of the drawbacks of the proposed work is that the
length of generatedmusic is limited to 8 bars. For a generative
model to produce real K-POP melodies, it should be capable

of generating melodies with repetitions and variations over
longer time spans. Song generation with consideration of
structures such as verse and chorus is also necessary. CMT
itself can be trained with longer songs, or can be utilized in
other scenarios such as constructing a chorus from a verse.
We leave the task of generating longer melodies for future
work.
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