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ABSTRACT Mobile Radio Networks produces many of Operations, Administration, and Maintenance
(OAM) data used by operators for network operational assurance. These data include multiple and diverse
performance measurements and indicators that characterize the behavior of the radio cells. Being able to
properly cluster the apparently dissimilar behaviors exhibited by a large number of individual cells into
a reduced set of prototype patterns constitutes a valuable tool to support multiple processes such as cell
configuration optimization or fault performance root cause analysis. While powerful clustering methods
such as Self Organized Maps (SOM) exist, there is practically no literature showing the applicability of these
methods of OAM datasets with a high number of attributes (>20) collected from live network deployments.
Moreover, the applicability of the clustering methods does not come free of open questions since, for instance,
when using SOM there is no explicitly obtained information about clusters after the SOM training in the
underlying data, so the k-means technique for grouping SOM units has to be applied afterward. In this
context, this paper describes a methodology to cluster radio cells based on a combination of SOM and K-
means methods. The methodology is applied to extract cell patterns of the characterization of the long-term
behavior (15 days’ observation period) and short-term behavior (hourly observation periods) of mobile cells.
OAM datasets collected from a live 4G/LTE network deployed in a major European city are used in the
analysis.

INDEX TERMS Self-organizing maps, k-means, mobile access network, OAM, cluster, long-term behavior,

short-term behavior.

I. INTRODUCTION

Tightly integrated with Artificial Intelligence (AI) technolo-
gies, the exploitation of data analytics is anticipated to being
a game-changer for network operators at all levels, ranging
from top business, service, and network management levels
(e.g. customers care management, service fault management,
network performance management) down to the level of driv-
ing the operation of specific functions embedded within the
network nodes (e.g. traffic routing and Quality of Service
[QoS] parameter selection based on network data analyt-
ics), for instance, how to implement data transactions among
mobile users in customers care management field is a hot
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research issue [1]. In particular, the Radio Access Network
(RAN) is a data-rich environment where data is continuously
gathered in the form of radio measurements or other system
indicators (e.g., performance indicators, alarm conditions).
However, data cached Mobile Network Operators (MNOs)
associated with spatial-time in RAN is too complex and
huge to explore and analyze. Therefore, the rise of data
mining and analysis enables MNOs to effectively monitor
cell performance and manage network resource allocation is
emerging recently [2]. Among many data analysis methods,
clustering as a simple and effective analysis method has
attracted the attention of many researchers. It is one of the
standard methods of dealing with a large dataset in many
areas as well, such as industry, agriculture, and economic
system [3], etc.
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Clustering is the method used to group data onto sets
having similar characteristics. It could be applied to observe
similar patterns of the data. Well-formed clusters are those,
who are properly segregated and represent an order. Labeled
data is easier to cluster as a penalty and a reward system
can be put into place to facilitate the efficient clustering of
the data [4]. However, it is difficult to cluster the unlabeled
data, since, there is no specific standard against which the
clustering can be tested and the data is large enough to be
properly clustered by human intervention. The requirement
for clustering methods was researched a long time ago and
some different clustering algorithms (i.e., k-means and SOM)
have been developed. However, lately, there has been an
increase in the use of these two concepts to properly identify
clusters. At the same time, these two algorithms have shown
lots of advantages and disadvantages in the clustering part in
data analysis researching as well.

In this paper, we use the SOM-K algorithm to analyze
RAN datasets, which consist of temporary reference values
for numeric attributes with Matlab. First, we implement the
SOM algorithm, and the input data is clustered into the
SOM for training. Since SOM simulation is complex and
time-consuming, thus nearly accurate clustering results are
possible and required in the initial assembly, the number of
iterations can be greatly reduced (e.g., can be set to 350
times), and there is no need to wait for the algorithm to
converge completely. Second, after training is completed,
the network makes each node of the output layer become a
neuron, which is sensitive to a certain pattern class through
the method of self-organization, and the corresponding inter-
nal weight vector of each node becomes the central vector
of each input pattern class. This center vector can be used
as a primary center vector in the k method algorithm for
performing accurate secondary aggregation.

The rest of the paper is organized as follows. Section II
provides some background on SOM and K-means clustering
techniques along with an overview of the related work and
the novelties of this work. Section III presents the OAM
dataset used in the analysis. The clustering methodology
based on a SOM-K model is described in Section IV and
Section V provides the simulation results and discussion.
Finally, Section VI draws the conclusions.

Il. BACKGROUND
A. SOM AND K-MEANS FOR CLUSTERING
SOM is an unsupervised learning neural network model that
can be used for clustering, high-dimensional reduction, and
visualization [5], [6]. It is a readily explainable, simple,
and highly visual automatic data-analysis method [7], [8],
which is widely applied to clustering problems and data
exploration in pattern recognition, data compression, and
mining [9], [10].

SOM clustering is different from other artificial neural
networks because they apply competitive learning instead of
error-correction learning, and in a sense, they use a neighbor-
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hood function to preserve the topological properties of the
input space [11], [12]. The biggest advantage of the SOM
algorithm is that it can map data from high-dimensional space
to low-dimensional space. Besides, the SOM algorithm can
automatically classify data based on the similarity between
the datasets and reduce noise [13]. However, the most serious
defect of the SOM algorithm is that it cannot provide accurate
clustering information after clustering and the SOM cluster-
ing has high complexity and slow learning speed [14]. Com-
pared to the SOM, k-means clustering is a method that divides
the datasets into different categories through the iterative
process based on the similarity in the sample, which makes
the sample difference in internal clusters smaller, while the
sample difference in different clusters is greater [15], and it
is a dynamic clustering algorithm suitable for the small and
medium-sized data clustering. However, there are inherent
short-comings 1) The k-means algorithm requires k£ to be
given in advance, but the value of k is usually difficult to
determine; 2) The k-means is sensitive to noise and out-
liers and has a poor performance in high-dimensional data
clustering [16]. Balancing the pros and cons of these two
algorithms, we propose a two-stage clustering algorithm that
combines the SOM and k-means and applied it to cell cluster-
ing in RAN. Also, the comparison of SOM-K clustering and
k-means clustering results are shown in the appendix.

B. RELATED WORK

SOM and k-means have been used in the telecommunica-
tion field for monitoring the communication system as well.
For example, the authors of [17] proposed a SOM-ward’s
clustering method, and [18] proposed a SOM + K-medoids
clustering method with low-dimensional label datasets for
LTE network anomaly detection as well. These two anomaly
detection systems are verified effectiveness by analyzing
their performance and comparing them with the reference
mechanism. Unlike authors of [17] using SOM algorithms,
the authors in [19] presented a data-driven method that uses
feature selection and k-means to group LTE cells into clusters
with common uplink behavior and the result shows that the
uplink speed of 4G networks has increased by 7%. In par-
ticular, authors in [20] using k-means clustering to detect
any abnormal behavior with label datasets from the LTE core
network, and improve network performance by adding other
resources. At the same time, a clustering algorithm based on
k-means is proposed to group users to define spatial beams to
evaluate the capability of the proposed automation solution
at the UMTS cellular network [21], although the method
successfully grouped UEs with labeled datasets, the class
deviation was higher and the calculation time was longer,
which took more than half an hour (i.e. the calculation time
of SOM-K is about ten minutes [22]). This is because it
will cost much time to choose a suitable & if input data is
from an unknown probability distribution [23]. Simultane-
ously, the work of [7] is very similar to our work, but they
extracted the behavioral pattern of the 3G network based on
low-dimensional datasets (i.e., they only use 2-dimensional
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FIGURE 1. Base stations distribution of LTE.

datasets). While compared with previous work, the novelty
and contributions of this paper are summarized as follows:

1. The SOM-K algorithm is elaborated and described in
detail. At the same time, the SOM-K algorithm for a variety
of scenarios is validated by comparing with the k-means algo-
rithm, including different time-domain environments (i.e.,
long- and short-term), which is crucial to describing the
applicability of the algorithm.

2. Compared with [7] and [17] using simple and low
dimensional feature datasets, we use more complex and
higher dimensional datasets at RAN (i.e., 29-dimensional
datasets) to analyze the performance of LTE cells.

llIl. RADIO PERFORMANCE DATASET

The analyzed data set consists of OAM performance mea-
surements extracted from an UMTS/LTE network deployed
in a major European city. The measurements were collected
for 15 days, from 12th September to 26th September in 2017,
and include data of 63 LTE cells operated in 11 macro-cell
base stations (BS) and 6 micro-cell BSs covering an area of
about 3.2 km2. The geographical distribution of the BSs is
illustrated in Fig. 1 (The coordinates are dislocated from the
real ones, but relative distances are kept). Red points represent
the macro-cell BSs and blue crosses represent the micro-
cell BSs. All the LTE cells are operated in the macro-cell
BSs except one LTE cell provided at micro-cell BS2. The
most common configuration of the macro-cell BSs consists
of 3 sectors with 2 LTE carriers of 20 MHz plus 1 LTE
carrier of 10 MHz (i.e., 9 LTE cells in total). For example,
this configuration is used in macro-cells BS1, BS6, BS7,
and BSS8. Other supported configurations include 6 LTE cells
distributed among 3 sectors (used in BS3 and BS10), 4 LTE
cells in 2 or 3 sectors (used in BS9 and BS12), 3 LTE cells
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TABLE 1. OAM performance measurement collected per cell.

\Values
Category Features (Max/Mean/Min
D
Average #UEs in UL 48.2/1.3/0
Average #UEs in DL 100.6/1.5/0
Max #UEs in UL 79.6 /4.98/0
UEs Max #UEs in DL 213/5.9/0
Total Max #UEs in eNB 1388/712/3
Total Average #UEs in eNB 1186/606/0
Carrier Aggregation capable UEs (%) 45/7.45/ 0

Data Traffic (MB)— Hourly data traffic in[2307/ 19/0
L

U
Data volume (5 o e (MB)— Hourly data traffic ind431/208.3/0

DL

Throughput Max Cell Throughput (Mbps) in UL 48.2/2.87/0
Max Cell Throughput (Mbps) in DL 232.8/31.2/0
Mean Cell Throughput (Mbps) in UL 26/0.7/0
Mean Cell Throughput (Mbps) in DL 87/12.7/0
Physical /Average PRB Usage per Time Transmission|95.8/4.6/ 0
Resource Block|Interval (TTI) (%) in UL
gli{lg;tion /Average PRB Usage per TTI (%) in DL 97.9/7.6/0
Handover (HO)|Intra eNB HO Failure Rate (%) 66.7 /0.36 /0
Failure Inter eNB HO over X2 Failure Rate (%) 25/0.17/0
Indicators Inter eNB HO over S1 Failure Rate (%) 2.8/0.01/0
Radio ResourceRRC Drop Ratio (%) 15.9/0.6/0
Control / Data]DRB Setup Failure Rate (%) 44.4/ 0.72/ 0
Radio  Bearer| 8.97/0.41/0
%ISTSEDRB) RRC Setup Failure Rate (%)
Indicators
|Average CQI 15/9.83/0
/Average Physical Uplink Share Channel|34/13 /-9
(PUSCH) SINR
Channel /Average Physical Uplink Control Channel28/7 /-10
Quality (PUCCH) SINR
MCS Low (MCS0-9) 15.5/7.84/0
Distribution (%) Medium (MCS10-19) 32.1/16.7/0
High (MCS20-28) 52.4/31.6/0
Circuit CSFB attempts in idle mode 1421/24.7/ 0
Switched 898/10.7/ 0
{?:“Sb;g])( CSFB attempts in connected mode
attempts
Latency Intra eNB Latency in DL (ms) 526/0.87/ 0
Intra eNB Latency in UL (ms) 1381/22.9/0

in 3 sectors (used in BS4 and BS5), and 1 LTE cell in a
single sector (used in micro-cell BS2). In all cases, channel
bandwidths of 20 and 10 MHz are used.

A total of 29 types of performance measurements are
collected per cell. These are illustrated in Table 1, which is
grouped into 9 categories. The measurements are sampled for
periods of 15 minutes, except for the average/max UEs per
eNB, CQI (Channel Quality Indicator), and SINR PUCCH
(Physical Uplink Share Channel)/PUSCH (Physical Uplink
Control Channel) average measurements, which are available
for periods of one hour. This results in a total of 1404 samples
per cell (14 days and 96 samples/day, and 60 samples/day in
the last day) and a total of 85977 samples of the aggregate of
cells (i.e., we have 63 cells and each cell have 1404 samples
except for cell U, V, W of BS 10 are only kept one-week
data, which is only 579 samples per cell), with each sample
containing 29 different features. Global statistics (max, mean,
and min values) of the collected performance measurements
are provided with Table 1 to illustrate their range of variation.
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FIGURE 2. Scatter plot of RRC setup failure rate and downlink latency.

Fig. 2 illustrates the scatter plot of the RRC setup failure
rate and downlink latency within 1404 samples of cell #7.
RRC setup failure rate is the ratio of the number of failed
RRC connection establishment and the total number of RRC
connection establishment. At the same time, latency is the
time takes to get a packet of a specific point. The latency
time is generally the sum of response delays and transmission
delay and it is also measured in ms. The reason why we
choose these two features’ scatters plots is that the correlation
between them is very strong, and their correlation coeffi-
cient value is 0.613. This means they are highly correlated.
It could better characterize the correlation between these
two features and the specific description of the correlation
coefficient will be discussed in the next paragraph. At the
same time, Fig. 3 shows the time evolution of downlink
maximum throughput in the whole 15 days at three different
LTE cells, which are all located in BS6. And the average
downlink throughput is different from these three cells. For
instance, cell#3 has the highest average downlink throughput,
while cell#1 has the lowest, and the average values of these
two cells are 23.3 and 5.23 Mbps, respectively. Cell#2 has a
medium performance among these three cells and the value
of average throughput is 16.1 Mbps. Simultaneously, we can
find that the throughput is fluctuating over time of each cell,
that is because the usage of data traffic is different from time
to time between different users.

Moreover, a correlation matrix heat map of the 29 features
in different cells is shown in Fig. 4. This was obtained by
using Pearson’s correlation coefficient [24] for each feature
pair, which studies the 1404 samples of the whole 15 days per
LTE cell. As the heat map differs in the number of cells, so we
calculate the average values of the correlation coefficients
achieved with all cells to represent the heat map of the entire
cells. Green and red represent positive and negative correla-
tions between different features, respectively. For instance,
the upper left corner of Fig. 4 is roughly green, which means
that the features of this area are positively correlated. On the
contrary, the features of the red region in the middle of
Fig. 4 show the meaning of negative relationships.
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IV. CLUSTERING METHODOLOGY USING SOM-K

A. SOM TOPOLOGY AND PARAMETERS

The topology of the SOM neural network is illustrated
in Fig. 5. It consists of two layers, namely, the input layer
and the competition layer. Both layers are made up of several
neurons, also called nodes or units. The working principle of
SOM is projecting a collection or sequence of data input items
from the input layer’s neurons into the competition layer’s
neurons [25]. The data input items are typically represented
as a set of I vectors Xi = [xi1, xp2, ..., xin]T where i =
1...,1, and n is the dimension of the input space given by
the number of features of the individual input data items.
On the other hand, the competition layer of the SOM model is
arectangular or hexagonal grid of P neurons, each associated
with a weight vector W; = [wj1, wp, ..., win]T, where j =
1...,P. The proper value of P is one of the parameters to
be determined when building the SOM model. The neurons
in the competition layer are connected to the adjacent ones
with a neighborhood relation. Each neuron, except the ones
on the border of the map, has four or six direct neighbors,
depending on choosing a rectangular or hexagonal grid struc-
ture, respectively. For the determination of the weight vectors,
a training procedure is used, which typically is implemented
using the batch computation algorithm presented in [10]. It is
based on a competition approach by which input vectors are
compared with weight vectors to select the winning neurons,
referred to as the Best Matching Units (BMU), based on the
least distance criterion such as the Euclidean distance. During
this process, when an input sample is fed to the SOM model,
its Euclidean distance to all weight vectors is computed and
the weights of the BMU and the other neurons close to it
in the SOM grid are adjusted to the input vector [22]. The
magnitude of the change decreases with many iterations and
with the grid-distance from the BMU [12]. The SOM is an
unsupervised algorithm that follows an iterative process until
the network converges. In particular, in a given #-th iteration,
the basic process of SOM can be described as follows:

1. Randomly select a new sample of the input dataset [7]:
X (t) = X; with i have randomly chosen between 1 and
I.

2. Find the BMU of X (¢): search foraneurong €1, ..., P
in the competition layer. A BMU is calculated for each
input sample of the training data by finding the neuron
which has the smallest distance between the sample.
The BMU and all of its neighboring neurons, assigned
through the topology and neighborhood radius, are
shifted towards the input sample. Both the size of the
neighborhood and the strength of the shift will decrease
over-time to help with convergence.

min {{[W; =X @[]} = [Wq =X 0] M

where ||.|| is the distance measurement and we use the
Euclidean distance in this work.

3. Update the weights of the BMU and their neighbors
to reduce the distance between the input sample X (¢)
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FIGURE 3. The time evolution of downlink throughput in the whole period among different cells.
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FIGURE 4. Heatmap of correlation coefficient of different features.

according to the following rule [10]:
Wit + 1) = Wi(0) + p(0*ha(OIX () — W;(©]  (2)

where Wj(t + 1) is the updated weight vector, o(t) is the
learning rate at z-th iteration, which is usually a monotoni-
cally decreasing function of the number of iterations and its
range is from O to 1, and A;(t) is the neighborhood function
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and usually denote as a Gaussian function, which is centered
around the BMU.

2
202
where r, depicts the coordinates of the winner unit, and r;
denotes the coordinates of an arbitrary unit on the competition

hei(t) = exp(— ) 3)
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FIGURE 5. Network topology of SOM.

1. Selection of input data

2. Normalization

3. Determination of the number of neurons to
minimize mean quantization error (QE) and

topographic errar (TE)

4. Determination of clusters calculated by Davies-
Bouldin index

5.Result analysis

FIGURE 6. SOM-based clustering methodology.

layer lattice of the map and is the width of the neighborhood.
It is necessary that A.;(¢) close to 0 when ¢ closes to oo for the
algorithm to converge. During learning, the learning rate and
the width of the neighborhood function are decreased, typi-
cally to a linear fashion (to know more detailed neighborhood
functions see Ref. [8]).

4. The three above steps are repeated until the learning
rate is no longer changing (i.e., network convergence).

B. CLUSTERING METHODOLOGY
The methodology used for cell clustering by using the SOM
model is illustrated as a flow chart in Fig. 6. In our case, the
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dimension of the input space is n = 29 and the maximum
number of data items are [ = 85977, as previously discussed
in section III.

Before training the SOM model, input data have to be
normalized. Otherwise, directly using raw data as input data,
might cause huge deviations because of the range of numeri-
cal values taken but each of the features differs greatly. There-
fore, standardization is applied using the following formula
[26]:

Xij — min(xj)

i = max(x;j) — min(x;) @)

where x;; is the raw value of feature j in data item i
min(x;) and max(x;) are the minimum and maximum data
values of feature j in whole data items respectively. O;; is
the normalized value and the result of normalization is in the
range of [0,1].

The next step after the normalization of the input data is
the determination of the most appropriate number of neurons
P to be used in the competition layer of the SOM model.
This is solved in our case by relying on the computation
of the mean quantization error (QE) and topographic error
(TE), which are the main measurements to assess the quality
of the SOM model [27]. In particular, QE is computed as
the average distance between input data vectors and their
BMUs [28] and TE represents the percentage of data vectors
for which the BMU and the second winning neuron are not
adjacent [29]. In general terms, the smaller the QE and TE,
the better the operation result and performance of the SOM
model [8], [30]. However, when deciding the number of
neurons, the correlation effects between QE and TE have to
be accounted [31], [32]. For topographic error, the smaller
the map size, the lower error. However, when the map size is
bigger, the topographic error is the highest. The reason is that
SOM can simulate the topology structure, and the topology
structure will change based on the map size. When the map
size is small, the structure of the topology is simple and
the error is small. When the map size is large, the structure
becomes complex, and the error rate increases more than the
increased rate of the map size. As the map size becomes
larger, the rate of topographic error less than the rate of map
size. The topographic error decreases naturally. Typically, QE
is considered as the dominant parameter for choosing the map
size [27] when they exhibit similar values of TE. Formally,
QE and TE are computed as follows:

1

QE = S X @ - W] 5)
1 R

TE=2),  dXW®) ©)

where X (1) is the input data item at the ¢-th iteration; W (¢) is
the BMU’s weight vector of the sample X (¢); d (X (¢)) = 1,
if the first BMU and the second BMU of X (¢) are not adjacent
and d(X(t)) = 0 otherwise, and R is the number of iterations
until network convergence. Based on the above, in this step,
we train the SOM model using the Matlab SOM toolbox
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2.0 with a different number of neurons ranging from 4 (i.e.,
2 x 2 grid) up to 100 neurons (i.e., 10 x 10 grid). For each
configuration, we compute the value of QE and TE by using
the som_quality (sMap) package and among all the trained
models, the one with the lowest QE and TE will be selected.
Let us denote Py to the size of the SOM model that delivers
the best performance in terms of TE/QE.

In the next step, the k-means algorithm is used to cluster
the Po,e weight vectors obtained by SOM into a smaller
number of vectors Q < Py so that overall clustering accuracy
is improved [33]. The obtained Q vectors are called cen-
troids or cluster centers. In particular, the k-means calculation
is performed by selecting the optimal clustering number Q
that minimizes the Davies & Bouldin index (DBI), which
represents the ratio of the sum of centroid intra-cluster dis-
tances and inter-cluster distances [34]. The combined SOM-
k clustering algorithm, which is named quadratic clustering,
can maintain the self-organizing characteristics of the SOM
network and the high efficiency of the k-means algorithm,
and the small selection range of the initial clustering center
value of the k-means algorithm. The DBI for Q clusters is
defined by the following expression:

B l Q0  max Sc (Om) + Sc (Q1)
B @ =52 s { dee (Om. Q1) } @

o O, and Q; represent the m-th and [-th clusters within the
set of Q clusters.

S0y — ZilXi=Coull ; i i

o Sc(Qn) = N is the computation of the cen
troid intra-cluster distance. Sc(Q) measures the average
of all pair-wise distances from samples of the cluster to
the cluster centroid [35]. X; is an n-dimensional feature
vector assigned to the cluster Q,,. Cp,, is the centroid of
the cluster Q,, [36].

o dee (Om, Qp) is the so-called inter-cluster distance
between two generic clusters Q,, and Q;. At the same
time, it is computed as the distance between their cen-
troids.

The DBI is computed for several values of Q and the one
that minimizes vpp(Q) is taken as the optimal value [37],
denoted in the following as Q* [38], [39].

Finally, the characters of different clusters are analyzed
by comparing the distribution of different features of each
cluster.

V. USE CASE

A. LONG-TERM BEHAVIOR CELL PATTERNS

We try to obtain the cell patterns based on the long-term
behavior (long-term behavior is the performance of cell pat-
terns throughout the whole 15 days) of the cells as observed
during the entire measurement collection period. According
to average values of the entire measurement period are first
computed for all the cells, the input data onto 63-row vectors
(one per cell) with 29-column vectors of each cell (one per
feature) was selected. We represent input data as a 63 x 29
matrix. In the simulation work, we have tried many group
iterations as well (e.g., from 50 to 1000) and found when
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TABLE 2. Value of QE and TE.

Map size QE TE
2%2 1.66 0
33 0.79 0
4%4 0.95 0
5%5 0.76 0
66 0.296 0
7*%7 0.46 0
8*8 0.43 0
9%9 0.4 0
10*10 0.41 0.5

50M Neighbor Weight Distnces

smiall distance

large distance

FIGURE 7. SOM neighbor weight distance.

iteration times are 350, the accuracy of simulation will be
stable and reached 0.92).

To determine the map size, the value of QE and TE are
computed for configurations ranging from 2 x 2 neurons up
to 10x 10 neurons. Obtained values are given in Table 2, as we
can see, QE and TE get the minimum when the configuration
reaches 6 x 6 (QE = 0.296 and TE = 0).

The weight vectors associated with each neuron move to
become the center of a cluster of input vectors. Besides,
neurons that are adjacent to each other in the topology should
also move close to each other in the input space, therefore, it is
possible to visualize a high-dimensional input space in the
two dimensions of the network topology. One visualization
tool of the SOM is the weight distance matrix (also called
the U-matrix) is shown in Fig. 7, the blue hexagons represent
the neurons. The red lines connect neighboring neurons. The
colors in the regions containing the red lines indicate the
distances between neurons. The U-matrix is a matrix whose
elements represent the mean distance of each map unit from
its neighboring units, so relative maximums of this distance
matrix indicate cluster borders, whereas low values indicate
the clusters themselves [25].

The SOM sample hits are shown in Fig. 8: each neuron
shows the number of input vectors for its classification. The
relative number of vectors for each neuron are shown by the
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FIGURE 9. Weight planes of different features.

size of the colored patches and the default topology of the
SOM is hexagonal. This figure shows the neuron locations in
the topology and indicates how many of the training data are
associated with each of the neurons. The topology is a 6-by-
6 grid, so there are 36 neurons. The initial number cluster of
SOM is 35 and the maximum number of hits associated with
any neuron are 4.

To divide input vectors into different clusters, we are using
SOM weight planes to visualize the SOM topology; The
weight planes in 9 different features selected from 9 different
categories in Table 1 are shown in Fig. 9, and they are
also representing the correlations between different features.
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FIGURE 10. The minimum value of DBI and responding clusters.

At the same time, they are visualizations of the weights that
connect each input to each of the neurons (the darker colors
higher weights, the lighter colors the lower weights). If the
connection patterns (e.g., color changing and distribution are
similar) of the two inputs were very similar, you can assume
that the inputs are highly correlated. For instance, Fig. 9(1)
and (2), (3) and (4) almost have similar color changes and
distributions, therefore, we can determine the Average UE
DL (downlink) and Data volume DL, max throughput DL and
PRB Usage DL have a positive correlation. Fig. 9(6) and (9)
almost have a similar color distribution, which means that the
latency DL and RRC setup failure rate have a strong corre-
lation. However, Fig. 9(5) has a different color changing and
distribution with the other 8 features, therefore, we determine
Inter eNB HO S1 Failure Rate has a weak correlation between
the other 8 features. On the other hand, Fig. 9(6) and (7), (7)
and (9) have an opposite color distribution in each neuron,
which means that these two groups’ features have negative
correlation characteristics, respectively.

For the specific clustering, we can find from Fig. 10 (a),
which shows the minimum value of DBI are 2.1 and its
corresponding cluster volume is 5. As shown in Fig. 10(b),
we use different colors to represent different clusters, and
the characteristics of specific cells in each cluster are shown
in Fig. 11 as well.

Fig. 11 illustrates the distribution of the feature of different
clusters of long-term behavior cell patterns and Table 3 shows
that we successfully clustered 63 LTE cells, and the specific
characteristics of each cluster are also described in this Table.
For instance, from Fig. 11, we could find that cluster#5 has
the best performance, while cluster#2 has the worst perfor-
mance among the whole 5 clusters. That is because #5 has
the most UEs, the best CQI, and connected mode, but #2’s
performance is the worst in the whole 5 clusters at these
three features. Unlike these two clusters, cluster#1, #3, and
#4’s performance is medium. For instance, cluster#1 and
cluster#3 have similar characteristics of data volume, max
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FIGURE 11. Features distribution of different clusters under long-term behavior cell patterns.

TABLE 3. Number of cells in different clusters by using SOM-K.

Clusters | Number of cells Defining characteristics

1 16(60,62,56,21,38 | Medium: UEs, Data volume,
,35,37,57,18,5,6,2 | Throughput, RRC setup failure rate,
5,44,43,48,49) PRB usage, CQI, Connected mode

and Latency
Low: Inter eNB HO S1 failure rate

2 12(61,54,63,29,47 | High: RRC setup failure rate and
,51, Latency.
33,14,41,42,17,1) Low: UEs, Data volume,

Throughput, PRB usage, CQI
Connected mode, and Inter eNB HO
S1 failure rate

3 14(32,34,46,9, Medium: UEs, CQI, Data volume,
15,7,8,19,58,59,1 Throughput, RRC setup failure rate,
0,50,4,11) Connected mode, and PRB usage.

Low: Latency and Inter eNB HO S1
failure rate

4 6(20,55,3,2,23, Medium: Connected mode and CQI
24) Low: UEs, Data volume,

Throughput, Inter eNB HO S1/RRC
setup failure rate, PRB usage,
Latency.

5 15(39,16,30,31, High: UEs, Data volume,
36,45,12,27,26, Throughput, PRB usage, CQI, and
22,28,13,52,53, Connected mode
40) Medium: Latency

Low: Inter eNB HO S1/RRC setup
failure rate.

throughput, and PRB usage DL are very close between these
two clusters. However, since the UEs in #3 are less than #1,
the latency of cluster #1 is higher than #3. At the same time,
although the number of UEs in #4 is less than #3, the reason
why RRC set up failure rate and latency of #4 is close to #3 is
the CQI of #4 is lower than #3.

B. SHORT-TERM (DAILY) BEHAVIOR CELL PATTERNS

We tried to obtain cell patterns based on the short-term behav-
ior (short-term behavior is hourly cell performance among
different cells in the first stage and analysis of the percentage
of the time distribution of the cells in the second stage)
of the entire cell observed during the entire measurement
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Hits

FIGURE 12. SOM hits of each neuron.

collection period. To differentiate long-term behavior, which
captures the behavior of the cell over a 24h period (1 day).
In the short-term behavior analysis, we are expected to do a
similar clustering analysis but now taking as input samples
cell performance indicators that capture the behavior of the
cell over 1h period and the whole 15 days are divided into
350 hours (due to last day we only have 14 hours’ data) per
cell. Cell U, V, W of BS 10 are only kept one-week data as
well. Therefore, we obtained 21341 groups of data in hours
by preprocessing the data of 63 cells. According to average
values of the entire measurement period are first computed
for all the cells, the input data onto 21341-row vectors of 29-
dimensions (one per feature) was selected, which input data
is represented as a 21341 x 29 matrix.

For the specific clustering, to determine the map size,
the value of QE and TE are computed for configurations
ranging from 2 x 2 neurons up to 10 x 10 neurons. QE and
TE reach the minimum when the topology is 6 x 6 (QE =
0.026 and TE = 0.047).
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FIGURE 13. The minimum value of DBI and responding cluster.

The SOM sample hits are shown in Fig. 12. The initial
number cluster of SOM is 36 and the maximum number
of hits associated with any neuron are 4912, which means
there are 4912 samples of this SOM unit. Unlike long-term
is clustering 63 cells based on 15 days and each cluster is
a group of cells. Short-term behaviors are clusters of states
in different cells per hour, not clusters in cells. At the same
time, the data is more complicated in the short-term, and the
features are 29 as well. Therefore, compared with the long-
term, the distribution of hits of different clusters of the short-
term is more uneven.

We can find from Fig. 13(a), which shows the minimum
value of DBI are 0.65 and its corresponding cluster volume
is 5. We use different colors to represent different clusters
are shown in Fig. 13(b). Therefore, the number cluster of
short-term behavior is 5 and the specific clusters of short-term
behavior are shown in Fig. 14.

From Fig. 14 and Table 4, we can find the behavior of hours
of cluster #4 has the best performance among these 5 clusters.
We can see that all features’ performance in #4 is far above
the other clusters, such as #4 has the best UEs, CQI, and
connected mode (i.e., UEs proceed with a connected mode
when they completed the RRC connection establishment)
among these 5 clusters. Simultaneously, the sample time of
cluster #4 is almost concentrated on the rush hour of 9 am
and 3 pm, which is mainly working time and the data usage
is a peak period. Since the values of all features are the

lowest, the performance of cluster#1 is the worst. Because
the period of it is almost from 2 am to 6 am, there is a little
person need to use mobile phones to communicate or surfing
the internet. Focus on clusters #2 and #3, cluster#2 has a
lower RRC setup failure rate and higher connected mode.
The other features of these two clusters are similar. That is
because, in the case of a similar number of UEs, the value
of CQI of #3 is smaller than#2. This means that compared
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TABLE 4. Number of cells in different clusters by using SOM-K.

Clusters | Number of
different

hours in whole
cells

1 4645

Defining characteristics

Low: UEs, Data volume, throughput,
Inter eNB HO S1/RRC setup failure
rate, PRB usage, CQI, Connected
mode, and Latency.

Medium: Connected mode,
Data volume, Throughput,
usage, CQI, and Latency

Low: Inter eNB HO S1 /RRC setup
failure rate.

High: RRC setup failure rate
Medium: Data volume, Throughput,
Connected mode, CQI, PRB usage,
and Latency

Low: UEs, RRC, Inter eNB HO S1
failure rate,

High: UEs, Data
Throughput, PRB usage,
Connected mode, and Latency.
Medium: RRC setup failure rate
Low: Inter eNB HO S| failure rate
High: RRC setup failure rate
Medium: Latency

Low: UEs, Data volume, Throughput,
CQI, PRB usage, Inter eNB HO S1
failure rate, and Connected mode

2 2841 UEs,

PRB

3 6676

4 655 volume,

CQL

5 6524

TABLE 5. Distribution of cells in different load clusters at short-term
behavior.

Clus Clus | Clus Clus Clus
terl( | ter2( | ter3( | terd( | ter5(
%) %) %) %) %)
Low Sub- | Med | High | Sub-
Cells load | high | ium load | low
load load load
1:5,6,12,13,16,21,22,25,26,27,28,2 10.2 | 143 | 30.8 | 3.7- 20-

Load degree

9,31,32,35,36,37,38,39,40,43,44,4 | - - - 51 | 268
5,48,49,52,53,57,60,62 14.5 | 15.8 | 39.1
1:2,3,4,7,8,9,10,11,15,18,19,20,23 | 16- | 11.7 | 30.5 | 1.1- | 31.6
,24,32,34,46,50,58,59 19.1 | - - 35 | -
14.5 | 32.5 34.7
111:61,54,63,29,47,51, 214 | 58 [ 185 | 0- 30.7
33,14,41,42,17,1 - 81 |- 0.55 | -
27.7 26.1 37.1

with # 2, the channel quality of #3 is worse. And the sample
time of cluster#3 is almost from 6 am to 8 am, and 10 am
to 2 pm, which the medium period of data usage. But the
sample time of cluster#2 almost comes from 4 pm to 6 pm,
which just happens before getting off work and this is a period
of sub-peak data usage. Finally, cluster#5 has a sub-worse
performance among these 5 clusters and it is only better than
#1, for instance, the RRC setup failure rate of cluster #5 is
higher than #3 and the connected mode is lower. The reason
for this phenomenon is that under the premise that the number
of UEs is similar to #3, the CQI and connected mode during
this period are weaker than #3. The sample time of this cluster

is almost from 7 pm to 1 am, which is the period of getting
off work.

VOLUME 9, 2021




S. Wang, R. Ferrts: Extracting Cell Patterns From High-Dimensional Radio Network Performance Datasets

IEEE Access

0.07
0.06
0.05
0.04
0.03
0.02
0.01

Cluster#1 Cluster#2

H Average UEs DL

M PRB Usage DL

mCcQl H Connected Mode

H Data Volume DL

Cluster#3

Cluster#4 Cluster#5

Max Throughput DL

Inter eNB HO S1 Failure Rate i RRC Setup Failure Rate

M Latency DL

FIGURE 14. Features distribution of different clusters under short-term behavior of hours.

TABLE 6. Distance comparison between k-means and SOM-K.

TABLE 8. Distance comparison between k-means and SOM-K.

Intra- Intra- Inter- Inter-cluster Intra- Intra- Inter- Inter-

cluster cluster cluster centroid cluster cluster cluster cluster

centroid centroid centroid distance centroid centroid centroid centroid

distance distance distance (SOM-K) distance (k- distance distance distance

(k-means) | (SOM-K) | (k-means) means) (SOM-K) (k-means) (SOM-K)
Cluster#1 1.05 0.405 1.01 1.08 Cluster#1 0.002 0.043 0.48 1.37
Cluster#2 0.63 0.577 0.59 0.88 Cluster#2 0.433 0.038 0.02 0.72
Cluster#3 0.68 0.655 0.53 0.96 Cluster#3 0.009 0.038 0.80 0.78
Cluster#4 1 0.505 0.63 0.80 Cluster#4 0.049 0.051 0.57 0.65
Cluster#5 0.52 0.470 0.71 0.85 Cluster#5 1.126 0.080 0.44 0.78

TABLE 7. Number of cells in different clusters by using k-means.

Number
of cells
1 14

Clusters Defining characteristics

High: UEs, Data volume, Throughput, PRB
usage, CQI, and Connected mode

Medium: Latency

Low: Inter eNB HO/RRC setup failure rate.
High: RRC setup failure rate and Latency.
Medium: PRB usage and CQI

Low: UEs, Data volume, Throughput, Inter
eNB HO S1 failure rate, and Connected
mode

Medium: UEs, Data volume, Throughput,
RRC setup failure rate, PRB usage, CQI,
Connected mode, and Latency.

Low: Inter eNB HO S| failure rate

High: UEs, Data volume, Throughput, CQI
Medium: PRB usage and Connected mode
Low: Inter eNB HO S1/RRC setup failure
rate and Latency

High: RRC setup failure rate and Latency.
Medium: PRB usage and CQI

Low: UEs, Data volume, Throughput, Inter
eNB HO S1 HO rate, and Connected mode

Table 5 shows the cell distribution of different load degrees
in the short-term, the top row is the load and the left column
are three types of cells from the whole 63 LTE cells.
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TABLE 9. Number of cells in different clusters by using k-means.

Number of
different hours
in whole cells

1 5719

Clusters Defining characteristics

Low: UEs, Data volume,
Throughput, PRB usage, Inter eNB
HO S1/RRC setup failure rate. CQI,
Connected mode, and Latency
Medium: UEs, Data volume,
Throughput, Connected mode, PRB
usage, CQI, RRC setup failure rate,
and Latency.

Low: Inter eNB HO S| failure rate
High: RRC setup failure rate

Low: UEs and Data volume,
Throughput, Inter eNB HO S1 failure
rate, PRB usage, CQI, Connected
mode, and Latency.

High: RRC setup failure rate, and
Latency

Low: PRB usage Connected mode
UEs, Data volume, throughput, CQI,
and Inter eNB HO S| failure rate
High: RRC setup failure rate, latency,
PRB usage, CQI UEs, Data volume,
Throughput, and Connected mode
Low: Inter eNB HO S| failure rate

2 1238

3 4224

4 7475

5 2685

Firstly, we can move on the column of high and low load
degrees, for instance, let us focus on the low load degree in
cells II1, the time distribution range is 21.4%-27.7%, which
is the highest range of these three types of cells. And the
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lowest percentage range is 10.2%-14.5% in cells 1. On the
other hand, focus on the high load degree column, the highest
time percentage range is 3.7%-5.1% in cells I, and the lowest
percentage range is 0-0.55% in cells III. This demonstrates
that cell I is the best cells’ group and cell III is the worst cells’
group. No matter in high or low load, cell II’s performance is
moderate.

Secondly, analyze from sub-high/low load, let us focus on
the sub-high load part, we can find that the cell with the
highest percentage range is cells I, and their time distributions
partially overlap with cells II as well, for instance, the time
percentage range of cells I and II are 14.3%-15.8% and
11.7%-14.5%, respectively. The same situation occurs to cells
IT and III in the sub-low load cluster as well. Meanwhile,
the highest time percentage range of the sub-low load is
30.7%-37.1% in cells III and the lowest proportion range is
20%-26.8% in cells 1. Lastly, the medium load is the area with
the most overlapping distribution and the respective ranges
are not much different except for the cells III. For instance,
the range 30.8%-39.1% in cells I and 30.5%-32.5% in cells
IT have much overlap time distribution of this period. The
three group cells with overlapped time percentage range of
different load degrees can be explained that the user data
consumption of different cells in this period is the same.

We can also find that the cells I, II, and III in the short-
term have a certain relationship with the five clusters cells in
the long-term. For example, cells in III in the short-term are
the worst performance cells and it is also the worst cells in
long-term (e.g., cluster#2). II and I cells are the cells at sub-
optimal and optimal cells in the long-term as well. Therefore,
we can conclude that the performance of the cells at different
load degrees in the short-term is highly correlated with the
previous long-term cell clustering result, and it is a specific
performance of the long-term behavior cell patterns in the
short-term behavior cell patterns.

VI. CONCLUSION
This article is based on the data mining method and applied
it to the research of LTE cell behavior, which is analyz-
ing the characteristics of each cluster and tapping potential
high-quality cells according to different key performance
indicators (KPIs). We propose a combination method called
SOM-K and apply it to high-dimensional data set analysis
of LTE cells. SOM-K has provided the results of combining
traditional methods and expertise verified according to long-
and short-term behaviors of cell patterns. The SOM-K results
can be routinely understood, thereby increasing confidence
in the new analysis and its applicability in the field of LTE
networks. In the course of this work, it is worth noting that
compared with the clustering results of high-dimensional
data using SOM-K, the clustering results of high-dimensional
data using the k-means algorithm alone are not sufficient to
provide effective cell pattern analysis.

The analysis based on the SOM-K used in the LTE network
has not yet been popularized. Our work demonstrated that
SOM-K could be used in LTE cell clustering performance
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analysis and obtain a better cluster result. At the same time,
the advantage of the analysis method based on SOM-K is that
the two-step measurement method is used in the analysis to
improve the clustering results. Besides, the clustering effect
of this method of high-dimensional data is significantly better
than the traditional k-means algorithm. All in all, the use of
data analysis and mining in LTE network optimization also
means that the SOM-K method can now be used to adjust
network performance, and the algorithm successfully uses big
data to cluster cells with the same characteristic pattern of
almost real-time.

In the future, the operation of 5G networks will be mainly
driven by services and the trend of the 5G network will
further increase the use of data. It is worth noticing that
SOM-K detection based on the analysis of abnormal network
behavior has been successfully used in GSM data for a long
time. Therefore, exploring the use of this algorithm for data
usage prediction and network performance management (i.e.,
intelligent network energy saving and consumption reduction
based on network mobility pattern management) in the 5G
domain will be a new researching direction, which could
provide business values in reducing the operating expenditure
and improve the QoS of the cellular network operators.

APPENDIX

A. COMPARISON OF SOM-K AND K-MEANS IN
LONG-TERM BEHAVIOR

Since the SOM algorithm cannot achieve odd clustering, such
as the 5 clusters in this article, therefore, we just compared the
k-means and SOM-K algorithms and set their cluster number
to 5 clusters of comparison, and the following conclusions are
drawn.

Table 6 shows the intra- and inter-cluster centroids distance
between k-means and SOM-K. Intra-centroid cluster distance
is also called within-cluster distance, which is representing
the distance from samples of the cluster to the cluster cen-
troid. On the contrary, the inter-cluster distance is the dis-
tance between two different clusters’ centroids. These are two
very important unsupervised learning clustering indicators.
We can find that the intra-centroids distance between k-
means is higher than SOM-K. The inter-centroids distance of
k-means is lower than SOM-K, Therefore, according to the
shorter distance of intra-clusters and the larger inter-cluster
distance the better cluster performance [40]. The k-means
cluster performance in high dimension data set is worse than
SOM-K.

Comparing Table 3 with 7 we can find that, cluster#5 in
SOM-K has the same performance when compared to
cluster#land #4 in k-means, which are all the best per-
formance among the whole 5 clusters. The same situation
occurs to clusters #1 and #2 in SOM-K and clusters #3 and
#5 in k-means as well, respectively. Cluster #2 in SOM-K
and cluster#5 in single k-means have similar performance,
which is all the worst clusters. And cluster#lin SOM-K
and cluster#3 in k-means are all medium performance clus-
ters. The only difference between these two algorithms is
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cluster#4 in SOM-K and cluster#2 in k-means, for instance,
cluster#4 in SOM-K has a low RRC setup failure rate and
latency, but cluster#2 in k-means has a high RRC setup failure
rate and latency. And the number of cells in cluster #2 is larger
than cluster#4. All in all, it can also illustrate that k-means
cluster performance is not well in high dimension datasets,
and applying the dimension reduction method (i.e., SOM) to
reduce the dimension of the data first and then use k-means
will have a better clustering effect.

B. COMPARISON OF SOM-K AND K-MEANS IN
SHORT-TERM BEHAVIOR

Table 8 shows the intra- and inter- centroids cluster distance
between k-means and SOM-K. We can find that the value of
the intra-centroids distance from k-means is more than SOM-
K in clusters #2 and #5. But the distance from cluster#1 and
#3 is a bit smaller than SOM-K. That is, compared with SOM-
K, the distance distribution of the intra-cluster distance from
k-means is more unbalanced and the gap is larger. At the same
time, the inter-centroids distance from k-means is lower than
SOM-K, therefore, according to the shorter distance of intra-
clusters and the larger inter-cluster distance the better cluster
performance [40]. The k-means cluster performance in high
dimension data set is worse than SOM-K.

Comparing Table 4 with 9 we can find that, cluster#5 in
SOM-K has the same performance when compared to
cluster#3 and #4 in k-means, which are all having a higher
RRC setup failure rate and the performance is worse. That
means the channel qualities of these clusters are terrible. The
same situation occurs to cluster# #1 in SOM-K and cluster
#1 in k-means as well, respectively. Cluster #1 in SOM-K
and cluster#1 in k-means have a similar performance, which
is the worst performance cluster and all the features’ value is
very low, which means there is a little person to use a mobile
phone. Cluster #2 in SOM-K and cluster#2 in k-means are
all medium performance clusters as well. The only difference
between these two algorithms is cluster#4 in SOM-K and
cluster#5 in k-means, for instance, cluster#4 in SOM-K has a
medium RRC setup failure rate and high latency, but the RRC
setup failure rate and latency at cluster#5 in k-means are all
high and the other features’ value is similar. However, these
two clusters are all the best clusters of their clusters. All in all,
we can find that the cluster results’ characteristics by using k-
means have many repetitive features’ performances in a dif-
ferent cluster (i.e., cluster#3 and #4), but the clustering results
of SOM-K are hierarchical. Therefore, it could illustrate that
k-means cluster performance is not well in high dimension
and large amount datasets, but SOM-K has the exact opposite
performance when compared to k-means in high dimension
dataset clustering.
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