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ABSTRACT In this article we propose a technique for polar codes (PC) construction for any code length.
By default, PC construction is limited to code length proportional to the power of two. To construction the
code length arbitrary, puncturing, shortening and extension techniques must be applied. However, perfor-
mance is degraded with the use of these techniques. Other ways to design polar codes with arbitrary code
length but which have encoding and decoding with higher complexity such as multi-kernel, concatenated
codes and specific constructions for belief propagation (BP) or successive cancellation list (SCL) decoding.
The polarization theory is generalized for non-uniform channels (NUC) and with this approach we can
construction rate-compatible PC and variable code length.We developed an implementation algorithm based
on the of PC construction by Gaussian approximation (NUPGA). In a scenario where the transmission is over
an additive white Gaussian noise (AWGN) channel and under successive cancellation (SC) decoding, the PC
construction of arbitrary code length can be implemented with NUPGA. With NUPGA we re-polarize the
projected synthetic channels by choosing more efficiently the positions of the information bits. In addition,
we present a generalization of the Gaussian approximation (GA) for the polarization and re-polarization
processes and an extension technique for PC. The PC construction based on NUPGA present better
performance than the existing techniques as shown in the simulations of this work.

INDEX TERMS Polar codes, arbitrary-length, rate-compatible, non-uniform polarization, channel polariza-
tion, re-polarization.

I. INTRODUTION
Polar codes and channel polarization theory were introduced
by Arikan [1] in 2009. Such codes constitute a powerful
channel coding scheme, with a low complexity encoder and
decoder. In a scenario where the decoder is SC and the
channel is AWGN, for a long code length, the capacity can
be achieved of binary symmetric discrete memoryless chan-
nels (B-DMCs). Choosing the most reliable channels is the
basic premise for construction of a polar code. This channel
reliability depends on the code length and the signal-to-noise
ratio, being defined by the channel polarization theorem. The
theorem proves that in channel polarization, for a code length
long enough, the bit channels tend to two conditions: either
they become noiseless or noisy. The 3GPP Group selected
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polar codes for the 5th generation (5G) [2], where they will
be used for uplink/downlink channel control.

In [1] it is observed that the PC construction, in its standard
form, is the limitation of the project in code length as a power
multiple of two, i.e., N = 2n, however, the code length flexi-
bility is required for practical applications. There are several
construction techniques applied in the standard polar code
model proposed by Arikan [1] considering the SC decoder.
Among the main PC construction techniques are: parameter
Bhattacharyya [1], density evolution (DE) [3], [4] and [5],
Gaussian approximation (GA) of density evolution [6] and
the polarization weight (PW) [7], [8].

Both in [9] and in [10] they show a comparative study
of the PC construction, their algorithm complexity and their
performance. The scenario used is the AWGN channel and
SC and SCL decoders for various rates and codewords. A per-
formance study on the AWGN channel of the GA method in
PC construction can be found at [11] and [12]. In [9], good
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design of PC was verified with several construction methods,
with SC decoding and for various scenarios varying both
the code length and the code rate. Polar codes can also be
constructed and adapted to a specific decoder, for example,
construction of polar codes for SCL decoding [13] and belief
propagation (BP) decoding [14], [15]. In [16] the authors
propose a genetic algorithm framework that jointly optimizes
the PC construction and rate with a specific decoder.

We can group the PC construction of variable length
in several techniques, the main ones being: arbitrary ker-
nels techniques, multi-kernel techniques (MK), puncturing
techniques, shortening techniques and extension techniques.
Polarization matrices of various sizes, for example 3×3, 5×5
and 7 × 7, have been used to construction of polar codes of
any length. BCH kernel matrices proposed in [17] and the
code decompositions proposed in [18] both have restrictions
on the size of the kernel matrices. Square polarizing kernels
larger than two have been proposed in [19], [20] and [21],
while a PC construction with mixed kernel sizes has been
proposed in [22], [23]. By considering different polarizing
kernels of alternate dimensions, MK improves block length
flexibility. Although the general coding and decoding struc-
ture follows the same structure of standard polar codes, there
is an increased complexity with the generalization. The PC
construction using the Reed-Muller (RM) rule [24]–[26] can
improve the performance of the error rate.

The main shortening and puncturing techniques can be
found in [27]–[41]. Generally, puncturing or shortening
causes a loss of performance because when the number of bits
punctured or shortened increases the code length decreases,
degrading the performance. In [27] a study on the main
puncturing and shortening techniques is carried out, including
the column weights (CW) and the reversal quasi-uniform
puncturing scheme (RQUP). Recalling that one of the main
limitations of the PC construction is regarding the length of
the code, given by N = 2n, that is, multiples of two. In the
flexible length construction, a shortening or a puncturing
design technique is chosen to obtain a length of 2n−1 < M <

2n. Puncturing techniques are applied in scenarios where the
decoding is belief propagation (BP). We find in [28]–[30]
the main studies on punctured PC. Among the techniques
used we can mention the reduced generator matrix, exponent
connection, minimum distance, stop tree drilling and schemes
applied to hybrid automatic repeat request incremental redun-
dancy (HARQ-IR). An important puncturing method, known
as parallel concatenated polar (PCP), has been proposed
in [28] and consists of the parallel concatenation of multiple
polar codes which enables incremental retransmissions for
HARQ-IR systems. It is rate compatible and together with the
puncturing scheme allows a flexible length code construction.

Several of these can be found at [31]–[34]. In [35] and [36]
we have a performance analysis of puncturing codes based
on the DE construction technique. The shortening techniques,
in turn, are applied to the construction of PCwith SC and SCL
decoding. As in the scheme we have adopted, the decoder
is SC or SCL, it is a fact that the shortened bits are known.

So, in these shortened bit positions, a likelihood ratio (LLR) is
defined as infinite. An efficient shortening method is reported
in [37], where the shortened bits set is optimized simultane-
ously with the frozen bits set. In [38] a shortening method
is presented that produces good results and its technique is
based on using column weight (CW) to reduce the size of the
generating matrix. The main technique for reducing the gen-
erating matrix used in the shortened PC was proposed by [39]
and is known as reversal quasi-uniform puncturing (RQUP).
The polarization-driven (PD) shortening technique has been
presented in [40] based on the reduction of the generating
matrix along with a strategy for the choice of bits shortened
according to the channel polarization indices associated with
the line index of the generator matrix. Recently, the PW algo-
rithm has been used in a puncturing and shortening technique
as reported in [41].

In [29], [42] and [43] we find proposals for the PC exten-
sion. For HARQ schemes it was proposed that an arbitrary
number of incremental coded bits can be generated by extend-
ing the polarization matrix such that multiple retransmis-
sions are aggregated to produce a longer polar code with
extra coding gain. In terms of complexity, it is similar to
the standard polar code, both in the encoder and in the
decoder. Nevertheless, there is a significant increase in com-
plexity when designing flexible-length polar codes by con-
catenated codes [44], [48] and by asymmetric kernel con-
struction [46]. In both cases the PC construction is specific to
each kernel dimension without generalization gains. In [47]
is presented a chained polar subcode technique for effective
PC construction.

The main objective of this work is to demonstrate the use
of non-uniform channel (NUC) polarization theory in the
PC construction of arbitrary length [52]. We have expanded
the conference article mentioned above by including further
details in the description of the shortening algorithm pro-
posed, another algorithm that performs extension, an analysis
of the approach and extra simulation results of several appli-
cation scenarios. In the works of [48] and [49] methods are
proposed to generalize the channel polarization in scenarios
of parallel transmission or when the channel parameter is
unknown. In [48], a technique for PC construction for multi-
channel polar codes has been reported, including a scheme for
modulation and bit interleaving, resulting in rate-matching
compatibility. The PC construction scheme proposed in [49]
deals with scenarios with parallel channels and random chan-
nel parameters.

In uniform polarization, the same value of the Bhat-
tacharyya parameter is given for all channels according to
the PC construction proposed by Arikan [1]. In terms of
construction, GA is equivalent to the use of the same LLR
defined for all channels. In the proposed Non-Uniform Polar-
ization based on Gaussian Approximation (NUPGA) tech-
nique, we assign different LLR values for the channels with
the guarantee of the validity of the channel polarization prin-
ciple. Therefore, it is possible to construct polar codes of
arbitrary length while maintaining their rate-compatibility.
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Then, we present an algorithm for PC shortening and also
an algorithm for PC extension, both based on the NUPGA
technique. The NUPGA-based algorithms jointly implement
the technique for shortened or extended channels with the
re-polarization of the channels. We also present a generaliza-
tion of the GA algorithm, which is used for both polarization
of the initial channel and re-polarization of the shortened
PC, and a simplified construction technique for extended
polar codes. The existing techniques are compared with the
proposed NUPGA technique in various simulations explor-
ing different combinations of code length and code rate.
A key feature of the proposed designs is that the encoder and
decoder structures are the same as that of the original polar
codes [1] and require the same complexity.

Very briefly, we report below the main contributions in this
article:

• a new technique for constructing polar codes of arbitrary
length based on NUPGA along with a proof that it
achieves capacity;

• application of NUPGA as a technique for shortening and
extension of polar codes;

• an extensive simulation study that compares the
NUPGA-based and existing design techniques.

In the followingwe have structured the content of this work
into several sections. In Section II, we have the basic defi-
nitions about PC, notation used and its method of encoding
and decoding. In Section III, the channel polarization theory
is revisited [1]. In Section IV, we present the non-uniform
polarization of channels, and using the induction method to
compare with the uniform polarization of channels, we show
that it also achieves channel capacity. In Section V, we present
the algorithms for implementing shortening and extension
techniques based on NUPGA. In Section VI we show the
comparative simulations with the NUPGA and other tech-
niques. In Section VII we have the conclusions of this work.

II. POLAR CODES
This article uses the same notation that [1] and in this section
we present a brief PC description.

Given a B-DMC W : X → Y , where X ∈ {0, 1} and
Y ∈ R andW (y|x), x ∈ X , y ∈ Y . We have thatW (y|x) is the
channel transition probability, x ∈ X , y ∈ Y . For a scheme
withN = 2n channelsW independent, after a process of com-
bining and splitting [1], N synthetic channels are generated
and its defined as W (i)

N with i = {1, 2, . . . ,N }. To transmis-
sion the information bits, the most reliable sub-channels are
chosen, represented by K . A is the set of K indices. In turn,
Ac is its complementary set, containing the indices of the
least reliable channels.

The PC is defined by three parameters: N = 2n, R = K/N
and A ∈ [N ] with K cardinality; that is, code length, code
rate and information set, respectively. The encoding is given
by xN1 = uN1 GN . GN is the transformation matrix. uN1 ∈
{0.1}N is the input block. xN1 ∈ {0.1}

N is the codeword,
where uN1 = [uA, uAc ], with uA are bits of information and

uAc are frozen bits. We defined GN = BNF⊗n2 , where ⊗

denotes the Kronecker product, F2 =

[
1 0
1 1

]
and BN is the

bit-reversal permutation matrix. A simplification without loss
of generalization is the omission of BN .

The estimate ûi for SC over AWGN is given by

ûi = arg max
ui∈{0,1}

W (i)
N (yN1 , u

i−1
1 |ui), i ∈ A (1)

The ûN1 = (û1, . . . , ûN ) and yN1 = (y1, . . . , yN ), the like-

lihood ratio (LR) message of ui, LR(ui) =
W (i)
N (yN1 ,û

i−1
1 |0)

W (i)
N (yN1 ,û

i−1
1 |1)

,

recursively using SC decoding [1]. Then, value of the ûi is:

ûi =

{
hi(yN1 , û

i−1
1 ), if i ∈ A.

ui, if i ∈ Ac.
(2)

where hi : YN
× X i−1

→ X , i ∈ A, are decision functions
defined as:

hi(yN1 , û
i−1
1 ) =

 0, if
W (i)
N (yN1 , û

i−1
1 |0)

W (i)
N (yN1 , û

i−1
1 |1)

≥ 1

1, otherwise.

(3)

for yN1 ∈ YN, û1 i−1
∈ X i−1.

We denote L(i, j) as LR node, i being the line and j being the
stage, following mapping of the decoding tree [1]. The values
assumed by L(i, j) can be obtained recursively [1] using the
equations:

L(i, j+ 1) =

{
f (L(i, j),L(i+ n/2j+1, j)), (f nodes)
g(L(i− n/2j+1, j),L(i, j), ûsum), (g nodes)

(4)

where f and g functions were defined in [1] as:

f (a, b) =
1+ ab
a+ b

(5)

g(a, b, ûsum) = a1−2ûsumb (6)

where ûsum is the previous decoded bits. The ûsum estimated
value is given by (2). So, the decision g nodes depends on the
estimate of f nodes given by (2), that is, of previously decoded
bits. In order to simplify the design of the decode, [50]
proposes a LLR SC/SCL decoder. In this way, the previous
equations (5) - (6), in the natural domain, are transformed into
the logarithmic domain:

F(a, b) = 2tanh−1(tanh(a/2)tanh(b/2)) (7)

G(a, b, ûsum) = a(−1)ûsum + b. (8)

Initially proposed for LDPC decoding and in order to
further reduce the complexity of the decoder in (7), we can
use a minimal sum approximation [50]:

F(a, b) ≈ sign(a)sign(b) min(|a|, |b|), (9)

where (8)-(9) describe the LLR version of the SC algorithm.
In the SCL decoder [51], the candidate sequences set is

given by S(i) for ith SC decoding step. And |S(i)| is the size
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of S(i). The maximum allowed list size is L and T a limit for
T ≤ 1 pruning. About the SCL decoding steps, we have:

• for each S(i), all i bits are estimated,
• generate two alternatives i, estimate ûi = 0 or ûi = 1 by
SC;

• no action if the number of candidates |S(i)| < L;
• otherwise, select S(i) with the highest probabilities up to
the limit given by |S(i)|;

• checks candidate to candidate ûi ∈ S(i), if P(ûi1) <
T max
ûi1∈S

(i)
P(ûi1), discarding û

i
1 from S(i).

Each candidate on the list is examined and the likelihood
is calculated. The estimate with the maximum probability is
selected:

ûN1 = arg max
ûN1 ∈S

(i)

N∏
i=1

W (yi|(uN1 )i). (10)

III. IMPORTANT ASPECTS OF PC CONSTRUCTION
In this section, we deal with the theory for the PC
construction. We also approach the generalization of the
polarization theory for non-uniform channels (NUC). In this
scenario, the main aspects of the channel polarization the-
ory are maintained, namely, the conservation of the asso-
ciated channel capacity and the induction to the polarized
channel [1].

A. PC CONSTRUCTION
The main aspect in the PC construction is to find the best
W for the information bits, A, with the standard PCs are
construction with N = 2n. If N →∞, these bit channels are
divided into either noise free or completely noisy channels.
The Z (W ) [1] parameter and defined as

Z (W ) =
∑
y∈Y

√
W (y|x = 0)W (y|x = 1), (11)

where W (Y |X ) is the probability, X = {0, 1} and Y ∈ R,
x ∈ X , y ∈ Y . For any B-DMC, the reliability of bit-channels
can be recursively determined [1], and with the exception
of the BEC channel, for all other channels its method of
determination is approximate [1], and as seen earlier, several
algorithms have been proposed [9]. The BEC channels are
well studied in this regard. In it when Z (W ) is close to zero
the channels are almost noiseless, while Z (W ) is close to one
the channels are noisy. The essential idea is to choose the
most reliable bit-channels (noise free channels) to transmit
information bits (A), while noisy bit channels known to both
encoder and decoder are frozen (Ac).
For the construction of arbitrary-length polar codes, a gen-

eralization of channel polarization is necessary for the defi-
nition of non-uniform polarization, maintaining the primary
results of the channel polarization theory. First, wewill gener-
alize channel types to see if full capacity is maintained. Then,
we will verify if the channel polarization theory is valid for
non-uniform channels.

FIGURE 1. The channel W .

FIGURE 2. (a) Uniform DMC and (b) non-uniform DMC.

B. CHANNEL CAPACITY
In Fig.1 we show a B-DMC channel, designated by the sym-
bol W , with input U and output Y .
The input symbol on B-DMC channel is considered a dis-

crete random variable generated by U . Similarly, the symbol
at the output of the channel is modeled by another discrete
random variable Y . Then, a set of DMC channels from
Fig.1 can be shown as in Fig.2a. The Bhattacharyya parame-
ter is Z (W ) for all DMC channels. Consider the transmission
of N different symbols [u1 u2 · · · uN ] through the channel in
a serial manner. These symbols that are transmitted serially,
in our modeling are considered independent and identically
distributed (i.i.d.) random variables. Without loss of gener-
ality, we consider that the transmission of each symbol is
through each channel separately, as in Fig.2a, where U =
[U1 U2 · · · UN ] and Y = [Y1 Y2 · · · YN ]. Therefore,
the deduction of the system’s capacity will be the same
as if we use other channels, that is, non-uniform channels,
as suggested in Fig.2b.

Now, the Bhattacharyya parameter is different for all
B-DMC channels. The mutual information for Fig.2a and
Fig.2b are shown below.

The mutual information is given by

I (U;Y) = I (U1;Y)+ I (U2;Y|U1)+ I (U3;Y|U1,U2)

+ · · · + I (UN ;Y|U1,U2, · · · ,UN−1). (12)

We consider U1 and Y1, Y2, · · · , YN independent from each
other, so we have:

I (U1;Y) = I (U1;Y1)

I (U2;Y|U1) = I (U2;Y2)

I (U3;Y|U1,U2) = I (U3;Y3)

I (UN ;Y|U1,U2, · · · ,UN−1) = I (UN ;YN )

Then, (12) can be written as

I (U;Y) = I (U1;Y1)+ I (U2;Y2)+ I (U3;Y3)

+ · · · + I (UN ;YN ) (13)
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and let the capacity be C = maxI (U;Y), then we have

maxI (U;Y) = maxI (U1;Y1)+maxI (U2;Y2)

+ · · · +maxI (UN ;YN )

maxI (U;Y) = NC (14)

However, a key concept of channel polarization is that it
consists of a method where the channel outputs depend on the
other inputs as well. This implies the following inequalities:

I (U1;Y) 6= I (U1;Y1)

I (U2;Y|U1) 6= I (U2;Y2)

I (U3;Y|U1,U2) 6= I (U3;Y3)

I (UN ;Y|U1,U2, · · · ,UN−1) 6= I (UN ;YN )

That is, (12) cannot be simplified as in (13). In addition, it is
necessary to ensure that

I (U1;Y) < I (U3;Y|U1,U2) ≤ I (U2;Y|U1)

< · · · < I (UN ;Y|U1,U2, · · · ,UN−1), (15)

which means the individual capacities increase in an orderly
manner but the total capacity remains constant, i.e., the total
capacity of the channels is maintained, regardless of whether
the channels are equal or not, that is, uniform or non-uniform,
with different Bhattacharyya parameters. Then, for uniform
channels, according to (14), and for non-uniform channels,
with the inequality of (15), the capacity of the channels is con-
served, and we show that non-uniform polarization schemes
achieve symmetric capacity:

max I (U;Y) =
N∑
i=1

Ci = NC (16)

Therefore, we can devise methods to construct polar codes
that take into account different Bhattacharyya parameters.
Then we verify the convergence of the polarization theory [1]
for NUC. The channel capacity, channel polarization and
polarization convergence will be better studied in the next
sections. Then, we show that all results remain valid for the
case of generalized channels.

C. UNIFORM CONSTRUCTION
In the channel polarization process [1], before recursion,
to we consider the channels W independent and with the
identical parameter Z (W ). Let W : X → Y denote a
symmetric B-DMC, with X = {0, 1} and Y ∈ R and the
channel transition probability W (y|x), where x ∈ X , y ∈ Y .
Denote WN

: X N
→ Y N with

WN (yN1 |x
N
1 ) =

N∏
i=1

W (yi|xi) (17)

The mutual information is defined by [1]

I (W ) =
∑
y∈Y

∑
x∈X

1
2
W (y|x) log

W (y|x)
1
2W (y|0)+ 1

2W (y|1)
, (18)

FIGURE 3. The Channel W2.

where the base-2 logarithm 0 ≤ I (W ) ≤ 1 is employed. And
Z (W ) parameter is given by [1]

Z (W ) =
∑
y∈Y

√
W (y|0)W (y|1), (19)

where 0 ≤ Z (W ) ≤ 1. For any B-DMC W , we have

log
2

1+ Z (W )
≤ I (W ) ≤

√
1+ Z (W )2. (20)

On the N independent channels of W we apply the polar-
ization process. After the combination of channels and divi-
sion operation, as described in [1], we obtain a set of polar-
ized channels W (i)

N : X → Y × X i−1, i = 1, 2, . . . ,N .
As defined in [1], this channel transition probability is given
by

W (i)
N (yN1 , u

(i−1)
1 |ui) =

∑
uNi+1∈X

N−1

1
2N−1

WN (yN1 |u
N
1 ), (21)

where N is the code length.
According to [1], N to∞, I (W (i)

N ) tends to 0 or 1.
In Fig.3 we show the process of creating the channel W2:

recursion step of combining two copies of W independent,
that is,X 2

→ Y2 which has the transition probabilities given
by

W (1)
2 (y21|u1) =

∑
u2

1
2
W (y1|u1 ⊕ u2)W (y2|u2). (22)

W (2)
2 (y21|u1|u2) =

1
2
W (y1|u1 ⊕ u2)W (y2|u2). (23)

The channel polarization can be represented by a graphical
representation called the construction tree [1].We can see that
a unique value of W is used in the construction, it is actually
a simplification for the parameter Z (W ).
On the BEC channel, for example, being (W (i)

N ,W
(i)
N ) →

(W (2i−1)
2N ,W (2i)

2N ) produces two B-DMC:

(W (i)
N ,W

(i)
N ) → (W (2i−1)

2N ,W (2i)
2N )

Z (W (2i)
2N ) ≤ 2Z (W (i)

N )− Z (W (i)
N )2

Z (W (2i−1)
2N ) ≤ Z (W (i)

N )2

Z (W (2i−1)
2N ) ≤ Z (W (2i)

2N ) (24)

according to (18), we have

I (W (2i)
2N ) = I (U1;Y1,Y2),

I (W (2i−1)
2N ) = I (U2;Y1,Y2,U1), (25)
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where U1 and U2 are iid. From the chain rule, it follows that

I (W (2i)
2N )+ I (W (2i−1)

2N ) = I (U1;Y1,Y2)+ I (U2;Y1,Y2,U1)

= 2I (W (i)
N ) (26)

and

I (W (2i)
2N ) = I (U2;Y1,Y2,U1)

≥ I (W (i)
N ), (27)

which results in

I (W (2i)
2N ) ≥ I (W (2i−1)

2N ) (28)

For the case of the BEC channel [1]

Z (W (2i−1)
2N ) ≤ 2Z (W (i)

N )− Z (W (i)
N )2 (29)

Z (W (2i)
2N ) = Z (W (i)

N )2. (30)

where reliability and cumulative rate must satisfy [1]

N∑
i=1

I (W (i)
N ) = NI (W ). (31)

N∑
i=1

Z (W (i)
N ) ≤ NZ (W ). (32)

In uniform channel polarization there is always a set of
B-DMCs that reaches capacity when N → ∞, is arbitrary
small δ ≤ 0

|{I (W (i)
N ) ∈ (1− δ, 1]}|

N
→

Is
N
,

|{I (W (i)
N ) ∈ [0, δ)}|

N
→ 1−

Is
N
, (33)

where the values of I (i)N converge to {0, 1}. The term Is is the
sum of the mutual information, given by I (U;Y) in (13). For
uniform construction it is equivalent to (31).

IV. PROPOSED NON-UNIFORM CONSTRUCTION
In this section, we show a generalization of the equations pre-
sented in Section III.B, we will see that channel polarization
can also be applied to non-uniform channels (NUC).

We now have two channelsW , which are independent and
we will consider them to be non-uniform, so W(i) : X(i) →

Y(i), as shown in Fig. 5, where we rewrite (17) as

W (yN1 |x
N
1 ) =

N ′∏
i=1

W(i)(yi|xi). (34)

So N and N ′, where |N | = |N ′|, and W(i)(y|x) = W(j)(y|x)
if i = j. The symmetric capacity (18) and the Z (W ) parameter
(19) [1] for any W(i), are rewritten as

I (W(i)) =
∑
y∈Y

∑
x∈X

1
2
W(i)(y|x) log

W(i)(y|x)
1
2W(i)(y|0)+ 1

2W(i)(y|1)
,

(35)

Z (W(i)) =
∑
yi∈Y

√
W(i)(yi|0)W(i)(yi|1). (36)

FIGURE 4. The channel construction.

FIGURE 5. The NUC channel W2′ .

Note the (20) is equivalent as

log
2

1+ Z (W(i))
≤ I (W(i)) ≤

√
1+ Z (W(i))2, (37)

and (21) remains valid.
For W2 we rewrite (22) and (23) as

W (1)
2 (y21|u1) =

∑
u2

1
2
W(1)(y1|u1 ⊕ u2)W(2)(y2|u2), (38)

W (2)
2 (y21, u1|u2) =

1
2
W(1)(y1|u1 ⊕ u2)W(2)(y2|u2). (39)

Using the BEC channel again as an example, for a com-
parison with Section III.B, for the case of the parameter Z we
have:

Z (W (2)
2 ) =

∑
y21,u1

√
W (2)

2 (y21, u1|u2 = 0)W (2)
2 (y21, u1|u2 = 1)

=

∑
y21,u1

1
2

√
W(1)(y1|u1)W(2)(y2|0)

·
√
W(1)(y1|u1)W(2)(y2|1)

=

∑
y2,u1

√
W(2)(y2|0)W(2)(y2|1)

·

∑
y1,u1

1
2

√
W(1)(y1|u1)W(1)(y1|u1)

= Z (W(2))Z (W(1)). (40)
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And (29) and (30):

Z (W (1)
2 ) ≤ Z (W(1))+ Z (W(2))− Z (W(1))Z (W(2)), (41)

Z (W (2)
2 ) ≤ Z (W(1))Z (W(2)), (42)

Z (W (2)
2 ) ≤ Z (W (1)

2 ). (43)

So (31) and (32) are equivalent to

N ′∑
i=1

I (W (i)
N ′ ) =

N ′∑
i=1

I (W(i)), (44)

N ′∑
i=1

Z (W (i)
N ′ ) ≤

N ′∑
i=1

Z (W(i)). (45)

We can show that (26) can be obtained by performing the
following operations:

I (W (1)
2 ) = I (Y1,Y2,U1),

I (W (2)
2 ) = I (Y1,Y2,U1;U2),

I (W (1)
2 )+ I (W (2)

2 ) = I (Y1,Y2,U1)+ I (Y1,Y2,U1;U2)

= I (W1)+ I (W2).

So, for any set of B-DMC, we can rewrite (33) for the
non-uniform polarization channel:

lim
N→∞

|{
∑N

1 I (W
(i)
N ) ∈ (1− δ, 1]}|

N
→

Is
N
,

lim
N→∞

|{
∑N

1 I (W
(i)
N )) ∈ [0, δ)}|

N
→ 1−

Is
N
. (46)

where the values of I (i)N converge to {0, 1}, which is a novel
result related to the established result for uniform channel
polarization in (33). The term Is is the sum of the mutual
information, given by I (U;Y) in (13). For non-uniform con-
struction it is equivalent to (44).

V. PROPOSED NUPGA DESIGN ALGORITHMS
In this section, we detail the NUPGA method and the
implementation of the non-uniform construction algorithms.
In Fig.6 we have a generalization of the recursive polarization
process. The nodes implement the functions described in (29)
and (30).

A. PROPOSED NUPGA-BASED SHORTENING
The PD [40] is a starting point to define the channels that
will initially be shortened. Shortening techniques reduce the
length of the codeword fromN toM , that is, 2n−1 < M < 2n.
The number of bits of information is represented by K . The
symbols N and M represent, respectively, the code lengths
of the standard PC and the shortened PC. Note that K <

M < N . The indexes set of the shortened bits is represented
by the symbol P, also called the shortening pattern. The
cardinality of the shortened bits is represented by |P| =
N −M . Thus, for shortened PC, the code rate is represented
by R = K/M . Note that the decoder knows the shortened bits
P.When decoding, the corresponding LLRs are set to infinity.

FIGURE 6. Alternative polarization tree.

Consider that the vector P contains the channels obtained by
the PD [40]. In the first step, the codeword is generated by
setting the set P set to zero. In the next step, the message
length of the codeword is reduced by P. We remark that
non-universality [1] is one of the main characteristics of PCs.
For all simulations, this work adopts SNR = 0dB. And with
code shortening, we have changes in the bit channels relia-
bility, which deteriorates performance when compared to the
original code. In this regard, the study in [40] indicates that
the order of channel polarization does not change after short-
ening. For the shortened channels, we consider the parameter
Z (W ) penalized a frozen bit, and will be used as input in the
NUPGA method.

In AWGN channels, the LLRs of each subchannel, namely
L(i)N , the channel polarization can be estimated with the recur-
sive GA algorithm proposed by [6]{

E(L(2i−1)N ) = φ−1(1− (1− φ(E(L(i)N/2)))
2)

E(L(2i)N ) = 2E(L(i)N/2),
(47)

with E[·] being the expected value.

φ(x) =

 exp(−0.4527x(0.86) + 0.0218) if 0 < x ≤ 10√
π

x
(1−

10
7x

) exp(−
x
4
) if x > 10

(48)

In NUPGA, the GA (47) equation is generalized, making it
possible to treat arbitrary lengths of code, with f = E(L(2i−1)N ′ )
and g = E(L(2i)N ′ ) according to Fig.6. This results in the
following proposed recursions:{
E(L(2i−1)N ′ ) = φ−1(1− (1− φ(E(L(i)1 )))(1− φ(E(L(i)2 ))))

E(L(2i)N ′ ) = E(L(i)1 )E(L(i)2 ).

(49)

In Algorithm 1 we have the description of the proposed
NUPGA shortening algorithm. Suppose for example a
scheme with N = 4 and K = 2. We have P = {1, 1, 1, 1},
vector not shortened with the result F = {0, 1, 0, 1},
as expected. The shortened vector P = {1, 1, 1, 0} is applied
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Algorithm 1 Proposed NUPGA Shortening Algorithm
1: INPUT : N , code length
2: INPUT : K , information bits
3: INPUT : P, shortened bits
4: INPUT : design-SNR EdB = (REb/No) in dB
5: OUTPUT : F ∈ {0, 1, . . . ,N − 1} with |F | = N
6: S = 10EdB/10 and n = log2N
7: L ∈ RN , Initialize [E(L(i)1 )]N1 = 4S [6]
8: Upgrade with shortening vector [E(L(i)1 )]N1 with P
9: for i = 1 to n+ 1 do
10: d = 2(i−2)

11: for b = 1 to N step 2(i−1) do
12: for k = 0 to d − 1 do
13: if E(L(i−1)k+b ) = 0 or E(L(i−1)k+b+d ) = 0 then
14: E(L(i)k+b) = E(L(i−1)k+b )
15: E(L(i)k+b+d ) = E(L(i−1)k+b+d )

endif
16: E(L(i)k+b) = φ

−1(1− (1− φ(E(L(i−1)k+b )))(1−
17: φ(E(L(i−1)k+b+d ))))
18: E(L(i)k+b+d ) = E(L(i−1)k+b )E(L(i−1)k+b+d )

endfor
endfor

endfor
19: F = Find indices of smallest elements (E[L],K )
20: return F

to the operation indicated in step 5 of Algorithm 1. Finally,
F = {0, 1, 1, 0} is the new set of information obtained.

B. PROPOSED NUPGA-BASED EXTENSION
A simple polar codes extension scheme can be implemented
as suggested in Fig.7 [43]. An additional level of polariza-
tion is performed in PM1 and the information bits uk1. The
connection between the additional channels PM1 and channels
ukk−M is carried out by the linear polarization sequence of uk1.
In the extension scheme the complexity is NlogN , less than
the puncturing/shortening scheme which is (N + 1)log(N +
1). This scheme is efficient for kernels with low dimension
(N < 512) and for extension of P < 50% of N . Using the
proposed NUPGA technique, we can consider all additional
bit channels as PM1 = 0 and as bits output from polarized
channels ukk−M , uniform and limited to the length of the
extension. For the encoder we have the same definition, that
is, PM1 = 0. In the decoder, we have

ûk1 = f (LLR((uk1)+ LLR(u
k
k−M )), (50)

in the same order.
Note that according to (44), we have

N∑
i=1

I (W (i)
N )+

M∑
i=1

I (W (i)
M ) =

N∑
i=1

I (W(i))+
M∑
i=1

I (W(i))

this only happens in the following two cases: either W (i)
N and

W (i)
M are noise channel and both of the I (·) are equal to 1,

or W (i)
N and W (i)

M are both perfect channel such that the two

FIGURE 7. PC extension.

I (·) are equal to 0. Using NUPGA, when W (i)
N is perfect and

W (i)
M is useless, the two I (·) are 1 and 0, respectively. In other

words, if the extended bit channel W (i)
M is noise channel and

excluding the case that bothW (i)
N andW (i)

M are perfect channel,
the re-polarization improves the reliability of the shortened
channels. With regards to (45), we have

N∑
i=1

Z (W (i)
N )+

M∑
i=1

Z (W (i)
M ) ≤

N∑
i=1

Z (W(i))+
M∑
i=1

Z (W(i))

and with the use of NUPGA, we have
M∑
i=1

Z (W (i)
M ) ≤

N∑
i=1

Z (W (i)
N )

and then
M∑
i=1

Z (W(i)) ≤
N∑
i=1

Z (W(i))

which ensures that the extended channels will all be noisy.
This method is similar to the extension of the polarization

matrix proposed in [42] and [43]. Note that the construction
method for polar codes extension allows us to maintain the
same encoder and decoder for codeword N. In the proposed
NUPGA extension algorithm, the original codeword of the
channels initially designed is first extended by adding new
bits. Thus, it is possible to increase the code length by grad-
ually adding new bits, making it possible to build codewords
of any length. The information bit channels are polarized
according to the reliability of the bit channel calculated from
the new extended channels. The main idea of the proposed
NUPGA extension algorithm is to generate the new bit chan-
nels as frozen bits and make the associated information bits
more reliable than before. The extension length is 1M and
the new rate is M = (N + 1M ) which can still be decoded
efficiently. Therefore, the extension channels are obtained
with the proposed NUPGA extension algorithm. The details
of the proposed NUPGA extension algorithm are shown in
Algorithm 2.

VI. SIMULATION RESULTS
The performance of the NUPGA-based shortening and exten-
sion algorithms is assessed in this section against competing
approaches such as CW [38], RQUP [39] and PD [40].For
performance analysis we compared the BER and FER of
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Algorithm 2 Proposed NUPGA Extension Algorithm
1: INPUT : N , code length
2: INPUT : K , information bits
3: INPUT : P, shortened bits
4: INPUT : design-SNR EdB = (REb/No) in dB
5: INPUT : 1M , extension length
6: OUTPUT : F ∈ {0, 1, . . . ,N +1M − 1}
7: S = 10EdB/10, n = log2N
8: L ∈ RN , Initialize [E(L(i)1 )]N1 = 4S [6] and

[E(L(i)1 )]1MN = 0
9: Upgrade with vector [E(L(i)1 )]N1 with P

10: for i = 1 to n+ 1 do
11: d = 2(i−2)

12: for b = 1 to N step 2(i−1) do
13: for k = 0 to d − 1 do
14: if E(L(i−1)k+b ) = 0 or E(L(i−1)k+b+d ) = 0 then
15: E(L(i)k+b) = E(L(i−1)k+b )
16: E(L(i)k+b+d ) = E(L(i−1)k+b+d )

endif
17: E(L(i)k+b) = φ

−1(1− (1− φ(E(L(i−1)k+b )))(1−
18: φ(E(L(i−1)k+b+d ))))
19: E(L(i)k+b+d ) = E(L(i−1)k+b )E(L(i−1)k+b+d )

endfor
endfor

endfor
20: F = Find indices of smallest elements (E[L],K )
21: return F

each curve, Bit Error Rate and Frame Error Rate respectively.
We adopt BPSK signaling over the AWGN channel for the
evaluation. In the simulations, SC and SCL decoders were
considered with randomly generated codewords and differ-
ent code rates. In Fig.8 we compare NUPGA for shorten-
ing with [9] using an SC decoder, where we show that the
performance of the shortened code is inferior to that of the
standard code. A similar pattern can be seen in Fig.9 with
the SCL decoder [51] and list size L = 16. Fig.10 shows
the performance over AWGN of NUPGA for shortening with
SCL decoding aided by Cyclic Redundancy Check (CRC)
with size 24 (CA-SLC) [51] and L = 16. In Fig.11 we
compare the performance of the proposed NUPGA extension
algorithm with the PD and NUPGA shortening algorithms
with SCL and L = 16.

In the first example, in Fig.8, we show the standard PC [9]
called the mother code (MC). In the simulation we use MC
with N = 512 and rate R = 1/2; M = 320 with R = 1/2.
We compare them with CW [38], RQUP [39] and PD [40]
in addition to the proposed NUPGA shortening techniques.
In Fig.9, we show the performance for M = 400 with
R = 1/2, with CA-SCL decoding with L = 16. And
in Fig.10, the performance for: M = 400, R = 1/4, AWGN,
CA-SCL, L = 16 and CRC with length 24. In Fig.11,
we compare the performance of the shortened polar codes
M = 280 and k = 128, the proposed NUPGA extension
technique with three other curves: with MC [9] of length

FIGURE 8. Performance of PC with N = 512 with R = 1/2 and M = 320
with R = 1/2.

FIGURE 9. PD versus NUPGA: M = 400, K = 200 and CA-SCL with L = 16.

FIGURE 10. Performance of PD and NUPGA shortening algorithms both
with M = 400 and K = 50 using CA-SCL with L = 16 and CRC = 24.

N = 256, the PD [40] algorithm and the NUPGA shortening
under CA-SCL with L = 16 and CRC with length 24. The
results show that the NUPAG extension technique outper-
forms the NUPGA shortening and the PD algorithms using
list decoding with CRC. The shortening methods proposed
by [38], [39] and [40] have a computational complexity of
O(P+K+NlogN) [27].Therefore, we can estimate the com-
putational complexity of NUPGA at O(P+K+2NlogN).
We notice in all simulations that the proposed NUPGA

technique has gains in performance in the scenarios studied.
As shown in Fig.10, we can see that for low rates under list
decoding, the gain tends to be greater. In Fig.8we observe that
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FIGURE 11. Performance of NUPGA extension with PD and NUPGA
shortening, decoder CA-SCL with L = 16 and CRC with length 24.

the performance gain of NUPGA is of the order of 0.5 dB as
compared to the approach of CW [38]. In Fig.9, we verify that
the gain obtained by NUPGA is less than 0.1dB. In Fig.10 we
notice that the gain is up to 1.2dB, which indicates that the
NUPGA is advantageous for low rates. In Fig.11, we observe
that the NUPGA extension algorithm achieves a performance
improvement over that obtained by the NUPGA shortening
algorithm, which is around 0.1 dB. We can see that according
to the curves a modest incremental extension has good BER
performance, maintaining the same FER performance as the
original code [9].

VII. CONCLUSION
In this work, we propose an efficient technique for PC
construction of arbitrary length through the theory of
non-uniform channel polarization. For its implementation,
we developed the NUPGA based on the generalization of
the GA technique. Rate compatibility is maintained and
the proposed approach achieves the channel’s capacity.
With the proposed NUPGA-based shortening and exten-
sion algorithms we can design PC for any codelength by
re-polarizing the conventional PC. Since the performance
of rate-compatible polar codes (including extended, punc-
tured or shortened) deteriorates with the gap in length to
the mother code, the proposed schemes considerably out-
perform existing schemes. Simulations show that the perfor-
mance of NUPGA-based designs is better than competing
techniques.
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