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ABSTRACT A data center network is an important infrastructure in various applications of modern infor-
mation technologies. Data centers store files with useful information, but the lifetime of these data centers is
limited. Once a data center suffers from natural disasters and man-made damages, all the information stored
in the files will be lost. Therefore, replicating important files in other data centers is necessary to increase
the lifetime of these files in a data center network. In this study, we develop a more general framework for
Markov processes in data center networks, that can provide an analysis of file replication processes. A file
replication strategy duplicates each important file in at most d−1 other data centers such that these files can
remain in a data center network under a given data security level in the long term. In this regard, we achieve a
sufficient stable condition of data center networks by using a matrix-geometric solution. Then, we provide an
expression for the stationary average number of normally operating data center networks. We also develop
a computational technique for file lifetime via phase type distribution and the RG-factorizations. Lastly,
we hope that the methodology and results presented in this study are applicable to research on file lifetime
and data security for more general data center networks with a replication mechanism.

INDEX TERMS Data center networks, Markovian arrival process, phase type distribution, replication
mechanism, RG-factorization.

I. INTRODUCTION
Adata center network is an important infrastructure in
various applications of modern information technologies.
The lifetime of data centers is limited, and data centers
may suffer from natural disasters or man-made damages.
File replication has been widely used to reduce the risk
of data loss and increase data availability in data center
networks [1]–[7]. Therefore, using a Markov process model
in large-scale data center networks to study the file replication
mechanism, evaluate file lifetime, and assess data security has
elicited widespread concern.

Many scholars have studied the mechanism of file repli-
cation and the evaluation of file lifetime by using a Markov
process. Chun et al. [8] presented a Markov chain model
for analyzing the expected replica lifetime and designed
the Carbonite replication algorithm for keeping data durable
at a low cost. Picconi et al. [9], [10] used Markov chain
repair rates to predict replica durability in distributed hash
tables and provided an analytical expression for a system’s
repair rate. Ramabhadran and Pasquale [11]–[13] developed
a model concept of replica loss and repair in distributed
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storage systems based on a simple Markov chain model
and derived an expression for the lifetime of the replicated
state. Utard and Vernois [14] constructed a Markov process
model peer-to-peer storage system, and analyzed the average
lifetime of data in accordance with the availability factors
of the system. Lian et al. [15] introduced a Markov model
for the evolution of a system with brick failures and data
repair. Aghajani et al. [16] and Sun et al. [17] investigated
a stochastic model for the evolution of a network. This model
converges during distribution to a nonlinear Markov process
when the number of nodes goes toward infinity. Feuillet and
Robert [18] provided a simple transient Markov process with
an absorbing point to investigate the qualitative behavior of a
large-scale storage network. Li et al. [19] builds a stochastic
system of file replicationmechanism, in which the replication
time of the file follows an exponential distribution, and the
joining process of the new data center follows the Poisson
process. In terms of data security [20], [21], file replication
is one of the effective methods for ensuring the long-term
availability of files. However, research on the quantitative
relationship between the number of file copies and file life-
time remains lacking.

In using a Markov process to study the mechanism
of file replication and evaluate file lifetime, the Markov
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structure of phase type (PH) distribution and the Markov
arrival process (MAP) can effectively reduce difficulty in
modeling. At present, many scholars have studied demand
forecasting [22], inventory management [23], [24], and pri-
ority queuing system [25], [26] by using PH distribution and
MAP. However, studies on the mechanism of file replication
that uses PH distribution andMAP are rare. However, existing
research results show that different phases in PH distribution
and MAP are highly suitable for describing changes in file
lifetime in data center networks.

The major challenges of the current study are threefold.
The first challenge is to construct a Markov process model of
a large-scale data center network by using PH distribution and
MAP. The second challenge is to analyze the joint probability
distribution of the number of file copies and number of data
centers. The third challenge is to determine the quantita-
tive relationship between the number of file copies and file
lifetime.

The contributions of this work are threefold. The first con-
tribution is to develop a more general framework of Markov
processes for studying data center networks. Such framework
can provide an analysis of the file replication strategy. The file
replication strategy replicates important files in at most d−1
other data centers such that these files can remain in a data
center network under a given data security level in the long
term. The second contribution is the use of MAP and PH dis-
tribution to establish a quasi-birth-and-death process (QBD)
that leads to two effective methods for assessing file lifetime
and data security in a data center network. We also develop
a computational technique for file lifetime based on PH
distribution with finite sizes and the RG-factorizations. The
third contribution is to popularize the stochastic system of
file replication mechanism studied by Li et al. [19], and to
generalize the replication time of the file from an exponential
distribution to PH distribution. The joining process of new
data center is generalized from Poisson process to Markov
arrival process. In this case, our model is more consistent with
the actual situation.

The remainder of this paper is organized as follows.
Section 2 describes a file replicationmechanism in a data cen-
ter network. Section 3 establishes a continuous-time Markov
process, and expresses the stationary probability vector of a
data center network. Section 4 uses MAP and PH distribution
to establish a relationship between the number of data centers
and number of file copies. A numerical example is used to
indicate the effect of the file replication strategy on the aver-
age lifetime of files in a data center network. Section 5 devel-
ops a computational technique for file lifetime based on
PH distribution with finite states and the RG-factorizations.
Lastly, concluding remarks are provided in Section 6.

II. MODEL DESCRIPTION
In this section, we describe a large-scale data center network.
Some data centers are removed from the network due to
failure or malfunction, resulting in the loss of stored data or
information. Simultaneously, new data centers are constantly

added to this large-scale data center network to enhance
its capability to store and protect data. Such a data center
network is considered to ensure that stored files are always
backed up. This section describes a data storage mechanism
in which files are continuously replicated in this data center
network. AMarkov process is used to provide a more general
stochastic model that can analyze the performance evaluation
of this system with a data storage mechanism.

To ensure that data are unaffected by natural disasters or
emergencies in the data center network, this section assumes
that the data center network is based on a wide range of
heterogeneous geographic environments. This data center
network is connected by a wireless (or wired) communication
system; that is, any two data centers in the data center network
can achieve fast and efficient connectivity and communica-
tion, including business data transmission, acceptance, stor-
age, and processing.

In such situation, when a data center only considers han-
dling large business data, being concerned with the heteroge-
neous geographical environment of the data center network is
unnecessary in the current communication system. Therefore,
the data center network is abstracted as a simple undirected
network (V ,E), where

V = {DC − 1,DC − 2,DC − 3, . . . ,DC − n} ,

E = {DC − i−−DC − j : 1 ≤ i < j ≤ n} ,

DC−i represents the ith data center, andDC−i−−DC−j
represents a service communication (nondirectional) connec-
tion between the ith and jth data centers.

We present the model description and related system
parameters of this data center network in the subsequent
sections.

A. LIFETIME
Each data center may fail in this network. We assume that the
lifetime X of each data center follows a continuous-time PH
distribution and its irreducible matrix is expressed as (α,T ).
α is a substochastic vector of order m. T is a transfer rate
matrix of order m. T = (Ti,j)m×m, Ti,i < 0, Ti,j ≥ 0, i 6= j,
and Te < 0. Therefore, its probability distribution function is

F(t) = P {X ≤ t} = 1− α exp(Tt)e1, t ≥ 0. (1)

Evidently, E
[
X k
]
= (−1)kαT−ke1, where e1 is the column

vector with all the elements being one.

B. JOINING PROCESS OF NEW DATA CENTERS
Each data center may fail, and thus, new data centers should
be continually added to the network to enable the data cen-
ter network to maintain sustainable development through
numerous incessant equipment replacements.We assume that
the input of a new data center is an MAP. (D0,D1) is an
irreducible matrix of order n, when D0 = (d (0)i,j ), D1 = (d (1)i,j ),

d (0)i,i < 0, d (0)i,j ≥ 0 (i 6= j), d (1)k,l ≥ 0 and (D0 + D1)e = 0. D1
is the process of the state transition arrival rate.
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C. FILE REPLICATION STRATEGY
We assume that each file is stored in at most d ≥ 1 data
centers in this network. Once the number of copies of a file is
less than d and an available data center exists without storing
the file, then the file will be quickly replicated in the data
center. We assume that the copy time Y of the file replicated
in an available data center follows a continuous-time PH
distribution and its irreducible matrix is expressed as (β, S).
β is a substochastic vector of order m, and S is a transfer rate
matrix of order m.

F(t) = P {Y ≤ t} = 1− β exp(St)e2, t ≥ 0. (2)

Evidently, E
[
Y k
]
= (−1)kβS−ke2, where e2 is the column

vector with all the elements being one.

D. FILE LOST PROCESS
Once a data center fails, all the files in this data center will be
lost immediately, along with useful information.

We assume that all the random variables involved in the
data center network are independent of each other.

III. THE STEADY-STATE PROBABILITY DISTRIBUTION OF
THE DATA CENTER’s NUMBER
In this section, we use MAP and PH distribution to study
the steady-state probability distribution of the number of
normally operating data centers in the data center network
and analyze inherent features to ensure the security of data in
the files through a file replication strategy.

In this data center network, each data center can fail or
malfunction, and its lifetime is subject to PH distribution.
Moreover, (α,T ) is an irreducible matrix of orderm. We con-
sider an initial probability vector α = (α1, α2, . . . , αm), and
T is a substochastic vector of order m of the infinitesimal
generator QPH . The infinitesimal generator QPH is given by

QPH =
[
T T 0

0 0

]
,

where T = (T )m×m and T 0
= (T 0

1 , . . . ,T
0
m)

T
= −Te1.

Meanwhile, new data centers are continually added to the
data center network, and the addition process is MAP. The
infinitesimal generator QMAP of MAP is expressed as

QMAP =

D0 D1
D0 D1

. . .
. . .

 ,
where D0 = (D0)n×n represents the transfer rate of the
environmental change transfer of the Markov process when
a new data center joins the data center network, and D1 =

(D1)n×n represents the arrival rate of a new data center when
it joins the data center network.
Let {N (t), I (t), J (t) : t ≥ 0} represent a multidimensional

continuous-time Markov process, and N (t) represents the
number of available data centers in the data center net-
work at time t . I (t) is the phase of the data center lifetime
at time t , and J (t) is the environmental phase of a new

data center joining the data center network at time t . Let
� = H1 ∪ H2, where H1 = {(0, j) : 1 ≤ j ≤ n} represents
a new data center joining the network, and j is the phase
of a joining Markov process of a new data center. H2 =

{(N , i, j) : N ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n} represents the num-
ber of N data centers under normal operation in the data
center network. The lifetime of the data center is in phase
i, and a new data center joining this network is in phase j.
Then, {N (t), I (t), J (t) : t ≥ 0} is a QBD process, and its state
transition relation is illustrated in Figure 1.

In this figure, let⊕k (α,T ) denote that the lifetime of k data
centers follows the PH distributions (α,T ). We then analyze
and explain the state transition relationship of the system
shown in Figure 1 as follows.

1) LEVEL n TO LEVEL n
When n = 0, no data center exists in the system at this time,
and only a transfer between the phases of MAP occurs in the
data center. Then, it can be represented by matrix D0.

When n ≥ 1, n data centers exist in the system at this time,
and a parallel operation of MAP occurs between a new data
center and the n data centers’ lifetime process. Then, it can
be represented by matrix D0 ⊕

(
T −1

(
(n− 1)T 0

))
, where

1(kT 0) = kdiag(t01 , t
0
2 , . . . , t

0
m).

2) LEVEL n TO LEVEL n+ 1
When n = 0 and the system transfers from level 0 to level 1,
this transfer indicates that a new data center has joined this
system. The matrix is given by D1 ⊗ α.
When n ≥ 1 and the system is from level n to level n+ 1,

this transfer indicates that a new data center has joined this
system. The matrix is given by D1 ⊗ Im.

3) LEVEL n TO LEVEL n− 1
When n = 1 and the system transfers from level 1 to level 0,
this transfer indicates the end of a data center’s lifetime and
the lost time of service computing capability. The matrix is
given by In ⊗ T 0.
When n ≥ 2 and the system transfers from level n to level

n−1, this transfer indicates the end of a data center’s lifetime
and the lost time of service computing capability. The matrix
is given by In ⊗

(
nT 0α

)
.

From the preceding analysis, the infinitesimal generator of
the QBD process {N (t), I (t), J (t) : t ≥ 0} is given by

Q =



Q(0)
1 Q(0)

0
Q(1)
2 Q(1)

1 Q(1)
0

Q(2)
2 Q(2)

1 Q(2)
0

Q(3)
2 Q(3)

1
. . .

. . .
. . .


where

Q(0)
1 = D0,Q

(0)
0 = D0 ⊗ α,Q

(1)
2 = In ⊗ T 0,

Q(0)
1 = D0 ⊕ T ,Q

(1)
0 = D1 ⊗ I ,Q

(2)
2 = In ⊗ (2T 0α),
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FIGURE 1. System state transition relationship.

Q(2)
1 = D0 ⊕ (T −1(T 0)),Q(2)

0 = D1 ⊗ I ,

Q(3)
2 = In ⊗ (3T 0α),Q(3)

1 = D0 ⊕ (T −1(2T 0)).

Let

Ak = Q(K )
0 + Q

(K )
1 + Q

(K )
2

= D1 ⊗ I + D0 ⊕ (T −1(k − 1)T 0)+ I ⊗ (kT 0α)

= (D0 + D1)⊗ I + I ⊗
[
(T −1((k − 1)T 0))+ (kT 0α)

]
Let θ (D) indicate the steady-state probability vector of the

Markov process (D0 + D1). θ
(T )
k indicates the steady-state

probability vector of theMarkov process (T−1((k−1)T 0))+
(kT 0α), and θ (D)⊗θ (T )k represents the steady-state probability
vector of the Markov process Ak . Therefore, the drift rate of
Markov process Q from levels K to K − 1 is(

θ (D) ⊗ θ
(T )
k

)
Q(K )
2 e⊗ e = (θ (D)Ie)⊗ (θ (T )k (kT 0α))e

= Kθ (T )k T 0
→∞, (3)

where θ (T )∞ = lim
k→∞

θ
(T )
k .

The drift rate of Markov process Q from levels K to K + 1
is (

θ (D) ⊗ θ
(T )
k

)
Q(K )
0 e = θ (D)D1e→∞,

Therefore, K∗ exists, when K > K∗,

kθ (T )k T 0 > θ (D)D1e.

By using the mean draft condition, kθ (T )k T 0 > θ (D)D1e
indicates that the QBD process {N (t), I (t), J (t) : t ≥ 0} is
irreducible, aperiodic, and positive recurrent.

When the system is in steady state, the steady-state proba-
bility vector of the infinitesimal generator Q is π , where π =
(π0, π1, π2, π3, . . .), and π satisfies the following conditions:

πQ = 0, πe = 1.

Li and Cao [28] proved that for the positive recurrent
QBD process Q, the steady-state probability vector π =
(π0, π1, π2, π3, . . .) satisfies the following conditions:

πk+1 = πkRk = π0R0R1···Rk , k ≥ 0,

where π0
[
Q(0)
1 + R0Q

(1)
2

]
= 0, π0

∞∑
k=0

[
k−1
5
m=0

Rm

]
e = 1,

−1
5
m=0

Rm = I .

Under normal conditions, Rk is finite-dimensional and the
preceding infinite sum formula should be truncated. Then,
we define

{πk (K ), 0 ≤ k ≤ K }

and

π0(K )
K∑
k=0

[
k−1
5
m=0

Rm

]
e = 1.

Then

Q̃(K ) =


Q(0)
1 Q(0)

0
Q(1)
2 Q(1)

1 Q(1)
0

. . .
. . .

. . .

Q(K−1)
2 Q(K−1)

1 Q(K−1)
0

Q(K )
2 Q(K )

1

 .

By using the algorithms proposed by Bright and Tay-
lor [29], we obtain a steady-state probability distribution
{πk (K ), 0 ≤ k ≤ K }. When the system is in a level state,
the mean of the number of normal operating data centers N
is

E [N] =
K∑
k=0

kπk (K )e. (4)

On this basis, if d identical files are required to be copied on
d different data centers in this data center network, at least d
normally operating data centers that can accept the duplicate
files. Thus, the probability of successfully copying d identical
files on d different data centers is

Pr {N ≥ d} =
k∑

k=d

πk (K )e

=

k∑
k=d

π0(K )
k−1
5
n=0

Rne > π0(K )
d−1
5
n=0

Rne. (5)

In addition, the probability of successfully copyingm iden-
tical files on m(≤ d − 1) different data centers is

Pr {d − 1 ≥ m ≥ N ≥1} =
m∑
k=1

πk (K )e

=

m∑
k=1

π0(K )
k−1
5
n=0

Rne. (6)

In particular, the probability of an unsuccessful replication is

Pr {N = 0} = π0(K )e. (7)

IV. JOINT PROBABILITY ANALYSIS OF THE NUMBER OF
FILE COPIES AND NUMBER OF DATA CENTERS
In this section, we study the random behavior of the number
of file copies and describe the relationship between the num-
ber of data centers and number of file copies.
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FIGURE 2. System state transition relationship.

In the data center network, letN (t) represent the number of
data centers operating normally at time t , andM (t) represents
the number of successful copies of the same file in different
data centers at time t . Evidently, N (t) ∈ {0, 1, 2, . . .} and
M (t) ∈ {0, 1, 2, . . . , d}, and I (t) is the phase of the data
center’s PH lifetime, J (t) is the environmental phase of MAP
joining the new data center, and Z (t) is the phase of PH copy-
ing time of the file data. {N (t),M (t), I (t), J (t),Z (t) : t ≥ 0}
is a multidimensional Markov chain, which is also a
QBD process. The state transition relationship is illustrated
in Figure 2.

In this figure, ⊕k (α,T ) indicates that the lifetime of k
data centers follows the PH distribution (α,T ), and ⊕k (β, S)
indicates that the copy time of the k file follows the PH
distribution (β, S). As shown in Figure 2, the state space
of the QBD process {N (t),M (t), I (t), J (t),Z (t) : t ≥ 0} is
expressed as

2 = 1 ∪21 ∪22 ∪23 ∪ · · · = 1 ∪

(
∞⋃
k=1

2k

)
,

where1 = {(k, 0) : k = 0, 1, 2 . . .} is a set of all the absorp-
tion states. Observing the columns in Figure 2, we write level
k as follows:

k ∈ {1, 2, 3, . . . , d − 1} : 2k = {(k, 1), (k, 2), . . . , (k, k)} ;

and we write level l as follow:

l ∈ {d, d + 1, d + 2, . . .} : 2l = {(l, 1), (l, 2), . . . , (l, d)} ;

From these levels, the infinitesimal generator of the QBD
process {N (t),M (t), I (t), J (t),Z (t) : t ≥ 0} in sub-state

space
∞⋃
k=1

2k is given by

T =


A1,1 A1,2
A2,1 A2,2 A2,3

A3,2 A3,3 A3,4
. . .

. . .
. . .


A1,1 = (C ⊕ T ),

A1,2 = (D⊗ I ⊗ β, 0);

For 2 ≤ k ≤ d − 1,

Ak,k−1 =



8(1)

R(2) 8(2)

R(3) 8(3)

. . .
. . .

R(i) 8(i)

. . .
. . .

R(k−1) 8(k−1)

R(k)


,

8(i)
= I ⊗ ((k − i)T 0α)⊗ I , i = 1, 2, . . . , k − 2;

8(k−1)
= I ⊗ (T 0α)e;

R(i) = I ⊗ (iT 0α)⊗ I , i = 1, 2, . . . , k − 1;

R(k) = I ⊗ (kT 0α);
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Ak,k =



Z (1) N (1)

Z (2) N (2)

. . .
. . .

Z (i) N (i)

. . .
. . .

Z (k−1) N (k−1)

Z (k)


,

Z (i)
= C ⊕ (T −4(k − 1)T 0)⊕ (S − (4(i− 1)S0)),

i = 1, 2, . . . , k − 1;

Z (k)
= C ⊕ (T −4(k − 1)T 0);

N (i)
= I ⊗ I ⊗ (iS0β), i = 1, 2, . . . , k − 2;

N (k−1)
= I ⊗ I ⊗ ((k − 1)S0);

Ak,k+1 =


D⊗ I ⊗ I

D⊗ I ⊗ I
D⊗ I ⊗ I

. . .

D⊗ I ⊗ I

D⊗ I ⊗ β 0

 ,

For l ≥ d ,

Al,l−1=



8(1)

R(2) 8(2)

R(3) 8(3)

. . .
. . .

R(i) 8(i)

. . .
. . .

R(d−1) 8(d−1)

R(d) 8(d)


,

8(i)
= I ⊗ ((l − i)T 0α)⊗ I , i = 1, 2, . . . , d − 1,

8(d)
= I ⊗ ((l − d)T 0α)⊗ β;

R(i)= I ⊗ (iT 0α)⊗ I , i = 1, 2, . . . , d − 1,

R(d)= I ⊗ (dT 0α)⊗ β;

Al,l =



Z (1) N (1)

Z (2) N (2)

. . .
. . .

Z (i) N (i)

. . .
. . .

Z (d−1) N (d−1)

Z (d)


,

Z (i)
=C ⊕ (T −4(l − 1)T 0)⊕ (S − (4(i− 1)S0)),

i = 1, 2, . . . , d − 1;

Z (d)
=C ⊕ (T −4(l − 1)T 0);

N (i)
= I ⊗ I ⊗ (iS0β), i = 1, 2, . . . , d − 2;

N (d−1)
= I ⊗ I ⊗ ((d − 1)S0);

Al,l+1=


D⊗ I ⊗ I

D⊗ I ⊗ I
D⊗ I ⊗ I

. . .

D⊗ I ⊗ I

D⊗ I ⊗ β 0

.
Notably, the QBD process

{N (t),M (t), I (t), J (t),Z (t) : t ≥ 0}

contains a set of absorption states

1 = {(k, 0) : k = 0, 1, 2 . . .} .

For simplicity, we compress this set of absorp-
tion states into absorption state 1∗. In such situa-
tion, the infinitesimal generator of the QBD process
{N (t),M (t), I (t), J (t),Z (t) : t ≥ 0} in the modified state
space 1∗ ∪

(⋃
∞

k=12k
)
is

Q =
(
T1 T 0

1
0 0

)
,

where

T 0
1 = −T1e = (λ; λ, 0; λ, 0, 0; λ, 0, 0, 0; λ, 0, 0, 0, 0; . . .)

′

,

And a
′

represents the transpose of row vector a.
Let

χ = inf {t ≥ 0 : M (t) = 0,N (t) ∈ {1, 2, 3, . . .}} .

Then, the random variable χ is the length of time required to
reach the absorption state set1 or the absorption state1∗ for
the first time; that is, the random variable χ is a first arrival
time, indicating that the file can-not be successfully replicated
in a different data center network for the first time, along with
the lifetime of file data in the data center network.
Theorem 1 shows that the first arrival time χ is the PH

distribution with infinite dimension, where the initial proba-
bility vector α = (α1∗ , α1, α2, α3, . . .) and α1∗ ∈ [0, 1]. For
1 ≤ k ≤ d ,

αk =
(
αk,1, αk,2, · · · , αk,k−1, αk,k

)
,

and for l ≥ d + 1,

αl =
(
αl,1, αl,2, · · · , αl,d−1, αl,d

)
.

Theorem 1: In the data center network, the first arrival
time χ is the PH distribution with infinite dimension,
and its irreduciblility is expressed as (̃α,T1), where α̃ =
(α1, α2, α3, · · · ) , α̃e = 1−α1∗ . In addition, Markov process
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T1+T 0
1 α̃ is irreducible. Moreover the kth moment of the first

arrival time χ is

E
[
χk
]
= (−1)k k !̃αT−k1 e, k = 1, 2, 3, . . . (8)

Proof: The infinitesimal generator of the QBD process
{N (t),M (t), I (t), J (t),Z (t) : t ≥ 0} in modified state space
1∗ ∪

(⋃
∞

k=12k
)
is given by Q

Q =
(
T1 T 0

1
0 0

)
.

Moreover, it is irreducible in sub-state space
⋃
∞

k=12k .
Thus, the absorption state1∗ shows that the first arrival time
χ is the length of time required for the first arrival to the
absorption state 1∗. Hence, the first arrival time χ is the PH
distribution with infinite dimension, and its irreducibility is
expressed as (̃α,T1). From Li [27], let the transfer rate matrix
T1 be nonsingular, with the probability density function
f (t) = α exp(T1t)T 0

1 . The Laplace-Stieltjes transformation of
PH(T1,T 0

1 ) can be calculated, and f ∗(s) = 1 − αe + α(sI −
T1)−1T 0

1 , for s differential k times, and s = 0. The formula
for obtaining k moment is E[χk ] = (−1)kk !̃αT−k1 e, k =
1, 2, 3 . . .. The kth moment E

[
χk
]
of the first arrival time

χ can be derived. This scenario completes the proof.
To calculate the kth moment E

[
χk
]
of the first arrival

time χ , the inverse matrix of matrix T1 should be derived
first. From Section 2.1 of Li and Cao [28], we define the
U−measure as

U0 = A1,1,

Uk = Ak+1,k+1 + Ak+1,k (−Uk−1)−1Ak,k+1, k = 1, 2, 3, . . . ;

Define the R−measure as

Rk = Ak+1,k (−Uk−1)−1, k = 1, 2, 3, . . . ;

Define the G−measure as

Gl = (−Ul)−1Al+1,l+2, l = 0, 1, 2, . . . ;

Based on the U−measure, R−measure and G−measure,
using the Theorem 1 in Li and Cao [28], the
RG−decomposition of matrix T1:

T1 = (I − RL)UD (I −GU ) ,

where

UD = diag(U0,U1,U2, . . .),

RL =


0
R1 0

R2 0
R3 0

. . .
. . .

 ,

GU =



0 G0
0 G1

0 G2

0
. . .

. . .

 .

So, we have obtained

T−11 = (I −GU )
−1 U−1D (I − RL)

−1 .

Let

X (l)
k = RlRl−1 · · ·Rl−k+1, 1 ≤ k ≤ l,

Y (l)
k = GlGl+1 · · ·Gl+k−1, k ≥ l, l ≥ 0,

Then

U−1D = diag(U−10 ,U−11 ,U−12 , . . .),

(I −GU )
−1
=


I Y (0)1 Y (0)2 Y (0)3 · · ·

I Y (1)
1 Y (1)

2 · · ·

I Y (2)
1 · · ·

I · · ·

. . .

 ,

(I − RL)
−1
=


I
X (1)
1 I
X (2)
2 X (2)

1 I
X (3)
3 X (3)

2 X (3)
1 I

...
...

...
...

. . .

 .

Let

T−11 =


t0,0 t0,1 t0,2 · · ·

t1,0 t1,1 t1,2 · · ·

t2,0 t2,1 t2,2 · · ·

...
...

...
. . .

 ,
From T−11 = (I −GL)

−1 U−1D (I − RU )
−1, we can get

tm,n

=



U−1m X (m)
m−n+

∞∑
i=1

Y (m)
i U−1i+mX

(i+m)
i+m−n, 0≤n≤m−1

U−1m +
∞∑
i=1

Y (m)
i U−1i+mX

(i+m)
i , n = m

Y (m)
n−mU

−1
n +

∞∑
i=n−m+1

Y (m)
i U−1i+mX

(i+m)
i−n+m, n ≥ m+ 1

Then the mean of the first arrival time χ is given by

E [χ ] = −α̃T−11 e = −α̃ (I −GL)
−1 U−1D (I − RU )

−1 e

= −

∞∑
i=1

αiti−1,0 −
∞∑
j=1

∞∑
i=1

αiti−1,je (9)

Finally, given the complexity of the calculation process
of MAP and PH distribution, the exponential distribution
is briefly explained as a special case. We present a simple
example to illustrate how file lifetime χ depends on the
maximum number of identical backups: d ∈ (2, 70). Let
λ = 1 and β = 6. As shown in Figure 3, the mean E[χ ]
increases, as d increases. In addition, when d increases to
a certain value 2, the mean E[χ ] will no longer change
significantly. The number of file copies is controlled within
2 to minimize the cost of file replication on the basis of
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FIGURE 3. File lifetime depends on the key parameter d .

keeping file lifetime relatively long. Such phenomenon will
be valuable in designing and optimizing a data center network
with a file replication mechanism.

V. STOCHASTIC BEHAVIOR ANALYSIS OF THE NUMBER
OF FILE COPIES
In this section, a new birth-and-death process of finite state
space is established by modifying the copy rate of files in the
data center network. The random behavior of the number of
file data copies is studied. Moreover the time of the first loss
of file data backup is examined.

Note that {N (t), I (t), J (t) : t ≥ 0} is QBD process, the
steady state probability distribution of the normal operating
data center is

θ0=π0e; θk=πk+1e = πkRke = π0R0R1 . . .Rke, k ≥ 0

As shown in Figure 2, when this data center network is in
steady state, the following results can be obtained.

(a) If a file has only one copy in the data center network,
then the file adopts the copying rate of another data center,
given by

S01 = S0π0
∞∑
n=2

θn. (10)

In the steady state of the system, the copying time of this
file is subject to a PH distribution and its irreducible matrix
is expressed as (β, S1), where

S1 = Sπ0
∞∑
n=2

θn. (11)

Evidently,

S01 = S0π0
∞∑
n=2

θn. (12)

(b) If a file has k identical copies(i.e., a file has been dupli-
cated in k different data centers) in the data center network for
2 ≤ k ≤ d − 1, then the k identical files adopt the copying
rate of another data center, given by

S0k = kS0π0
∞∑

n=k+1

θn. (13)

In the steady state of the system, the copying time of this
file is subject to a PH distribution and its irreducible matrix
is expressed as (β, Sk ), where

Sk =
[
S −4((k − 1)S0)

] ∞∑
n=k+1

θn. (14)

Evidently,

S0k = kS0
∞∑

n=k+1

θn. (15)

In the data center network, let ⊕k (a,T ) denote that k
data centers with PH lifetime distribution (a,T ) fail simul-
taneously and are removed from the data center network.
We denoteM (t) as the number of identical copies of one file
at time t , then {M (t) : t ≥ 0} is a QBD process in a finite state
space E ={0, 1, 2, . . . , d − 1, d}, the state transition relation
of which is depicted in Figure 4.

Let

η = inf {t ≥ 0 : M (t) = 0} .

Then, η is the lifetime of a file that remains in the data center
network. It is also the first lost time of the file that will
possibly disappear in the data center network.

Let

ϕ =



ϒ1 P1

02 ϒ2 P2

. . .
. . .

. . .

0i ϒ i Pi

. . .
. . .

. . .

0d−1 ϒd−1 Pd−1

0d ϒd


,

ϕ0 =



e2 ⊗ T 0

0
0
0
0
0
0


.

When i = 1,

ϒ1
= (S1 ⊕ T ),P1 = (S01β ⊗ I );

When i = 2, 3, . . . , d − 1,

0i= I ⊗ (iT 0α), ϒ i
=Si ⊕ (T −4(i− 1)T 0),Pi=S0i β ⊗ I ;

When i = d ,

0i = I ⊗ (iT 0α), ϒd
= (T −4(d − 1)T 0).

Theorem 2: In this data center network, the lifetime η of a
file follows a PH distribution with an irreducibility represen-
tation of (γ̃ , ϕ). The initial probability vector is (γ̃ , γ0), where
γ̃ = (γ1, γ2, . . . , γd ), γ0 ∈ [0, 1], and γ̃ e = 1 − γ0. The
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FIGURE 4. State transition of the file replication process.

Markov process
(
ϕ + ϕ0γ̃

)
is also irreducible. Furthermore,

the kth moment of the lifetime η of a file is given by

E
[
ηk
]
= (−1)kk!γ̃ ϕ−ke, k = 1, 2, 3, . . . (16)

Proof: Checking that the infinitesimal generator of the
birth-death process {M (t) : t ≥ 0} is in state space is easy.

E ={level 0, level1, level2, . . . , leveld − 1, leveld}

is given by

Q =
(
ϕ ϕ0

0 0

)
.

Evidently, the lifetime η of a file follows a PH distri-
bution with size d and an irreducibility representation of
(γ̃ , ϕ). Moreover the Markov process

(
ϕ + ϕ0γ̃

)
is irre-

ducible. In addition, some simple computations can lead to
the kth moment of lifetime η. This scenario completes the
proof.
To calculate the mean E [η] of the first arrival time η,

we need to derive the inverse matrix of matrix ϕ first. Using
Section 2.1 of Li and Cao [28], we define the U−measure as

U0 = ϒ
1,

Ui = ϒ
i
+ 0i(−Ui−1)−1Pi−1, 1 ≤ i ≤ d .

Define the R−measure as

Ri = 0
i(−Ui−1)−1, 1 ≤ i ≤ d .

Define the G−measure as

Gi = (−Ui)−1Pi, 1 ≤ i ≤ d − 1.

Based on the U−measure, R−measure and G−measure,
using the Theorem 1 in Li and Cao [28], the
RG−decomposition of matrix ϕ is

ϕ = (I − RL)UD (I −GU ) ,

where

UD = diag(U0,U1,U2, . . . ,Ud−1,Ud ),

RL =


0
R1 0

. . .
. . .

Rd−1 0
Rd 0

 ,

GU =


0 G0

0 G1
. . .

. . .

0 Gd
0

 .

So, we can obtain

ϕ−1 = (I −GU )
−1 U−1D (I − RL)

−1 .

Let

X (l)
k = RlRl−1 · · ·Rl−k+1, 1 ≤ k ≤ l ≤ d,

Y (l)
k = GlGl+1 · · ·Gl+k−1, 0 ≤ l ≤ k ≤ d − 1.

Then

U−1D = diag(U−10 ,U−11 ,U−12 , . . . ,U−1d ),

(I −GU )
−1
=



I Y (0)1 Y (0)2 · · · Y (0)d−1
I Y (1)

1 · · · Y (0)d−2
. . .

. . .
...

. . . Y (d−1)
1
I


,

(I − RL)
−1
=


I
X (1)
1 I
...

...
. . .

X (d−1)
d−1 X (d−2)

d−2 X (d−3)
d−3 I

X (d)
d X (d)

d−1 X (d)
d−2 X (d)

d−3 I

 .

Let

ϕ−1 =


ϕ0,0 ϕ0,1 ϕ0,2 · · · ϕ0,d
ϕ1,0 ϕ11 ϕ1,2 · · · ϕ1,d
ϕ2,0 ϕ2,1 ϕ2,2 · · · ϕ2,d
...

...
...

. . .
...

ϕd,0 ϕd,1 ϕd,2 · · · ϕd,d

 .

By ϕ−1 = (I −GU )
−1 U−1D (I − RL)

−1, So we can obtain

ϕm,n =



UmX
(m)
m−n +

d−m∑
i=1

Y (m)
i U−1i+mX

(i+m)
i+m−n,

0 ≤ n ≤ m− 1, 0 ≤ m ≤ d − 1,

U−1m +
d−m∑
i=1

Y (m)
i U−1i+mX

(i+m)
i ,

n = m, 0 ≤ m ≤ d − 1,

Y (m)
n−mU

−1
n +

d−m∑
i=n−m+1

Y (m)
i U−1i+mX

(i+m)
i−n+m,

m+ 1 ≤ n ≤ d, 0 ≤ m ≤ d − 1,

U−1d X (d)
d−n,m = c, 0 ≤ n ≤ d − 1,

U−1d ,m = n = c
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Then the mean of the first arrival time η is given by

E [η] = −α̃ϕ−1e = −α̃ (I −GU )
−1 U−1D (I − RL)

−1 e

= −

∞∑
i=1

αiϕi−1,0 −

∞∑
j=1

∞∑
i=1

αiϕi−1,je. (17)

VI. CONCLUSION
First, to ensure the security of the file in the data center
network, a Markov process is used to provide a more general
stochastic model that can evaluate the system performance of
the data storage mechanism. Second, three types of Markov
process are constructed to express the random behavior of
some important performance indicators of the data center
network. Finally, we propose a file replication strategy and
its feasibility is verified through numerical computations.
The results and methods presented in this study provide an
important development path for research on the data security
mechanism in data center networks. This study also presents
a significant Markov process calculation theory and method.
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