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ABSTRACT Autoencoder based methods are the majority of deep unsupervised outlier detection methods.
However, these methods perform not well on complex image datasets and suffer from the noise introduced
by outliers, especially when the outlier ratio is high. In this paper, we propose a framework named Trans-
formation Invariant AutoEncoder (TTAE), which can achieve stable and high performance on unsupervised
outlier detection. First, instead of using a conventional autoencoder, we propose a transformation invariant
autoencoder to do better representation learning for complex image datasets. Next, to mitigate the negative
effect of noise introduced by outliers and stabilize the network training, we select the most confident inliers
likely examples in each epoch as the training set by incorporating adaptive self-paced learning in our TIAE
framework. Extensive evaluations show that TIAE significantly advances unsupervised outlier detection
performance by up to 10% AUROC against other autoencoder based methods on five image datasets.

INDEX TERMS Deep Learning, unsupervised outlier detection, autoencoder, transformation invariant

autoencoder.

I. INTRODUCTION

Outlier detection refers to finding patterns in data that do
not conform to expected normal behavior [1], [2]. Instances
in these patterns are often referred to as outliers, anomalies,
faults, defects, novelty, or errors in different contexts of lit-
erature. Outlier detection has a wide range of applications
in many different domains such as financial fraud detec-
tion [3], cybersecurity intrusion detection [4], [S], sensor
network fault detection [6]-[8]. Many solutions have been
proposed to tackle outlier detection. Labels indicate whether
a chosen data example is an inlier or an outlier. Based on the
availability of labels, outlier detection can be classified into
three categories [1]. (1) Supervised outlier detection (SOD)
involves training a supervised binary or multi-class classifier,
using labels of both normal and anomalous data instances.
(2) Semi-supervised outlier detection (SSOD) uses only nor-
mal data to separate outliers. The labels of normal samples are
far easier to obtain than outliers, so solutions in this category
are more widely adopted. (3) Detecting outliers based on
intrinsic of the data instances, unsupervised outlier detec-
tion (UOD) handles unlabeled data, including both normal
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and anomalous data. Note that this classification criterion
is not comprehensive. Weakly supervised outlier detection
[9]-[11] is another promising area. We focus on unsupervised
outlier detection in this paper as most data are unlabeled, and
labeling is problematic or cost unacceptable.

Surge in image and video data in this data era has recently
inspired many important unsupervised outlier detection appli-
cations in the computer vision field, e.g. the refinement
of image query results and video abnormal event detec-
tion. With the advances in deep neural networks, deep
learning-based outlier detection algorithms have become
increasingly popular and show huge advantages compared
with traditional methods such as principal component anal-
ysis (PCA) [12], support vector machine (SVM) [13] and
isolation forest (IF) [14] in image/video outlier detection
tasks. Autoencoders are the core of most unsupervised outlier
detection models [15]-[18]. These models use autoencoder
for reconstructing images and assume that inliers and outliers
could result in significantly different latent embeddings, and
thus differences in the corresponding reconstruction errors
can be used to distinguish the two types of samples [19].

However, autoencoders are not good at handling datasets
with more complex texture and structure information like
SVHN, CIFAR-10. Experiment results from [20] show that
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even a sophisticated deep convolutional autoencoder with
isolation forest only performs slightly better than random
guessing (AUROC = 50%). Applications of autoencoders to
other unsupervised tasks (e.g., deep clustering) report similar
results [21], [22]. The reason behind this is the use of mean
square error (MSE) loss. Autoencoders typically use MSE
as a supervise signal, focusing on low-level pixel features
rather than high-level semantic features. The assumption of
autoencoder based outlier detection may hold when the data
is simple. As the data complexity grows, inliers and outliers
share more low-level features learned by autoencoder, leading
to similar reconstruction error for both inliers and outliers
[23], [24], making the model fail to distinguish outliers from
inliers.

To address this issue, some scholars attempt to intro-
duce more efficient loss functions rather than the pixel-wise
MSE loss. Sabokrou et al. [25] introduce adversarial train-
ing loss by adding a discriminator after autoencoders to
classify whether it is original or reconstructed image.
Zaheer et al. [26] propose a new adversarial training scheme.
Instead of using reconstruction loss, they use a discriminator
to distinguish between good and bad quality reconstructions.
Akcay et al. [27] add another encoder after autoencoders
and leverages an extra MSE loss between the two differ-
ent embeddings. These attempts to alleviate the problems
of autoencoders, but the improvements are limited or not
suitable for unsupervised outlier detection.

Inspired by recent progress in unsupervised representation
learning, especially contrastive learning [28]-[31], we pro-
pose Transformation Invariant Autoencoder to learn a better
representation of data instead of finding a better loss function
for autoencoder training. Fig. 1 provides a brief illustration
of the proposed Transformation Invariant Autoencoder. The
cat image in Fig. 1 is an unlabeled training example. During
the training phase, we first apply transformations based on
human priors to the original images and get a set of trans-
formed images (grayscaled and rotated cat images in Fig. 1).
Then we feed the transformed images to the TIAE. We opti-
mize the TIAE by minimizing the restoration loss between
the restored images and the original images. To alleviate the
noise introduced by outliers during training TIAE, we also
use the restoration loss to derive self-paced learning weight.
During the testing phase, we feed test data to the trained
TIAE and expect outliers and inliers leading to different
restoration errors. Above all, we can distinguish outliers from
inliers by restoration error. We call this pipeline the Trans-
formation Invariant AutoEncoder for unsupervised outlier
detection.

To validate the effectiveness of TIAE, we conduct exten-
sive experiments on five popular benchmarks and compare
them with other autoencoder based methods. Our experiment
results show that TIAE outperforms these methods by a large
margin (10% on average on CIFAR-10). We summarize our
main contributions of this paper as follows:

1) To learn high-level semantic features instead of

low-level features, we propose a simple but effective
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FIGURE 1. An illustrative comparison between conventional autoencoder
and transformation invariant autoencoder. In TIAE scenario, the encoder’s
inputs are transformed images (transformations are based on human
priors). The decoder is forced to restore the transformed images to the
original images.

deep outlier detection framework named Transforma-
tion Invariant Autoencoder.

2) We derive an adaptive self-paced learning algorithm
without extra hyper-parameters. By using adaptive
self-paced learning, our model can mitigate the nega-
tive effect of outliers in the process of feature learning.

3) We conduct extensive experiments, and the results val-
idate the effectiveness of our Transformation Invari-
ant Autoencoder framework. The ablation study shows
how adaptive self-paced learning affects the proposed
unsupervised outlier detection method and provides
possible ways to extend existing deep unsupervised
outlier detection algorithms.

The rest of this paper is organized as follows.
Section II outlines the related work of outlier detection.
Section III presents the proposed Transformation Invariant
AutoEncoder. Section IV shows the experiment results with
evaluation. Section V) concludes the paper.

Il. RELATED WORK

Our proposed method falls into the category of deep unsuper-
vised outlier detection and incorporates self-paced learning
and representation learning. To facilitate the description of
our method, we shall review the existing deep unsupervised
outlier detection model, self-paced learning, and representa-
tion learning techniques in turn.

A. DEEP UNSUPERVISED OUTLIER DETECTION

Deep unsupervised outlier detection represents a family of
unsupervised outlier detection methods that adopt deep neu-
ral networks. Many deep methods have been proposed due
to the success of deep learning. In this paper, we focus
on unsupervised outlier detection on still image datasets.
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Based on the type of network structure, the majority of
existing deep unsupervised outlier detection methods can
be divided into two categories: Autoencoder-based and
self-supervised based methods. Autoencoders are the fun-
damental unsupervised deep architectures used in unsuper-
vised outlier detection. Recently, self-supervised methods are
showing promising results.

Autoencoder based deep unsupervised outlier detection
has been extensively studied. These models use autoencoder
for reconstructing images and assume that inlier and out-
lier could lead to significantly different latent embeddings,
and thus we can leverage differences in the correspond-
ing reconstruction errors to distinguish the two types of
samples. Sakurada et al. [19] indicate that the latent embed-
dings in the hidden layer of autoencoders are distinguish-
able between inliers and outliers. Zhou and Paffenroth [32]
propose a decoupled solution that combines a deep autoen-
coder with Robust PCA, which decomposes the inputs into
a low-rank part from inliers and a sparse part from outliers.
Xia et al. [33] use deep autoencoder directly and propose a
model that estimates inliers by finding a threshold that maxi-
mizes the inter-class variance of autoencoder’s reconstruction
loss. A loss function is designed to encourage the separation
of estimated inliers/outliers. Zong et al. [23] jointly optimize
a deep autoencoder and an estimation network to perform
simultaneous representation learning and density estimation
for unsupervised outlier detection.

Self-supervised based methods for unsupervised out-
lier detection shows promising results recently. Golan and
El-Yaniv [34] use several image geometric transformations
and create a self-labeled dataset for transformation classifica-
tion pretask, assuming that the pretask model cannot classify
transformations of anomalous data properly. Wang ez al. [20]
introduce more self-label methods like patch rearranging
and irregular affine transformations to strengthen supervision
further.

B. SELF-PACED LEARNING

Self-paced learning (SPL) [35] simulates the procedure of
human learning: from easy to hard. Its core idea is to generally
start with learning easier aspects of a task, then gradually
consider more complex examples. This strategy of learning
is deemed to be more effective. The critical problem is how
to define “easiness”. Depending on the current knowledge
we have, the closer the answer we give gets to the correct
answer, the easier the example (or problem) should be.

In machine learning problems, the value of loss func-
tion often serves as the measure of “‘easiness”. A thresh-
old A controls what examples should be used in the
current step. Formally, given training examples D =

{f (x1,y1), (x2, y2), . . ., (xn, )} and a learning model f(-)
with parameters w, the original machine learning problem is

min Y L(fw. i) - e))

xeD
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Then the objective of self-paced learning is

min Y il (s, 30) + 80 )
xeD
s.t.v; € [0, 17, @)

where v = [vi,vo, ..., v,,]T are weights of examples and
g(Xx, v;) is called self-paced regularization term. The w and v
can be optimized using Alternative Search Strategy (ASS).
Considering the simple hard-weighting self-paced learning

where g(A, v;) = —Av; and v; € {0, 1}, the new objective is
111‘11}51 Z ViL(fw(x;), ¥i) — Avi
xeD
s.t. v; €{0,1}. 3)

Given example weights v, the minimization over w is
a weighted loss minimization problem. When the model
parameter w is fixed, the optimal v; has a closed-form solution

0 ifL; < A;
=g @
1 otherwise.

Self-paced learning has been successfully used in various
applications, including co-saliency detection [36], mix-
ture of regressions [37], person re-id [38], Object local-
ization and segmentation in weakly labeled videos [39],
category-specific 3D object shape models [40], weakly
supervised object detection [41] and deep clustering [42].
Kumar et al. [35] demonstrate that self-paced learning algo-
rithm outperforms the state-of-the-art methods for learning
a latent structural SVM on four applications: object localiza-
tion, noun phrase coreference, motif finding, and handwritten
digit recognition. Han et al. [40] propose to use self-paced
learning to alleviate data ambiguity under weak supervision
of co-saliency detection, leading to a robust learning manner
in complex scenarios. Experiments demonstrate the superi-
ority of the proposed framework beyond the state-of-the-art
methods. Huang er al. [38] propose a novel video-based
person re-id method via self-paced weighting (SPW) and
get the state-of-the-art performance on two public datasets.
Guo et al. [42] incorporate self-paced learning and data aug-
mentation into deep clustering autoencoder, outperforming
the state-of-the-art methods on four image datasets.

Self-paced learning algorithms cannot avoid searching
the best values for hyper-parameters, threshold A, and step
size & that controls the amount of increasing A at each
iteration. However, hyper-parameters are hard to set in the
unsupervised scenario. This limits the application of self-
paced learning in unsupervised outlier detection. Inspired by
Guo et al. [42], we propose an adaptive self-paced learning
variant that is hyper-parameter free for unsupervised outlier
detection.

C. TRANSFORMATION INVARIANT REPRESENTATION
LEARNING

Transformation invariant representation learning is a special
case of transformation equivariant representation learning,
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which can be defined as

E(t(x)) = pE(x), &)

where E(-) denotes representation learning model, #(-)
denotes transformation and p is a coefficient. In transfor-
mation invariant representation learning, the coefficient is
the identity matrix, which means the representations learned
from original samples and transformed samples are the same.

Learning transformation-equivariant representations can
trace back to the seminal work on training capsule nets
[43]-[45]. Recently, contrastive learning [28]-[31] as a novel
unsupervised representation learning method, shows promis-
ing results on downstream tasks, which is exactly trying to
learn transformation invariant representations.

Tadashi er al. propose a similar method to our TIAE to
separate the input into transform invariant descriptor and
transform parameters, which is efficient for extracting typ-
ical spatial subpatterns. Then they demonstrate the imita-
tion of a human hand by a robot hand as an example of a
regression-based on spatial subpatterns.

To our best knowledge, our proposed TIAE is the first
method to connect transformation invariant representation
learning with unsupervised outlier detection.

ill. THE PROPOSED TIAE FRAMEWORK

We first formulate the problem of unsupervised outlier detec-
tion in Section III-A. Then we give a brief introduction of
transformation in Section III-B. In Section III-C, we intro-
duce the basic model of Transformation Invariant Autoen-
coder. Furthermore, we incorporate an adaptive self-paced
learning algorithm into the basic model in Section III-D.

A. PROBLEM FORMULATION

We first formulate the problem of unsupervised outlier detec-
tion. Considering a data space A" (in this context, the space
of images), an unlabeled data collection X = {x; €
REOXH>WAN X, where N denotes the total number of
samples in X, C, H, and W denote the dimensions of image
channels, height, and width. X consists of an inlier set Xj,
and an outlier set X,,;, which originate from fundamentally
different underlying distributions [46]. Our goal is to build a
model M (-) for discriminating whether x € X;,, or x € X,,;.

B. TRANSFORMATIONS

In this section, we introduce the selection standards of image
transformation used in the proposed framework. Transfor-
mations are widely used in deep learning literature, such as
the data augmentation technique. Deep neural networks are
easy to overfit the data, which can be solved by acquiring
more training data. Data augmentation is an effective way
of expanding training datasets. We consider several com-
mon augmentations here. One type of augmentation involves
spatial/geometric transformation of data, such as cropping
and resizing (with horizontal flipping), rotating, shifting. The
other type of augmentation involves appearance transfor-
mation, such as color distortion (including color dropping,
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brightness, contrast, saturation), Gaussian blur, and Sobel
filtering [31], [42].

To capture high-level features of training data and achieve
effective outlier detection, the transformations we choose
need to satisfy some conditions based on human priors and
other literature results. First, transformation composition or
transformation group is far better than single transforma-
tion [31]. Second, transformation should erase specific infor-
mation, which is the key to differentiate inliers and outliers.
The erased information of transformation should be much
shared among inliers, and little shared among outliers [47].

Above all, in the TIAE framework, we recommend choos-
ing multiple transformations based on dataset characteristics.
After choosing appropriate transformations, we get a set of
transformations 7 = {#(-) | i = 1,2,..., T}, where #(-)
denotes the ith transformation and 7' denotes the total number
of transformations.

Based on results from [31], we choose color distor-
tion and rotation in our experiments. Details are shown
in Section IV-A.

C. MODEL ARCHITECTURES

In this section, we present the Transformation Invariant
Autoencoder (TTAE) framework in detail. TIAE is based on
an encoder-decoder framework to capture high-level features
by restoring the samples from transformed images. We stack
a decoder network #/,(-) on the top of the encoder network
fw(+) to build an autoencoder.

Given an original image x from the dataset X, we derive a
transformed image #;(x) using transformation #;(-) from the
transformation set 7. The proposed TIAE takes the trans-
formed images as the inputs and attempts to restore the
original image x. Mathematically, given x, the restored image
X is formulated as X = hy, (f,, (£;(x))).

To train the TIAE for effective outlier detection, we use
£ loss to measure the distance between restored images and
targets (original images). We formulate the restoration loss
can as

11
Lrestoration = NT Z Z llx — hu(fw(t(x)))”% , (6)

xeX teT

where || - ||2 denotes the £, norm. Our objective is to minimize
the restoration loss and can be formulated as

min o 3 Y - mGGODB . )
xeXteT

As for the testing phase, we design a restoration error based
score to distinguish whether a test sample is an inlier or an
outlier. We notice that restoration errors vary a lot among
different transformations, so transformation-wise normaliza-
tion is necessary for score calculation. We choose £1 loss to
measure the distance between the restored image and target
in this phase [47]. For each ¢; in the transformation set 7,
we first calculate the expectation £1 based restoration error of
training data using the trained TIAE model. Then we use this
global error to normalize restoration corresponding to each
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transformation in the transformation set. Finally, we calculate
the expectation of restoration errors across all the transforma-
tions, which we use as the outlier score. Let one specific test
sample as xp, we formulate the outlier score S as

1 i llx0 — Bu(fiw (t:Cx0)) 14

S = — .
0 Exx I1x — hu(u (GO,

T ®)

i=1

D. INCORPORATING ADAPTIVE SELF-PACED LEARNING
Unsupervised outlier detection is harder than semi-supervised
learning because of the existence of outliers in training
data. All autoencoder based models suffer from the noise
introduced by outliers. With the training process going on,
the model can remember enough information for constructing
both inliers and outliers well, which leads to poor perfor-
mance for outlier detection. The TIAE model proposed in
Section III-C also has this problem.

To mitigate the negative effect of outliers, we incorporate
self-paced learning to select the most confident examples
(inliers most likely) gradually. By substituting (7) into (3),
we get the new objective

N T
.11 2
min - — Zl Zl vi [|xi = hu (@) |5 — Avi
i=1 j=
s.t. v; €0, 1], 9
where v = [vy,va, ..., v,]" are weights of training exam-

ples, and A is the age parameter which controls the number of
selected examples.

Typical self-paced learning selects all examples into a
training set at the end of model training. However, outliers
in our problem are harmful to model performance. We shall
prevent the self-paced learning algorithms from selecting
outliers, even at the end of the training. Traditional self-paced
learning introduces two additional hyper-parameters: the age
parameter A for controlling the learning pace and step size
§ for increasing XA during training. A typical way is to set A
to the median of losses at the beginning, then to increase it
by a step size § every several iterations. Different from the
typical method, we propose to set A according to the statistics
of outlier scores during training

A= u(SH + %a(Sk), (10)

where S¥ denotes all scores at the k-th iteration, K is the
number of maximal iterations, u(-) and o (-) are average and
standard deviation of scores. As K is determined by the learn-
ing model, the A now is adaptive to the losses of examples, not
an independent hyper-parameter any more.

IV. EXPERIMENTS

In this section, we extensively evaluate our approach and
compare it with other autoencoder based unsupervised out-
lier detection methods. We also conduct an ablation study
to explore the effect of each part of our TIAE frame-
work. Our experiment codes and results can be verified at
https://github.com/wogong/pt-tiae.
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A. EXPERIMENT SETUP

1) UOD PERFORMANCE EVALUATION ON IMAGE
BENCHMARKS

We follow the standard procedure from the previous image
UOD literature [20], [32], [33], [48] to construct an image
set with outliers: Given a standard image benchmark, all
images from one class with the same semantic concept
(e.g., ‘“airplane”) are retrieved as inliers, while outliers
are randomly sampled from the rest of the classes by an
outlier ratio p. We shift p from 5% to 25% by a stage
of 5%. The assigned inlier/outlier labels are unknown to
UOD methods and only used for evaluation. We use each
class of a benchmark as inliers in turn and report the overall
UOD performance as the average performance on all classes.
Every experiment is repeated five times to report the average
results.

Raw pixels are directly used as inputs with their intensity
normalized into [—1, 1]. As for evaluation, we adopt the
commonly-used Area under the Receiver Operating Charac-
teristic curve (AUROC) and Area under the Precision-Recall
curve (AUPR) as threshold-independent metrics [49]. We
evaluate the proposed approach on five public datasets, and
briefly introduce them as follows:

o MNIST [50] is a well-known digit recognition dataset,
consisting of 70,000 handwritten grayscale digit images
with each in size of 28 x 28.

o Fashion-MNIST [51] is a more challenging dataset
compared to MNIST, consisting of a training set
of 70,000 examples. Each example is a 28 x 28 grayscale
image, associated with a label from 10 classes.

o SVHN [52] is a real-world digit image dataset obtained
from house numbers in Google Street View images,
consisting of over 600,000 digit images. We use the
training set of 73,257 digits in this paper.

o CIFAR-10 [53] is a natural image dataset. The objects
in images come from objects in our daily life. It con-
sists of 60,000 color images in size of 32 x 32, with
6,000 images per class.

o CIFAR-100 [53] is like the CIFAR-10, except it has
100 classes containing 600 images each. There are
500 training images and 100 testing images per class.
The 100 classes in the CIFAR-100 are grouped into
20 superclasses. Each image comes with a ““fine” label
(the class to which it belongs) and a “coarse’” label (the
superclass to which it belongs).

For RGB datasets, such as SVHN, CIFAR-10, and CIFAR-
100, we use both graying and random rotation operations,
together with some widely used standard data augmenta-
tions (flipping/mirroring/shifting). For grayscale datasets like
MNIST and Fashion-MNIST, we only use rotation transfor-
mation without any data augmentation.

2) IMPLEMENTATION DETAILS
Similar to previous image restoration method [56] and other
autoencoder based outlier detection methods [47], [57], [58],
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TABLE 1. AUROC/AUPR-in/AUPR-out (%) for UOD methods. The best performance is in bold.

Dataset p CAE[53] DRAE[32] RDAE[31] DAGMM [22] MemAE[23] RSRAE [54] Ours
AUROC (%)
MNisT 0% 67194090 6792143 7176£099 6323215 69.13£0.15  82.08+3.09 8518081
20% 6321+124 6474+2.62 67.00+£0.69 6588+2.80  6556+026  80.37+2.04 79.41+0.89
EMNIsT 0% 69.04£035 6596172 7534%1.19  7036£3.18  7210£031  75.19£278 8677 +0.55
- 20% 65.88+1.07 63.63+107 7094+1.13 66.00+4.96  67.88+0.09 72.15+2.55 8123 %115
SVHN 10% 51.18+044 51.10+£027 5144+027 50.09+029  5829+0.12 51.19+044 68.78+0.88
20% 50.97+026 50.88+0.18 51.67+£022 49992024  5655+0.03 51.51+040 67.98+0.07
CIFAR.10  10% 55.86£1.06 56.09£021 5402163 5405£092  5569%0.17 5477£184 7LIS%144
20% 5478 £0.60 55.60+0.09 5246+1.54 5468070  54.68+0.09 53.62+1.98  66.61 £ 2.51
CIFAR.100 0% 5578070 5566049 53.62£040 5419137  5503£004  5356+048  65.01%1.70
20% 54.95+0.68 5525+030 52.86+143 53802061  5430+0.11 5354+ 1.13 62.55%0.36
AUPR-IN (%)
MnisT 0% 9179029 92812037  89.11£128 9289£077  9313£0.00 9655075  95.95%0.16
20% 82.39+0.56 8492+100 7556+2.58 8642+1.04  8422+0.11 9215+1.02 88.63+0.64
EMNIST 0% 9401014 9351047 8325122 9270£292  9554x008 9529052 98.040.11
- 20% 8621+0.60 8587052 72.83+2.64 8666+270  88.64+0.07 89.74+0093  93.69 % 0.55
SVHN 10% 90.29+0.09 9048+0.11 90.34+008 90.00+0.14  9248+0.04 9037+0.08 94.66+0.23
20% 80.31+0.13 8043+0.11 80.78+0.17 79.90+0.09  83.64+003 8047+0.16 88.320.07
CIFAR.10  10% 9108030 9081£0.11 9059+051 91.28+057  90.73£0.04 90.89£042  94.66 +0.28
. 20% 81.63+024 81.68+0.07 8074+082 81.76+037  8126+0.03 81.05+0.73 86.86 % 0.99
CIFAR.100 0% 9489£004 9093015 9047013 9LI2£023  9095£001 9072021 93.42£0.35
20% 81.88+0.34 81.70+0.10 80.69+0.78 8145+042  81.60+0.06 81.39+0.71 8542 0.01
AUPR-OUT (%)

MnisT | 10%  31.23£1.01 33032094 3581£0.77 2063442 2680£0.02 4684272  59.94£2.27
20% 40.02+1.03 39.89+3.64 4323+075 3348+521  3835+029 55.62+3.02 6292+ 0.29
EMNIST 0% 28522066 24.06£210 3172139  3544£261 23132020 3391409 5459073
i 20% 3855+ 157 3421+091 4140+088 42.04+445  3491+£008 4041+4.62 58.24+126
SVHN 10% 10.57+0.17 10.54+0.14 1045+0.14 19.79+2.16  12.61+0.08 10450.15 20.42%0.97
20% 20.81+£0.04 20.70+0.13 21.09+£0.05 30.74+1.66  2341+0.01 21292026 35.51+0.52
ClFAR.10  10% 14162074  1461£0.16 13.03+057 1369£028 13982006 13.04£092 24.89£2.32
. 20% 25.52+£048 26.66+0.09 2338+122 2562+1.02  25.66+0.12 2453145 36.81+1.92
CIFAR.100 0% 1466£035 1475£0.14 1389043 13622067 14154009 1236£0.16 20.12£2.22
. 20% 25.71+045 26.60+038 2433+0.66 2426051  2508+008 23.70+084 30.78 % 1.97

Our TIAE adopt the U-Net [59] like structures. We use
four blocks for the encoder and four blocks for the decoder.
Each block has a max-pooling or an upsampling operation,
following two 3 x 3 convolutional layers. We use upsam-
pling instead of deconvolution for efficiency. The ability
to recover image details for upsampling is limited, so we
add skip-connection operations to pass input details from
top layers to bottom layers, which improves the network’s
performance of image restoration.

Since we augment original data by T times, we train TIAE
for 800/T epochs with a batch size of 32. We use Stochastic
Gradient Descent (SGD) optimizer with default settings in
PyTorch for all datasets. We set the initial learning rate to
0.1 and drop the learning rate by half every 80/T epochs. We
delay the incorporating of self-paced learning by ten epochs
to get a better initial example weights.

As introduced in Section III-B, we choose color distortion
and rotation in the experiments:
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o Color Distortion: average each pixel value along the
channel dimension of images.

« Rotation: rotate the original images by one of {0°, 90°,
180°, 270° }.

3) COMPARED METHODS
We compare our approach with existing state-of-the-art
autoencoder based UOD methods: (1) Convolutional
AutoEncoder (CAE) [54], CAE serves as a baseline for
autoencoder based UOD methods. (2) Discriminative Recon-
struction based AutoEncoder (DRAE) [33]. (3) Robust Deep
AutoEncoder (RDAE) [32]. (4) Deep Autoencoding Gaussian
Mixture Model (DAGMM) [23]. (5) Memory-augmented
deep AutoEncoder (MemAE) [24]. (6) Robust Subspace
Recovery based AutoEncoder (RSRAE) [55].

For MemAE, we use exactly the same autoencoder struc-
ture reported in the original paper. For CAE, DRAE, RDAE,
DAGMM, and RSRAE, we use the same CAE architecture
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FIGURE 2. UOD performance (AUROC) comparison with varying p from 5% to 25%.
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FIGURE 3. Visualization analysis comparing with CAE on MNIST. “Ori", “1”
and “O” represent original images, transformed inputs, and outputs,
respectively. Cases with outputs similar to “Ori” are considered inliers,
otherwise outliers. All visualization results are based on the number “6”
as inliers.

Inlier

from [34] with a 4-layer encoder and 4-layer decoder. We do
not use more complex CAE (e.g., CAE using skip con-
nection or more layers) since they usually lower outliers’
reconstruction error but do not contribute to CAE’s UOD
performance [20]. Our ablation study in Section IV-D also
verifies this.

B. UOD PERFORMANCE COMPARISON AND DISCUSSION
We report the numerical results on each benchmark under
p = 10% and 20% in Table 1, and UOD performance
by AUROC under p from 5% to 25% is shown in Fig. 2.
AUPR-in and AUPR-out in Table 1 denote the AUPR cal-
culated when inliers and outliers are used as positive classes,
respectively. To compare the performance for each individual
image class, we also report the AUROC results for each class
of the five benchmark datasets in Table 2. From these results,
we have the following observations:
« On four of all five involved datasets with varying p from
5% to 25%, experiment results present that the proposed

VOLUME 9, 2021

Ori O |

cAE 1
horse

Inlier

01 |2 02 I3 O3 I4 04
FEVNMENAYEN
=iane [l [ R
auromonile (Gl ol R TN N .

v AR AN TRT RN
o B o - A g «f

= { i N SRR TN

158 [ ) 7
1 SN N NN REEN

-3 73 g W)

dox MY MEH RIS O N N

wroe. [ R [ e i I BRI

hi ——— -~ - L ‘-5 o pr—

s ! 1

o o e o o | e P I

wuek ESER ENEN EREN S0 SN

FIGURE 4. Visualization analysis comparing with CAE on CIFAR-10. “Ori",
“I" and “0" represent original images, transformed inputs and outputs,
respectively. Cases with outputs similar to “Ori” are considered as inliers,
otherwise outliers. All visualization results are based on the class “horse”
as inliers.

J21pn0

TIAE framework outperforms existing state-of-the-art
autoencoder based UOD methods. On MNIST,
TIAE achieves comparable performance with RSRAE
(<1% AUROC gap).

o As Table 2 shows, for each individual image class,
we also obtain competitive performances, showing
the effectiveness of TIAE for unsupervised outlier
detection.

o For complex datasets like SVHN, CIFAR-10, and
CIFAR-100, TTAE performances much better than com-
pared methods (~10% AUROC gain). As introduced
in Section I, conventional autoencoder based methods
are not good at handling datasets with more complex
texture and structure information. Our proposed TIAE
can handle more complex datasets compared with other
autoencoder based methods and achieve a large perfor-
mance gain.
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TABLE 2. AUROC (%) for UOD methods when p = 0.1. The best performance is in bold.

Dataset Class name CAE DRAE RDAE DAGMM MemAE RSRAE Ours
0 56.61 +3.80 52.92+8.61 62.51+583 42.85+6.39 61.50+£091 85.18+4.12 78.53+3.81
1 99.22+0.17 96.99+£0.75 99.19+£0.08 84.89+1.88 97.80+024 9750+1.32 99.50+0.09
2 5576 £2.97 5470+£6.80 61.12+1.81 60.34+£2.12 5723+0.72 74.10+3.60 80.82+2.38
3 62.46+3.68 6245+503 6591+1.84 61.38+3.38 62.66+095 6084+7.65 86.60+254
MNIST 4 71.25+4.07 7559+336 76.05+1.20 59.13+429 7191+0.01 82.68+3.85 87.23+0091
5 61.71 £1.57 5648+736 65.11+243 5544+1.79 59.12+0.25 78.30+3.44 81.40+0.52
6 67.09 +3.88 68.86+6.94 75.03+194 6490+7.18 7221+0.76 91.31+2.81 88.76+0.38
7 80.04 £2.51 8439+1.86 8564+1.11 7455+£590 80.56+1.33 90.57+2.01 90.04 +1.00
8 46.80 +£2.82 53.08+1.10 51.38+2.30 59.72+6.97 54.12+0.00 7430+1.82 72.92+1.38
9 7091 £221 7377+£4.09 7571+£2.60 69.08+2.79 74.16+027 8599+4.14 86.04 +£0.69
average 67.19+£0.90 67.92+143 71.76+099 6323+2.15 69.13+£0.15 82.08+3.09 85.18 +0.81
t-shirt 58.73+6.16 5947 +4.55 7056+4.18 7298+847 7130+0.63 81.09+264 83.77+1.72
trouser 96.12+0.34  79.04+495 96.94+0.36 77.49+831 9521+0.05 81.83+537 97.68+0.47
pullover 60.77 +544 57.75+454 68.79+4.73 55.61+2.66 72.71+0.55 70.36+3.11 82.30+1.69
dress 7485+ 1.14 7238+5.68 79.12+3.22 71.48+528 7596+0.40 83.01 £3.96 88.60 + 1.88
F-MNIST coat 64.92+545 61.88+3.41 7323+1.59 50.69+7.61 74.12+123 69.03+£8.06 84.70+1.20
sandal 7219+£476 72.94+286 73.64+1.33 90.52+1.37 60.29+1.73 77.20+7.96 89.89 +£0.43
shirt 4838 +£2.15 5436+241 6634+£3.00 54.03+2.18 6395+0.15 6281753 69.48+1.88
sneaker 89.35+0.79 86.26+4.30 91.15+1.14 8236+520 82.08+0.58 90.50+2.51 97.00=+0.15
bag 4522+297 4426+138 51.25+£293 60.09+0.64 50.66+0.84 61.60+9.05 78.89+1.02
ankle-boot 79.92+4.57 71.29+347 8235+5.15 88.36+1.93 74.71+048 74424507 9539+0.13
average 69.04 +0.35 6596+1.72 7534+1.19 7036+3.18 72.10+£0.31 75.19+2.78 86.77 + 0.55
0 50.29 £0.54 4942+1.12 50.07+098 49.15+£0.69 5827+029 5099+120 52.95+0.80
1 57.10+£0.82 56.13+1.29 57.16+2.51 49.54+1.25 6383+0.12 53.10+£0.61 63.95+0.34
2 5093 +1.01 52.13+091 51.21+1.22 4841+049 58.09+0.09 5091+1.23 7532+1.09
3 49.72+£0.62 50.57+0.57 49.73+£0.62 5094 +0.30 5591+044 52.12+097 65.73+1.19
SVHN 4 52.19+£0.39 53.44+£159 5399+1.23 50.61+1.02 6028+033 51.74+1.10 78.59+0.60
5 49.01+£0.78 49.87+1.08 4983+1.64 5193+£0.75 54.89+0.10 49.75+0.73 68.26+1.85
6 4943+0.73 49.77+0.84 49.80+0.71 49.90+0.89 56.00+0.25 50.06+1.68 69.11+1.12
7 52.75+1.07 5046+1.03 53.69+0.80 4836+0.84 60.79+037 5233+182 7493+1.11
8 50.15+0.73 4933+1.15 4927+047 51.08+0.84 5655+033 5091+083 66.60+1.56
9 50.25+0.76 4990+ 1.19 49.67+095 5098+0.80 5833+024 50.00+2.18 72.39+0.77
average 51.18+0.44 51.10+£0.27 5144+0.27 50.09+0.29 5829+0.12 51.19+044 68.78 + 0.88
airplane 69.75+2.67 70.77+1.34 68.11 £528 46.67+0.73 6587+0.50 63.81+6.62 70.23+1.17
automobile 3759+2.51 37.88+1.39 41.08+531 5572+587 3631+023 4291+£7.25 68.13+£2.18
bird 61.38+1.26 65.68+0.75 5747+551 4746+235 6894+0.29 60.09+3.77 69.26+1.80
cat 58.75+1.77 5942+0.64 56.05+499 51.86+143 5391+036 51.28+3.02 61.70+2.09
CIFAR-10 deer 61.27+329 61.72+0.68 69.28+1.70 51.15+3.18 67.29+0.36 65.64+2.12 73.55+1.70
dog 58.07+343 6090+0.33 49.34+3.15 5555+451 5383+036 4564+143 7T71.75+2.38
frog 54.64 £524 4328+1.72 5596+0.13 61.74+£399 5633+038 6429+284 74.12+2.18
horse 47.88+3.04 51.05+1.02 4993+4.14 59.02+2.78 49.83+0.39 44.17+1.36 74.54+2.35
ship 70.15+3.78 72.01£2.21 5529+8.68 46.10+4.05 68.81+0.59 64.14+537 83.25+1.86
truck 39.13+1.21  38.19+£1.53 37.65+574 6523+425 3578+0.51 4571+£7.22 6522+1.90
average 5586+1.06 56.09+0.21 54.02+1.63 54.05+092 5569+0.17 5477+184 71.18+1.44
aquatic mammals 63.84+521 65.81+1.47 60.59+2.65 49.25+2.73 6539+0.62 56.70+4.05 63.96+2.48
fish 62.92+2.08 64.90+0.36 53.09+3.30 47.98+3.94 64.07+0.28 5421+6.70 57.03+3.36
flowers 38.75+6.75 3445+1.13 3195+£3.03 6544+4.63 3486+0.64 6038+509 44.43+2.12
food containers 64.17+136 62.81+1.03 5559+444 4540+3.10 62.54+0.50 59.39+1.68 69.30 +1.47
fruit and vegetables 4870 £3.59 53.08+1.66 40.60+3.20 62.96+4.99 50.22+0.80 54.99+4.61 58.61 £1.35
household electrical devices 5545+1.69 54.08+2.12 4722+472 46.60+4.81 48.89+036 49.15+631 57.92+221
household furniture 62.82+1.73 62.16+x1.27 5417179 53.65+432 5781+£0.60 59.25+3.97 69.46+5.14
insects 49.57+£2.66 46.89+1.21 4646+2.15 51.70+£2.73 5036+035 5291+4.04 56.20+1.42
large carnivores 5378 £5.59 51.59+£1.79 6097+1.84 59.07+£522 5471+£056 53.08+£6.18 69.07 +1.82
CIFAR-100 large man-made outdoor things ~ 64.56 £3.68  65.94+1.84 60.55+540 57.65+7.81 62.17+0.15 5430+8.83 77.59+2.74
large natural outdoor scenes 79.83+1.48 82.76+1.04 7545+3.74 5343+8.55 79.11+£0.51 60.22+8.13 79.10+1.33
large omnivores and herbivores 5549 +1.95 5524 +1.45 58.60+1.86 5895+220 5294+0.72 51.38+4.68 67.78+1.71
medium-sized mammals 57.01 £5.64 57.33+1.35 60.10+£4.39 61.17+4.60 54.94+0.50 5496+4.57 68.49+1.10
non-insect invertebrates 5029 +1.36 51.16+1.06 53.54+2.80 46.66+2.16 54.72+044 5846+230 57.97+0.74
people 4752+382 4783+£194 4511+£1.09 5428+3.18 4245+031 42.03+0.83 61.55+4.04
reptiles 5423+1.44 5390+0.72 57.22+098 51.70+£2.62 54.16+037 56.79+1.69 61.79+1.40
small mammals 5886+2.76 61.27+1.28 64.12+£2.27 5349+2.02 6197+1.01 5424+3.13 69.66+1.17
trees 60.15+391 5821+£3.51 56.19+£3.88 59.70+5.16 6146+1.11 44.08+598 77.34+2.02
vehicles 1 36.35+3.00 34.60+2.06 41.54+4.05 5378+445 37.61+088 4397+240 63.27+1.66
vehicles 2 51.23+2.73 49.14+1.59 4934+249 5085+494 5031+0.16 50.72+323 69.74+2.26
average 55.78+£0.70 55.66+0.49 53.62+040 54.19+1.37 5503+0.04 5356+048 65.01+1.70
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FIGURE 5. UOD performance (AUROC) in different training epochs. We plot the results of experiments on Fashion-MNIST and CIFAR10 with p = 10%.
With Fashion-MNIST, we show the results of the following classes as denoted in the caption: (a) ankle boot, (b) sandal, (c) trouser. With CIFAR10,

we show the results of the following classes as denoted in the caption: (d) automobile, (e) horse, (f) dog. The proposed TIAE with the self-paced learning
module achieves higher and more stable AUROC on all experiments compare with TIAE without the self-paced learning module. The results of other

experiments show the same pattern.

The model stability of unsupervised outlier detection meth-
ods is essential. Validation during the training phase is impos-
sible due to the lack of supervised labels. There is no way
to obtain the best checkpoint for an unsupervised outlier
detection model without validation. A stable model can
make sure the performance of the final model is acceptable.
The stability of model performance is mainly reflected in
three aspects [47]: 1) Whether the model can reach conver-
gence after acceptable training epochs in one training attempt.
2) Whether the model can reach a stable performance level in
multiple training attempts using the same training configu-
ration. 3) Whether the model can achieve good performance
stably in various datasets and training configurations.

To assess the stability of our proposed TIAE model,
we measure the UOD performance when the TIAE is being
trained. Fig. 5 shows the AUROC in different training epochs.
In general, the UOD performance is improved at the initial
stage of training and then stabilizes as the training epochs
continue to increase. Thus, through our TIAE, we can achieve
a highly reliable model through acceptable training epochs in
this task without validation.
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C. VISUALIZATION ANALYSIS

In this part, we conduct visualization analysis on MNIST
and CIFAR-10 to demonstrate the effectiveness of TIAE
for outlier detection. Fig. 3 shows the inputs and restora-
tion/reconstruction outputs from both TIAE and CAE on
MNIST during the testing period. Fig. 4 shows the inputs and
restoration/reconstruction outputs from both TIAE and CAE
on CIFAR-10 during the testing period.

The first row “Inlier” represents the inlier class.
In both MNIST and CIFAR-10, we use the rest nine
classes as outlier classes, corresponding to the “Outlier”
rows. The first column “Ori” represents original images.
“Ocag”’ column means the reconstruction output from CAE.
“I, I, I3, 14" mean the transformed images input to TIAE.
“01, 03, 03, 04 mean the restoration outputs from TIAE
for corresponding transformed inputs. We force restoration
outputs similar to original images but not transformed inputs.
According to our score strategy, cases with outputs similar to
“Ori” are considered as inliers, otherwise outliers.

The last row in Fig. 3 shows the restoration outputs of
the number “9”. All the four outputs are far different from
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“Ori” and thus detected as an outlier. However, all the out-
puts from CAE are similar to the original images, which
makes CAE less capable of distinguishing between inliers
and outliers. We can get similar results on CIFAR-10 from
Fig. 4. Besides, we can observe a more significant difference
between the restoration outputs and original images in out-
liers on CIFAR-10 due to the color distortion. By comparing
“Ori” and “Ocag”, we find that reconstruction outputs of
CAE share more similar color patterns with original images,
which is bad for outlier detection.

Above all, we conclude that our TIAE is effective for unsu-
pervised outlier detection and work much better on complex
datasets like CIFAR-10 compared with conventional autoen-
coder based methods.

D. ABLATION STUDY

In this part, we perform an ablation study to analyze the
contributions of two parts of the proposed TTAE framework:
transformation invariant autoencoder and self-paced learn-
ing module. We conduct experiments on all five involved
datasets. Table 3 shows experiment results. TIAE (w/o sp)
denotes our proposed TIAE without the self-paced learn-
ing module, TIAE denotes our proposed TIAE with the
self-paced learning module, CAE (unet) denotes the CAE
method with the same backbone autoencoder with TIAE.
To evaluate the contribution of the backbone network of CAE,
we also copy CAE’s UOD performance from Table 1 to
Table 3.

TABLE 3. AUROC (%) for UOD methods when p = 10%. The best
performance is in bold. TIAE (w/o sp) denotes our proposed TIAE without
self-paced learning module, TIAE denotes our proposed TIAE with
self-paced learning module. CAE (unet) denotes method CAE with U-Net
like structure, the same as our TIAE.

Methods MNIST FMNIST SVHN CIFAR-10  CIFAR-100
CAE 67.19 69.04 51.18 55.86 55.78
CAE (unet) 60.98 64.09 49.95 56.55 58.06
TIAE (w/osp)  70.81 74.56 56.57 60.24 59.90
TIAE 85.18 86.77 68.78 71.18 65.01

When we use a more complex structure for the CAE
method, UOD performance decreases instead of improving.
A more complex structure of CAE contributes to lower
reconstruction error but causes a lower UOD performance.
By comparing the results of CAE (unet) and TIAE (w/o sp),
we can verify the effectiveness of the transformation invariant
autoencoder.

When we add the self-paced learning module, the perfor-
mance (AUROC) improves on all five datasets. To further
look into the mechanism of the self-paced learning module,
we plot the AUROC in different epochs of TIAE with and
without the self-paced learning module in Fig. 5. In the initial
training phase, both TIAE and TIAE (w/o sp) reach a high
AUROC value. With the training going on, the performance
of TIAE (w/o sp) is decreasing, while the performance of
TIAE is much more stable. This is because the autoencoder
can catch features of both inliers and outliers with the training
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going on, making it challenging to distinguish inliers and
outliers based on restoration error. The self-paced learning
module can effectively filter out outliers during representa-
tion learning.

Based on the above analysis, The proposed TIAE with a
self-paced learning module achieve higher and more stable
AUROC on all experiments. Besides, our self-paced learning
module can be easily incorporated into other reconstruction-
based unsupervised outlier detection methods.

V. CONCLUSION

In this paper, we propose a framework named Transforma-
tion Invariant Autoencoder (TIAE) for unsupervised outlier
detection. By feeding transformed examples and trying to
restore the original examples, the TIAE framework learns
high-level semantic features instead of low-level features of
conventional autoencoder based methods. To mitigate the
negative effect of outliers during the representation learning
phase, we incorporate self-paced learning to select inlier
likely examples during training. We show that TIAE can
achieve a promising performance gain compared to other
autoencoder based unsupervised outlier detection methods.
For future research, it is meaningful to explore more trans-
formations, which are likely to increase performance further.
Which transformation group is more suitable for representa-
tion learning and the downstream task is also worth further
exploration. As an open framework, different network archi-
tectures, different transformations, and scoring strategies can
also be explored for TIAE. Though this paper focus on image
outlier detection, the TIAE can be easily applied to video
outlier detection.
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