
Received January 25, 2021, accepted March 5, 2021, date of publication March 12, 2021, date of current version March 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3065705

Airline Baggage Appearance Transportability
Detection Based on A Novel Dataset and
Sequential Hierarchical Sampling CNN Model
QINGJI GAO AND PEIWEN LIANG
Robotics Institute, Civil Aviation University of China, Tianjin 300300, China

Corresponding author: Peiwen Liang (liang_pw@163.com)

ABSTRACT Self-service bag drop efficiently assists passengers to check-in their baggage in the airport.
Nevertheless, the baggage appearance transportability cannot be accurately detected by existing self-service
bag drop equipment. We plan to adopt a convolutional neural network with video input to detect the
appearance transportability of baggage. However, public baggage picture datasets are captured in the daily
background, thus existing approaches trained on these datasets achieve imprecise performance for airport
self-service bag drop. We introduce a new dataset for airport self-service bag drop named ASS-BD and
a novel sequential hierarchical sampling multi-object tracker. Most of the video clips that comply with
the consignment regulations were recorded in the airport scene. Video clips that do not comply with
the consignment regulations were recorded in the laboratory simulation scene. A sequential hierarchical
sampling multi-object tracking baseline is adopted to solve some problematic frames due to part occlusion,
rare pose, and motion blur. We conduct experiments to demonstrate that our dataset is suitable for the airport
self-service bag drop scenario. Our approach is capable of the inspection task of air baggage appearance
transportability in real-time.

INDEX TERMS Airport self-service bag drop dataset, airline baggage appearance transportability inspec-
tion, anchor-free object detection, multi-object tracking.

I. INTRODUCTION
A. BACKGROUND
Airport Self-service bag drop can reduce the check-in time
of passengers, improve the passenger experience, and max-
imize the throughput of terminal passengers, which is an
essential means to simplify the check-in process. Detecting
the transportability of baggage is the key to self-service bag
drop for determining whether the passenger’s bag meets the
check-in conditions. With the rapid development of artifi-
cial intelligence and human-computer interaction, we have
developed self-service bag drop equipment which is used to
check whether the air baggage meets the check-in conditions
and applied them to Beijing Daxing International Airport,
Guangzhou Baiyun International Airport, and Tianjin Binhai
International Airport.

Self-service bag drop could detect whether the passenger’s
baggagemeets the check-in regulations from the International
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TABLE 1. Elements of the appearance transportability.

Air Transport Association, so as to be accepted to check-
in. The regulations of baggage transportability are about
the weight, size, and ‘‘appearance transportability’’. The
‘‘appearance transportability’’ checks the type and number
of baggage, whether the baggage is tied with a tag, and
whether the backpack is equippedwith a pallet. Table 1 shows
the elements that need to be judged for the ‘‘appearance
transportability’’ of baggage. The symbol "&" means that
it satisfies two elements at the same time. Therefore, the
baggage appearance that meets the transportability regula-
tions is A&B&C&D, A&B&C&E, A&C&E. In the follow-
ing, ‘‘appearance transportability’’ will be used to represent
meeting one of the above regulations.

A variety of self-service bag drop equipment has been
used in airports, and many key technologies have been
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explored along with the development of equipment. In 2012,
Bagdrop’s [1] latest product was widely promoted and
applied at Amsterdam Airport. The system is equipped with
a barcode scanner, weighing sensor, and camera, which
can support baggage weighing, tag verification, capture the
appearance of baggage, and use 3D imaging technology to
obtain a three-dimensional model of the baggage. In 2015,
the self-service bag drop developed by ICM Airport Tech-
nics [2] was equipped with multiple three-dimensional scan-
ners to scan baggage simultaneously, which can analyze the
size, placement, and appearance of the baggage. In 2018,
the CHECKITXPRESS [3] self-service bag drop system,
which was jointly developed by the Innovative Travel Solu-
tions (ITS) of Vancouver International Airport and a New
Zealand airport baggage handling company, Glidepath used
innovative camera technology to improve the speed and effi-
ciency of tag information extraction. In 2019, a self-service
bag drop system jointly developed by the Civil Aviation
University of China and Tianjin Hangda Aviation Equipment
company was installed at Beijing Daxing International Air-
port [4]. As shown in Fig. 1, the system uses comprehen-
sive 3D imaging technology and extensive smart barcode
recognition technology to detect the baggage appearance by
extracting three-dimensional point cloud features, including
detection of pallets, multiple baggage, and baggage with
irregular surfaces. The purpose of these devices is to improve
the accuracy of the bag appearance transportability detection.

FIGURE 1. Self-service bag drop equipment. Picture (a) was captured in
the applied airport scene, picture (b) was captured in the laboratory
simulation scene. The camera holder is 47 cm high, and the camera angle
is about 45 degrees horizontally downward.

Although the existing self-service bag drop technology [5]
in airports has made some breakthroughs, they cannot
detect strictly the appearance transportability regulations
(A&B&C&D, A&B&C&E, A&C&E) listed before Table 1.
As shown in Fig. 2, in the practical use of the equipment,
the detection method based on static point cloud can detect
the ‘‘easy’’ placement of multiple pieces of baggage, but it
can do nothing for some ‘‘hard’’ samples. Moreover, this
method of extracting geometric features based on the top view

FIGURE 2. The ways of place multiple pieces of baggage, ‘‘hard’’ denotes
this way is challenging to detect the number of baggage, ‘‘easy’’ denotes
this way is easy to detect the number of baggage.

point cloud map of the baggage and then classifying it often
misidentifies the type of baggage, so that passengers must
put baggage into a pallet to check it, which seriously affects
the passenger experience and increases unnecessary time.
When passengers use the self-service bag drop, there will
be complicated human-computer interaction behaviors and a
wide variety of baggage, so this detection method based on
a static three-dimensional point cloud cannot meet rigorous
and efficient requirements. To sum up, the existing detec-
tion methods based on static point cloud cannot accurately
detect the category and number of baggage, which cause
loss of baggage. However, the detection algorithm based on
deep learning has fast detection speed, low false detection
rate, and strong versatility, we monitor the entire process
of passengers’ checked baggage and adopt a video-based
real-time multi-category multi-target tracking deep learning
algorithm to detect the appearance transportability. In the
applicable airport scenario, the detection task of appearance
transportability faces several challenges: the complex back-
ground of the detection area in the video, the different forms
of passenger check-in operations, different baggage, different
pallets, different positions of tied tags, the interference from
the baggage of queuing passengers, and the lack of proper
actual self-service bag drop video dataset.

B. CONTRIBUTION
Firstly, a new video dataset ASS-BD is provided for detect-
ing the appearance transportability, which consists of suit-
cases, backpacks, pallets, and tags. As far as we know,
this is the first multi-target tracking video dataset tailored
to the context of the airport self-service bag drop tasks.
As shown in Fig. 1(a), the passengers’ checking baggage
videos were recorded in the applicable airport scenario.
As shown in Fig. 1(b), we recorded some videos of different
volunteers that did not meet the appearance transportability
in the laboratory simulation scene. Secondly, we propose
a real-time model benchmark called sequential hierarchical
sampling multi-object tracker based on the Centernet [6]
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detection framework. The detection performance of this
model on the ASS-BD dataset is better than the original
Centernet. In addition, our method has better tracking per-
formance than YOLOv3-deepsort [7].

C. PAPER ORGANIZATION
This paper is organized as follows: In section II, we provide
recent related works of detecting appearance transporta-
bility approaches, object detection, and multi-object track-
ing. Section III introduces Airport Self-Service Bag Drop
ASS-BDdataset. In section IV,we describe the architecture of
the appearance transportability detection network. In section
V, we introduce experiments and report the analyzed results.
And in section VI, we summarize the findings and contribu-
tions of this study.

II. RELATED WORK
A. CONVENTIONAL APPEARANCE TRANSPORTABILITY
DETECTION APPROACHES
Baggage is usually checkedmanually for compliancewith the
appearance transportability, some researches [5] on 3D detec-
tion attempt to use the point cloud generated by depth cam-
eras to solve this problem. The proposed counting method
uses image segmentation based on the height map which
is projected by scanned baggage 3D point cloud, but the
whole 3D point cloud information of placing the baggage
on the conveyor belt will not be obtained, so the ‘‘hard’’
overlap placement method in Fig. 2 cannot correctly detect
the amount of baggage. As shown in Fig. 2, the ‘‘hard‘’ beside
placement is not detected correctly by this approach that is
overwhelmingly dependent on the height map projected by
the 3D point cloud. These methods could accurately detect
the dimensions of baggage and make human-computer inter-
action more natural. However, they are all vulnerable to the
completeness of static 3D point cloud information scanned
by depth cameras. Hence, this method is not proper to detect
the appearance transportability of baggage.

B. OBJECT DETECTION AND MULTI-OBJECT TRACKING
METHODS BASED ON DEEP LEARNING
Deep learning improves the ability of models to express
the feature; many object detection and multi-object tracking
technologies based on deep learning have been explored to
complete detection tasks in different application scenarios.
A practical autonomous driving system urges the need to reli-
ably and accurately detect vehicles and persons, researchers
who participated in the 2D detection track of the Waymo
Open Dataset Challenges integrate both popular two-stage
detector and one-stage detector with anchor free fashion to
yield a robust detection on the Waymo Open Dataset v1.2
[8]. For smart city applications of tracking multiple tar-
gets across multiple cameras, MTMCT [9] framework that
imposes a trajectory-based camera link model for vehicle
re-identification(re-ID) could effectively and reliably track a

wide range of targets. This section briefly reviews existing
object detection and multi-object tracking works.

There are two categories of object detection algorithms
based on deep learning: the anchor-based detector and the
anchor-free detector. Faster R-CNN [10] and YOLOv3 [11]
are the classic methods of the anchor-based detector. The
two-stage method Faster R-CNN firstly generate the candi-
date area of the target in the image and then classify the target
bounding box, whose detection accuracy higher but slower.
The one-stage detector YOLOv3 treats the detection problem
as a regression problem, it predicts bounding boxes and class
probabilities directly from full images in one evaluation. This
type of method is fast but has insufficient detection accuracy
of small targets. Cornernet [12] and Centernet [6] are the
classic methods of the anchor-free detector, Cornernet first
predicts the possible paired keypoints of the objects, and then
finds matching corner points belonging to the same object
by predicting an embedding vector, finally localize corners
of bounding boxes through corner-pooling. Centernet detects
an object bounding box as the center point and then uses
this predicted center to find coordinates and offsets of the
bounding box. Since the anchor-based algorithm needs to set
many hyper parameters for anchors, and most anchors are
negative samples during the training process, which causes
a waste of computing resources. The center-free detection
method Centernet is more suitable for the research back-
ground of self-service bag drop in this paper, it could deal
with some part occlusion and large-angle posture transfor-
mations of objects, and realize real-time detection with better
accuracy.

There will be some baggage obstructing each other in the
video dataset, tags being obscured by baggage, and motion
blur situation. In this way, it is very likely that missed and
false detections occur in the key areas of detecting the appear-
ance transportability of baggage, leading to the ultimate result
is not accurate. The features of target motion trajectory could
be automatically analyzed and extracted by multi-object
tracking, which makes up the lack of object detection. The
detection-based multi-object tracking is widely used in intel-
ligent video surveillance scenarios. FairMOT [13] based on
the Centernet combines the two tracking key components,
object detection and identity re-identificationmodule (re-ID),
into the same network to accurately extract re-ID features for
achieving excellent multi-object tracking results. Therefore,
this paper improves some network structures on the basis of
FairMOT so that it can meet the inspection task of appearance
transportability in real scenarios.

C. OBJECT DETECTION DATASET
Many datasets were established for object detection, such
as ImageNet [14], MSCOCO [15], and Google Open Image
v4 [16], whose images are not video sequences with
self-service bag drop scenarios. ImageNet dataset contains
14197122 images with 21841 categories, and MSCOCO
dataset consists of 328000 images with 91 categories,
Google Open Image v4 contains 1.74M bounding boxes of
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600 categories. Meanwhile, there are multi-object tracking
datasets like MOT16 [17], UA-DETRARC [18], and Vis-
Drone [19], whose images are pedestrians, vehicles, and bicy-
cles all captured in life scenes. We will select backpacks and
suitcases images from the Google Open Image v4 dataset and
name them "supplemental baggage" to increase the diversity
of the video dataset ASS-BD. All datasets mentioned above
are not proper for appearance transportability detection due
to they are just individual pictures that belong to target cat-
egories in life scenes or video datasets without target cate-
gories. They cannot meet the requirements of the self-service
bag drop task, which not only to detect targets but also to
track targets over a long period of time. Therefore, we need
to record the self-service bag drop video dataset.

III. ASS-BD DATASET FOR APPEARANCE
TRANSPORTABILITY INSPECTION
A. PROPERTIES FOR SELF-SERVICE BAG DROP DATA
When people get close to the self-service bag drop equip-
ment, the appearance transportability detection system is acti-
vated, which monitors the passenger’s entire operation using
the multi-category multi-object tracking algorithm proposed
in this paper. And then the appearance transportability is
estimated according to the detection results and the system
prompts the passenger to proceedwith the next step according
to the obtained detection status. The type and number of bag-
gage, whether tags are tied, and whether pallets are placed are
obtained by the monitoring system which records the entire
process of the passenger use the self-service bag drop. Based
on this applicable scenario, our appearance transportability
detection dataset should meet the following demands:

1) AIRPORT SCENE
The existing datasets are just individual pictures belong to
target categories in life scenes, so it is necessary to collect
the video data for self-service bag drop scenarios, as shown
in Fig. 1(a).

2) SIMULATED LAB SCENE
Since there are relatively few samples of passengers’ substan-
dard operations in the actually applicable airport scenarios,
in order to increase the data that do not meet the appearance
transportability, we also set up a simulation environment
in the laboratory to record an extended dataset, as shown
in Fig. 1(b).

3) COMPLEX BACKGROUND
When a large number of passengers line up to use the
machine, it is very likely that many passengers with baggage
helping each other are operating in the region of interest at
the same time, which interfere with the detection. Therefore,
it is necessary to record video data in the context of different
complexity.

4) OBJECTS DIVERSITY
There may be backpacks and suitcases of different colors,
shapes, sizes, and materials, pallets of different colors, and
various positions of tied tags in the actual check-in scene. The
dataset should try to meet the diversity of the objects.

B. DATA COLLECTION AND ANNOTATION
The ASS-BD dataset comprises 100 video sequences col-
lected from multiple videos recorded by 231 volunteers,
of which 67 were recorded at the airport and 33were recorded
in a laboratory simulation environment. The video is recorded
by the USB interface camera mounted on the self-service bag
drop device in a resolution of 960 × 720 with a frame rate
of 25 fps, and the actual field of vision is shown in Fig. 3.
The recorded video contains various ways of placing multi-
ple baggage, as shown in Fig. 2, including both the "easy"
samples and "hard" samples.

FIGURE 3. The actual camera field of vision.

The moving objects are labeled using the DarkLabel tool
(https://github.com/darkpgmr/DarkLabel). The label infor-
mation is saved in TXT, and every video clip corresponds
to a TXT. The bounding boxes are described with (frame,
id, cx, cy, w, h, label), where (cx, cy) and (w, h) are the
center coordinates, width and height of the bounding box,
respectively. The object class is represented with "label", and
id represents the identity (e.g., ‘‘backpack1’’, ‘‘backpack2’’,
‘‘suitcase2’’). The ‘‘frame’’ represents the serial number in
the video sequences. About 66371 frames are recorded in the
ASS-BD dataset in total, of which 65791 frames have anno-
tated information. The average, shortest and longest lengths
in 100 video sequences are 663.71, 4, and 4044, respectively.
These objects are categorized into four classes: backpack,
suitcase, tag, and pallet. Moreover, their number of statistics
are shown in Table 2. The size of each frame is about 100 KB-
200 KB, the total size of the dataset is 10 GB. The dataset
is stored in the network disk, please contact the correspond-
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TABLE 2. Summary of ASS-BD dataset.

ing author (code) to download the dataset without hesitation
(https://pan.baidu.com/s/1a5MSA8Ecy8ED90u1T_Jrww).

IV. SEQUENTIAL HIERARCHICAL SAMPLING
MULTI-OBJECT TRACKER
In the method described in this section, deformable convolu-
tion DCNv2 [20] is used in many layers to replace traditional
convolution and to improve the ability of the network to adapt
to the geometric changes of the target, so we first review
the DCNv2. Traditional 2D convolution is comprised of two
steps: 1) use a grid R with weight information to sample on
the input feature map x; 2) calculate the weighted summation
value of the grid R at the corresponding sampling position of
the input feature map x. For example, if we consider a 2D
convolution with a 3 × 3 kernel, and a dilation factor of 1,
the grid R is defined as:

R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}, (1)

To calculate the output feature map y at the location p0 on
the input feature map x:

y(p0) =
9∑

k=1

wk · x(p0 + pk ), (2)

where wk represents the weight of the grid R corresponding
to the k position. According to the description in DCNv2,
the improved convolution operation can be expressed as:

y(p0) =
9∑

k=1

wk · x(p0 + pk +1pk ) ·1mk , (3)

where 1pk and 1mk are the learnable offset and modulation
scalar for the k-th location, respectively. This change can
not only adjust offsets in perceiving input features, but also
modulate the input feature amplitudes from different spatial
locations. The modulation scalar1mk lies in the range [0,1],
while 1pk is a real number with unconstrained range [20].
In this section, we elaborate on the proposed architec-

ture named sequential hierarchical sampling multi-object
video tracker, which contains three components: the back-
bone based on the improved deep layer aggregation (DLA-
34) [6] is used to extract image features as shown in Fig. 4,
the sequential hierarchical sampling module is used to
improve the adaptability of the overall network to video
multi-target detection as shown in Fig. 6, four parallel heads
are used to complete four tasks as shown in Fig. 7. DLA-
34 aggregates multi-layer features in the network structure,
and integrates semantic and spatial features to better improve
inference of what and where, which can provide robust and
accurate feature maps for subsequent operations with better

accuracy and fewer parameters. The network can adapt to
the geometric changes of moving objects in the video due
to the up-sampling operations with DCNv2 in Iterative Deep
Aggregation. The sequential hierarchical sampling module is
applied to fuse the features of the key areas in the previous
frame with the features of the current frame, which can solve
some difficult frames due to part occlusion, rare pose and
motion blur.

A. CHALLENGES OF DETECTING APPEARANCE
TRANSPORTABILITY
In our task, the detection and tracking of airline baggage, tags,
pallets have some difficulties:

1) REAL-TIME
The self-service bag drop system is expected to interact with
operators in real-time, so our algorithm needs to consider the
trade-off between accuracy and speed.

2) THE PROBLEM OF DETECTION
Difficult frames for detecting such as part occlusion, rare
pose, andmotion blur will appear when the operator is placing
baggage, tying baggage tags, and placing pallets.

3) THE PROBLEM OF TRACKING
Firstly, the bounding boxes of the current frame objects are
obtained through the detection network. And then the re-
ID features of objects are applied to correlate the bounding
boxes between the current frame and the previous frame in
the tracking stage, which needs to achieve fast.

B. BACKBONE
As shown in Fig. 4, the improved the DLA-34 is applied as
the backbone to fuse multi-layer features and make a tradeoff
between latency and accuracy. DLA-34 has more skip con-
nections between low-level and high-level features to fuse
pixel information of multiple scales, which is similar to the
Feature Pyramid Network [21] for enhancing the network’s
ability to detect small targets.

As shown in Fig. 4, the network takes a frame of size
3×1088×608 as input to train in DLA-34 backbone. Firstly,
¬ is obtained after two down-sampling operations, and then
a specially designed HDA module is applied to fuse the
low-level and high-level feature maps together, so that a rich
combination of multiple feature layers can be learned by the
model, and get the four feature layers with different channels
and shapes are denoted as,®,¯, and°, respectively. These
cross and merge stages aggregate different levels of represen-
tation and improve the network recognition and positioning
abilities. As shown in Fig. 5, the generated feature maps ,
®, ¯ and ° are used for up-sampling decode operations.

As shown by the yellow arrow line in Fig. 5, the iter-
ative deep aggregation network used to increase feature
map resolution symmetrically is different from the original
DLA [22]. The convolution layers of all up-samplingmodules
are replaced by the 3× 3 deformable convolution so that the

VOLUME 9, 2021 41837



Q. Gao, P. Liang: Airline Baggage Appearance Transportability Detection

FIGURE 4. DLA-34 backbone. The feature maps, (C×W×H), are shown as the shape of their tensors. The Hierarchical Deep Aggregation(HDA) and Iterative
Deep Aggregation(IDA) are designed to increase the depth of the network to obtain richer feature maps and better to extract the semantic and spatial
information. , ®, ¯ and ° aggregated by different layers are applied to decode as shown in Fig. 5.

FIGURE 5. Decoder network. The feature maps, (C×W×H), are shown as
the shape of their tensors. , ®, ¯ and ° are generated from
DLA-34 backbone. X1 and X2 are generated by ® and ¯ respectively, are
used to provide different scales feature maps in the sequential
hierarchical sampling module shown in the Fig. 6.

model focus on the relevant area when the moving target is
deformed.

As shown in Fig. 5, the feature maps® and¯ are subjected
to a 3 × 3 deformable convolution operation for increasing
the resolution of the feature map, and generate the X1 and X.
According to the practice of FairMOT [13], the OUTPUT of
the decoder network is taken as the input of two fair tasks that
aim to detect and extract re-ID features.

Despite the Centernet detector preserves excellent perfor-
mance in static images, it still lacks the ability of real-time
robust detection when objects appear blurry or occluded in
the key frame of video. STSN [23] has proposed a method
of sampling from adjacent frames to guide the detection of
the current frame, making the detection of occluded and
motion-blurred individual image frames robust. As shown
in Fig. 5, the encoder-decoder is designed to extract image
features, but this architecture will make the network lose
global information, while the sampling module we proposed
could boost the representation of the baggage and tags region
in the images. Therefore, we adopt the sequential hierarchical
sampling module to enhance the feature map’s description
of the interest target region, the output Y of the sequential
hierarchical sampling module is used to replace the feature
layer ° in Fig. 5.

FIGURE 6. Sequential hierarchical sampling module. The feature maps,
(C×W×H), are shown as the shape of their tensors, ‘‘⊕’’ denotes
element-wise sum, ‘‘�’’ denotes Hadamard product.

C. SEQUENTIAL HIERARCHICAL SAMPLING MODULE
This module uses the detection features of the t-1 frame to
guide the detection of the t frame, which can solve some dif-
ficult frames due to part occlusion, rare pose and motion blur.
The word ‘‘sequential’’ means we fuse two frame features,
and the word ‘‘hierarchical’’ means we fuse different scale
features. The input of the sequential hierarchical sampling
module comes from the X1, X2 and ° feature maps at t-
1 frame and the ° feature map at the t frame respectively.
The output Y of the module is used to replace the feature
maps ° in Fig. 5. The specific structure of the module is
as follows.

Firstly, the frame at t-1 is sent to the DLA-34 backbone to
extract feature maps , ®, ¯, and ° of different shapes and
channels. As shown in Fig. 6, secondly, X1 and X2 generated
at t-1 are respectively subjected to three and two convolution
layers, batch normalization, and activation layers to unify the
channels and sizes to (512, 19, 34). In order to enhance the
network’s ability to detect objects of different scales, the uni-
fied channel and size feature maps are fused to generate X,
which is fused with the feature map° at the t-1 frame through
the Hadamard product. To mitigate the target motion blur
and geometric deformation, the feature map after fusion is
sampled by the deformable convolution layer to generate the
guidance mask at t-1 frame, which is applied to fuse with
the feature map ° at frame t through the Hadamard product.
At last, the generated feature map Y is used to replace the
feature map ° at t frame as the bottom feature map of the
decoding network for recovering resolution. The Y of each
video sequence first frame could not computed through the
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FIGURE 7. Four parallel heads for handling four tasks.

sequential hierarchical sampling module, so the ° of the first
frame in Fig. 5 is not replaced by Y.

As shown in Fig. 7, four parallel heads are attached to
the OUTPUT to estimate heatmap, bounding box size, object
center offset, and re-ID features, respectively. The composi-
tion of each head is: a 3×3 convolutionwith 64 input channels
and 256 output channels, an activation layer, and a 1 × 1
convolution which generates the final targets.

The object category, center point, size, offset, and identity
feature vectors are calculated through the model mentioned
above, and then we match detection bounding boxes between
video frames to complete the tracking part. First, we initialize
the target trajectory through the estimation box of the first
frame. Then we calculate the cosine distances through the
re-ID features and the IOU of the inter-frame targets for
using the Hungarian algorithm to solve the assignment prob-
lem [24]. We also use Kalman Filter to predict the position
of the target in the next frame. When the predicted position
is too far away from the current detection position, the corre-
sponding cost is set to infinity to prevent matching errors.

D. TRAINING OBJECTIVE
In this section, we introduce the loss functions to train our
proposedmethod. According to the practice in FairMOT [13],
our training objective consists of four modules: The center
point classification module, heatmap head, is responsible to
predict the center point of the target category. The bounding
box scale module, size head, is applied to estimate the height
and width of the target bounding box. The center point offset
module, offset head, is used to localize the target point more
precisely. The re-ID features extraction module, re-ID head,
is applied to extract the apparent features of the target.

According to the practice of training key point network
proposed by Law and Deng [12], we predict the target cate-
gory by training the target center point based on the heatmap.
The center point P of each GT bounding box is marked as
(xc, yc). And the center point is p̃PR after down-sampling,
where R is down-sampling factor 4 in literature [25]. All

ground truth key points in the input image are sprinkled onto
a heatmap Yxy ∈ [0, 1]

H
R ×

W
R ×C using a Gaussian kernel:

Yxy =
N∑
i=1

exp

−
(
x − p̃ix

)2
+

(
y− p̃iy

)2
2σ 2

p

, (4)

where σ 2
p is an object size-adaptive standard deviation [12].

The loss function uses pixel-wise logistic regression function
focal loss [28]:

Lcls =
−1
N

∑
xy


(
1− Ỹxy

)α
log

(
Ỹxy
)

Yxy = 1;(
1− Ỹxy

)β (
Ỹxy
)α

log
(
1− Ỹxy

)
otherwise,

(5)

where N is the number of target center points in the input
image, Ỹxy is the estimated heatmap, and α = 2, β = 4 in all
our experiments following Law and Deng [12].

Because the resolution of the output will be reduced after
the backbone network extracts the features, quantization
errors will be introduced accordingly, and discretization error
will be generated when predicting the position of the bound-
ing box, so the center point offset head is added to mitigate
the impact of down-sampling. Meantime, the size header of
the bounding box is responsible for estimating the width and
height of the bounding box. S̃ and Õ are denoted as the
size and offset of the bounding box, they are trained with
L1 losses:

Lbox =
N∑
i=1

∥∥∥Oi − Õi
∥∥∥
1
+

∥∥∥S i − S̃ i∥∥∥
1
, (6)

The features extracted by the backbone are applied fairly
for the detection task and re-ID task, and all targets with the
same identity are treated as different categories for training,
following the FairMOT [13]. We compute the re-ID loss as:

Lre−ID = −
N∑
i=1

m∑
m=1

L i(m) log(p(m)), (7)

where N represents the number of objects in the image,
m is the number of classes.p(m) is a class distribution vector
mapped learnable re-ID feature vector. L i(m) is marked as the
one-hot representation of the ground truth class label.

The overall objective loss function is:

L =
1
2
(
1
eη1

(Lcls + Lbox)+
1
eη2

Lre−ID + η1 + η2), (8)

where η1 and η2 are learnable parameters that balance the
detection and re-ID.

V. EXPERIMENTS
In this section, we conduct experiments to evaluate the per-
formance of sequential hierarchical sampling multi-object
tracker on the ASS-BD dataset. To increase the diversity of
our model, we also designed an experiment using the supple-
mental baggage dataset, which is composed of backpacks and
suitcases images selected from Google Open Image v4 [16].

VOLUME 9, 2021 41839



Q. Gao, P. Liang: Airline Baggage Appearance Transportability Detection

TABLE 3. Summary of images in the ASS-BD.

TABLE 4. Summary of bounding boxes in the ASS-BD training set.

TABLE 5. Summary of bounding boxes in the ASS-BD testing set.

TABLE 6. Summary of images in supplemental baggage.

Datasets: We propose the ASS-BD Airport Self-Service
Bag Drop video dataset, which is suitable for the inspec-
tion task of appearance transportability in the applicable
airport scenario. The statistical information of the images
in the dataset is shown in Table 3, and the statistical infor-
mation of the bounding boxes in the dataset is shown in
Table 4 and Table 5. Our dataset is recorded in two locations,
the applicable airport scenario and the laboratory simulation
environment. There are 80 video sequences in the training
set and 20 video sequences in the testing set. Data cap-
tured in the airport scene contains a total of 59820 frames,
the training set contains 46,753 images with 89,758 bounding
boxes, and the testing set contains 13067 images with a total
of 31,015 bounding boxes. Data captured in the laboratory
scene contains a total of 5971 frames, the training set contains
3940 images with 16825 bounding boxes, and the testing set
contains 2031 images with a total of 7327 bounding boxes.
In order to increase the diversity of suitcases and backpacks
in the dataset, the images of backpacks and suitcases from
Google Open Image v4 [16] are selected as a supplement
to this dataset named supplemental baggage. The detailed
summary of images in supplemental baggage is summarized
in Table 6.
Implementation Details: Our module is based on the

Pytorch framework with NVIDIA RTX2080 Ti. We adopt
Adaptive Moment Estimation (ADAM) with an initial learn-
ing rate of 1e-04 to train our model. The network takes a
frame of size 1088 × 608 as input with the batch size is
4. We initialize our model by using the model parameters
pre-trained on the MSCOCO [15]. We first train on the
supplemental baggage dataset to increase the diversity of
detection, and then the model we got is trained on the ASS-
BD dataset through the network we proposed.

TABLE 7. Detection comparison on ASS-BD dataset.

TABLE 8. Detection comparison on supplemental baggage dataset.

Evaluation Metric: We choose the mean Average Preci-
sion (mAP) to evaluate the performance of the detector setting
the Intersection over Union (IoU) threshold to 0.5.We choose
the multiple object tracking accuracy (MOTA) and the Iden-
tification F1 (IDF1) to evaluate the tracking performance of
the model.

MOTA = 1−
(FN + FP+ IDSW )

GT
∈ (−∞, 1], (9)

where GT is the number of ground truth boxes, FN is the
number of false negatives in the whole video, FP is the
number of false positives in the whole video, and IDSW is
the total number of ID switches.

IDF1 =
2IDTP

2IDTP+ IDFP+ IDFN
, (10)

where the IDTP is the sum of theweights of the edges selected
as true positive IDmatches (it can be seen as the percentage of
detections correctly assigned in the whole video). IDFN is the
sum of weights from the selected false negative ID edges, and
IDFP is the sum of weights from the selected false positive
ID edges [29].

In addition, frames per second (FPS) is used to evaluate the
speed of the algorithm.

A. COMPARISON OF DETECTION PERFORMANCE
The generality of the convolutional neural network is one
of the important indicators for evaluating the quality of the
model, which reflects that the model has excellent perfor-
mance on another similar dataset.When comparing the detec-
tion task with other detection methods only, the results of
our model without using the apparent features of re-ID are
shown in Table 7, which shows the specific method followed
by the resolution of input image. It can be seen that in the case
of higher-resolution input images, the sequential hierarchical
sampling module proposed in this paper can increase the
accuracy of model for video object detection. When dealing
with the task of video object detection, compared with the
classic anchor-based detection and video object detection
methods, the method in this paper is more competitive in
terms of speed and provides a good detection effect for the
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FIGURE 8. Examples of qualitative result. For each of the 6 images, the upper part is YOLOv3+DeepSORT result, the lower part is result of our method.
Images (a), (b), (c) and (d), (e), (f) is a scenario where the motion object is blur, which leads to miss the suitcase and tag. Images (g), (h), (i) is a scenario
where the rare pose appears, which leads to miss tag and pallet. Images (j), (k), (l) is a scenario where the part occlusion appears, there are two
backpacks in the video. The same color of bounding boxes represents the same ID. The green label on the upper right corner is magnified and indicated
by the pink label.

subsequent processing. In terms of the accuracy of video
object detection, our method has a slight improvement over
Centernet. Table 8 shows the comparison results of our model

and other detection methods on the supplemental baggage
dataset. Because the Centernet is only designed for the detec-
tion task, but our method using the sampling module with
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TABLE 9. Tracking comparison on ASS-BD dataset.

DCNv2 in this paper is designed for video object detection,
our method is slower when the accuracy is similar to the
Centernet based on the supplemental dataset.

B. COMPARISON OF TRACKING PERFORMANCE
We compared YOLOv3+DeepSORT [7] with our method
on the ASS-BD dataset. As shown in Table 9, our method
is significantly better than YOLOv3+DeepSORT in both
MOTA and IDF1 tracking indicators, which indicates our
method is more accurate in tracking tasks and can track the
same target for a long time. We tested the speed of the model
on the NVIDIA RTX2080 Ti GPU. It can be seen that our
model runs at 29FPS under 1088 × 608 resolution, while
YOLOv3+DeepSORT only has 18FPS at a resolution of
416 × 416. Our model may be used to applied scenario. We
also conduct qualitative experiments to explain the sequential
hierarchical sampling module we proposed. Some notable
visual detection results are shown in Fig. 8.

For the detection task on the belt conveyor production flow
line, we propose a video-based multi-category multi-target
tracking algorithm to monitor the interest objects on the pro-
duction flow line in real-time and provide accurate detection
results for judging the working state at this time. Meanwhile,
we provide a new dataset for the aviation baggage detec-
tion application of object tracking algorithms based on deep
learning.

VI. CONCLUSION
Real-time visual appearance transportability detection is an
important part of the interaction between self-service baggage
drop equipment and people in the airport. In this paper,
we propose a new dataset ASS-BD applied to the appearance
transportability detection and a real-time sequential hierar-
chical sampling multi-object tracker. The object detection
and multi-object tracking experiments we designed prove
that the model has strong versatility when applied to the
inspection task of appearance transportability, and it could
solve some problems of motion blur, part occlusion, and geo-
metric deformation. In the future, video datasets containing
more baggage categories, volunteers will be collected. The
proposed framework’s running rate is 29 fps on the ASS-BD,
and the model will be applied to NVIDIA JETSON TX2 in
the future.
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