
Received February 16, 2021, accepted March 2, 2021, date of publication March 12, 2021, date of current version March 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3065710

A Hybrid Multi-Task Learning Approach for
Optimizing Deep Reinforcement Learning Agents
NELSON VITHAYATHIL VARGHESE AND QUSAY H. MAHMOUD , (Senior Member, IEEE)
Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Corresponding author: Nelson Vithayathil Varghese (nelson.vithayathilvarghese@ontariotechu.net)

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

ABSTRACT Driven by recent technological advancements within the field of artificial intelligence (AI),
deep learning (DL) has been emerged as a promising representation learning technique across different
machine learning (ML) classes, especially within the reinforcement learning (RL) arena. This new direction
has given rise to the evolution of a new technological domain named deep reinforcement learning (DRL)
that combines the high representational learning capabilities of DL with existing RL methods. Performance
optimization achieved by RL-based intelligent agents designed with model-free-based approaches was
majorly limited to systems with RL algorithms focused on learning a single task. The aforementioned
approach was found to be quite data inefficient, whenever DRL agents needed to interact with more complex,
data-rich environments. This is primarily due to the limited applicability of DRL algorithms to many
scenarios across related tasks from the same distribution. One of the possible approaches tomitigate this issue
is by adopting the method of multi-task learning. The objective of this research paper is to present a hybrid
multi-task learning-oriented approach for the optimization of DRL agents operating within different but
semantically similar environments with related tasks. The proposed framework will be built with multiple,
individual actor-critic models functioning within independent environments and transferring knowledge
among themselves through a global network to optimize performance. The empirical results obtained by the
hybridmulti-task learningmodel onOpenAIGym basedAtari 2600 video gaming environment demonstrates
that the proposed model enhances the performance of the DRL agent relatively in the range of 15% to 20%
margin.

INDEX TERMS Machine learning, deep reinforcement learning, neural networks, transfer learning, actor-
critic, multi-task worker.

I. INTRODUCTION
Over the last few decades, the reinforcement learning domain
has been well established its position as a vital topic within
technological areas such as robotics and intelligent agents [1].
The core objective of RL is to address the problem of how the
intelligent agents should explore their operating environment
optimally, and thereby learn to take optimal actions to achieve
the highest possible reward while in a given state [2]. Sup-
ported by recent advancements within the field ofML, the RL
has been cemented its position as one of the major machine
learning paradigms that deal with agent’s behavior patterns
while in an environment. In comparison to the performance
of ML systems based out of contexts namely supervised
learning, and unsupervised learning, the relative performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

level of current RL agents was not optimal. This was majorly
due to the limitations related to deriving the optimum policy
out of the large state-action space linkedwith the environment
of RL problems. At the same time, the inception of DL with
its very high level of representational learning capability has
given a new dimension to the field of reinforcement learn-
ing and led to the evolution of deep reinforcement learning.
As a result of these advancements, DRL agents have been
applied to various areas such as continuous action control,3D
first-person environments, and gaming. Especially in the field
of gaming, DRL agents are proven to be extremely successful
and could surpass the human-level performance on classic
video-games like Atari as well as board games such as chess
and Go [3].

Despite the impressive results achieved with a single-task-
based methodology, the RL agent is observed to be less effi-
cient within operating environments that are more complex

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 44681

https://orcid.org/0000-0002-0792-1035
https://orcid.org/0000-0003-0472-5757
https://orcid.org/0000-0002-9843-9219


N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

and richer in data such as 3-dimensional environments. One
of the possible directions to enhance the efficiency of the
RL agent in such an environment is by the application of
multi-task-based learning. With multi-task learning, a set of
closely related tasks from the operating environment will be
learned simultaneously by individual agents with the help
of a DRL algorithm such as A3C (Asynchronous Advan-
tage Actor-Critic) [4]. By the application of this approach,
at regular intervals, neural network parameters of each of
the individual agents will be shared with a global network.
By combining the learning parameters of all the individual
agents, the global network derives a new set of parameters,
which will be shared back with all of the individual agents.
The major aim of this methodology is to optimize the overall
performance of the RL agent by transferring the learning,
shared knowledge, among multiple related tasks running
within the same environment. One of the most widely known
and accepted multi-task learning methodologies within RL is
parallel-based multi-task learning, in which a single RL agent
masters a group of diverse tasks [5]. The core idea behind
this approach mainly relies on the architecture used by the
deep reinforcement learning model based on a single learner,
often known as a critic, combined with different actors. Each
of the individual actors generates their learning trajectories,
which are a set of parameters, and further on sends them
to the learner module, also called a critic module, either
synchronously or asynchronously. Subsequently, each of the
actors retrieves the latest set of policy parameters from the
learner before initiating the next learning trajectory. With this
approach, learnings from each of the individual tasks will be
exchanged with every other agent within the environment,
which in turn improves the overall learning momentum of the
RL intelligent agent.

A. MOTIVATIONS AND CONTRIBUTIONS
The major motivation behind the proposed hybrid multi-task
approach is to address some of the major challenges associ-
ated with the existing multi-task deep reinforcement learn-
ing (MTDRL) paradigm. Especially, attempting to address
key challenges such as partial observability, effective explo-
ration, and lastly the amount of training data and training time
required to achieve an acceptable level of performance.

To this end, contributions of this paper are:

1) Design and development of a hybrid multi-task learn-
ing model to optimize the performance of DRL agents.

2) Evaluation of DRL agent’s performance with hybrid
multi-task learning model within the context of the
aforementioned challenges.

3) The empirical analysis of the fluctuations in the DRL
agent’s performance when the degree of semantic sim-
ilarity between the tasks trained together from multiple
game environments (Atari2600).

The rest of this paper is organized as follows. Section II
presents a brief background of reinforcement learning con-
cepts, and Section III explains the various existing approaches

FIGURE 1. The ecosystem of reinforcement learning.

that are attempted on the multi-tasking front of DRL.
Section IV discusses the various related work done within the
same arena, with special focus given to three state-of-the-art
solutions, namely Distral, IMPALA, and PopArt. Section V
details the proposed hybrid multi-task model architecture
while implementation details are covered in Section VI.
Experiments conducted and results obtained with the hybrid
multi-task model are presented in Section VII. Analysis of
test results are discussed in Section VIII. Finally, Section IX
concludes the paper and offers ideas for future work.

II. BACKGROUND
This section provides a brief background of the main aspects
related to reinforcement learning. Table 1 indicates nota-
tions used within this paper to explain the concepts and
equations.

Reinforcement learning is one of theML paradigms related
to sequential decision-making which deals with mapping
situations to actions in a way that maximizes the associated
reward. Within RL ecosystems, the learner, which is also
known as an agent, is not explicitly instructed on which
actions to take at each time step t , but instead, the RL agent
must follow a trial-and-error method to identify which actions
generate the most reward. A standard reinforcement learning
setup consists of an agent situated within an environment E ,
where an agent will be interacting with the environment in
discrete timesteps. At each of these timesteps t, the agent
will be in a state St (St eS) and will be performing a chosen
action At (At eA) within the environment E . Further on, the
environment responds by updating the current state St to a
follow-up state St+1with a new timestep t+1 and also gives
a reward r(St , At ) e R to the agent, indicating the reward
value of performing an action in the preceding state St [1].
The below Fig. 1 represents the standard ecosystem for a
reinforcement learning environment at any given timestep t .
By performing multiple actions in a sequential learning man-
ner in a sequence of associated states s, with related actions a,
respective follow-up states s’ and rewards r , several episodes
of tuples of <s, a, s’, r > are generated. At any given
state St , the goal of the agent is to determine a policy π
that can create a state-to-action mapping that maximizes the
accumulated reward over the lifetime of the agent for that
particular state [6].

44682 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

TABLE 1. List of notations.

At any point in the time t , the goal of the RL agent is to
select the actions in such a way that it maximizes its expected
return. The reward returned at any given time step t is the
quantity that can be represented as

Rt =
∞∑
τ=0

γ τ r(St+τ ,At+τ )

where γ e(0,1) is the discount factor that multiplies the
future expected reward and varies on the range of [0,1].
At any moment, the goal of the DRL agent is to maximize the
expected return from each state St . The action value indicated
by Qπ (s, a) = E[Rt |St = s, a] is the expected return for
taking an action a in state s by following a policy π . Similarly,
the optimal value function indicated by Q∗(s, a) = maxπ
Qπ (s, a) is the maximum action value for action a and state

s that is achievable by any policy. Similarly, the value of any
state s under policy π is defined by Vπ (s) = E [Rt |St = s]
which is simply the expected return for following the policy
π from state s. The Q(s, a) is often used as a measure of the
value of the agent being in that particular state s and taking an
action a to reach that state. The famous Bellman’s equation
mentioned below is used as a reference to calculate the Q(s,
a) for every action in every state that helps an agent to make
decisions about its future moves.

Q′(s, a) = Q(s, a)+ α[R(s, a)+ γmaxQ‘(s‘, a‘)− Q(s, a)]

(1)

where Q(s, a), α, R(s, a), γ and maxQ‘ (s‘, a‘) represents the
current Q value, learning rate, reward for taking that action
a in state s, and maximum expected future reward given the
new state s‘ with all the possible action from that state.

In the case of value-based model-free reinforcement learn-
ing methods, the action-value function Q(s, a) is often repre-
sented by using a function approximation method, such as a
neural network. In such a case an approximate action-value
function that parameterized with θ represented as Q(s, a; θ ).
The updates for the parameters are decided with the help of
a suitable RL algorithm. In contrast to the aforementioned
value-based methods, policy-based model-free RL methods
directly parameterize the policy π (a|s;θ ) and update the
parameter by performing, typically approximate, gradient
ascent on E [Rt ].

III. MULTI-TASK DEEP REINFORCEMENT LEARNING
With the enormous growth that was happened within the
AI and DL domains, DRL has been positioned itself as
the state-of-the-art and de-facto choice for solving many of
the benchmark tasks and real-world issues. As a direct result
of this, methods for the optimization of DRL have caught a
great level of interest and attention. The subsequent sections
cover the information presented in related research efforts and
related to methodologies and approaches designed to attain
multi-task DRL.

A. TRANSFER LEARNING ORIENTED APPROACH
Before the inception of DL into the domain of RL, trans-
fer learning was used as a major means for guiding the
research work towards developing the multi-task learning
algorithms with the RL domain. The major aspect of trans-
fer learning (TL) is based on the concept of knowledge
transfer happening between different source and target tasks
that are closely related to each other. Subsequently, this
knowledge transfer is intended to enhance the performance
of the ML system’s algorithm that would be employed to
learn the target task. Within the context of RL, the notion of
transfer is majorly concerned about coming up with differ-
ent approaches and techniques to enable knowledge transfer
originating from a group source tasks to a target task. This
methodology is proven to be delivering impressive results
whenever there is a high amount of similarity between the

VOLUME 9, 2021 44683



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

source tasks as well as target tasks [7]. Especially when the
level of similarity between two ends meets high, the process
of knowledge transfer is observed to be happening quite
smoothly such that this knowledge transferred in manner
plays an important role in assisting the target task’s algorithm
to solve the tasks with a high level of efficiency. The major
reason behind the success of the above scenario is due to
the advantage provided by the positive knowledge transfer.
This in turn enables the target task’s algorithm to optimize its
performance level in an easier way than spending more time
for it to gain the same amount of knowledge by using more
amount of the target task’s data sample. Different TL mech-
anisms that are oriented on the aforementioned approach
have been deployed within various RL algorithms based on
single-agent [8].

Similar kinds of approaches also experimented with multi-
agent systems, and agents operating within the same envi-
ronment interact among them as a means for exchanging the
knowledge gained from their respective actions [9]. Typically,
the design of multi-agent systems uses a joint policy that
is learned by agents from the source task, and further on
same knowledge will be used to generate the initial policy
for the agents to use within the context of the target task [10].
Knowledge transfer is made possible among the source and
target tasks by adopting different transfer techniques like
instance transfer, representation transfer, or parameter trans-
fer. On all these approaches, algorithms that handle the
knowledge transfer rely majorly on the prior knowledge gath-
ered while attempting to solve the same kind of source tasks,
and then leverage on that as a reference to bias the approach
or learning to be followed on a new task [7].

B. LEARNING SHARED REPRESENTATIONS
Learning the shared representations for value functions is a
technique that is quite analogous to transfer learning-oriented
methodology. The base of this method lies in the neural
network’s function approximation capability and how it could
be applied to the domain of RL [3]. The key success factor
behind the usage of DNN with RL lies in DL algorithms’
capability to distill data representation in a quite meaningful
manner from the operating environment’s high-dimensional
input state space [11]. Due to this capability, RL’s effective
applicability into a wide spectrum of problems with complex
real-life problems with high-dimensional input state space
was made possible. Before the adoption of DL into RL space,
such an attempt always demanded the application of feature
engineering at a great level of effort [3]. The major success
factors behind the application of DL into RL problems greatly
demand two conditions – firstly the capability to derive a
high-quality abstraction of the agent’s operating environ-
ment, and secondly effective agent’s role within its operating
environment [12]. The major driving factor behind learning
sharing representations lies in the idea that the group of dif-
ferent tasks that the agent needs to encounter in the operating
environment will highly likely to have a great degree of a
shared structure as well as an in-built redundancy [7]. Having

a technique in place with the design, and the ability to abstract
the aforementioned factors would play a pivotal role in accel-
erating the whole learning process by an agent. Learning
shared representations provides this capability to have this
milestone by learning the robust, transferable abstractions
of the environment. This is majorly because those elements
possess the ability to generalize over a group of tasks that an
agent needs to deal with while operating within its environ-
ment [13].

The idea of value function plays an important role with the
space of RL as it is being extensively used in conjunction with
functional approximation methodology to generalize over the
large-sized state-action space of the operating environment
within which an agent needs to function [14]. The signif-
icance of value function lies in its ability to determine the
quality of a specific state that an agent needs to be in while
in an environment. Value functions often have the ability
to demonstrate the compositional structure concerning the
state space and goal states [15]. Empirically, prior research
efforts have proven that value functions could effectively
capture as well as represent knowledge beyond their current
goal, and this could be efficiently leveraged or re-used for
future learning purposes [14]. It is possible to learn the value
of optimal value-functions by efficient usage of space of
state-action values that are exchanged among the tasks that
an RL agent encounters and deals with during its operation
within the operating environment. This could be made pos-
sible by having the ability to accommodate the aforemen-
tioned common structure into the following value iteration
and policy-iteration procedures namely fitted Q-iteration and
approximate policy iteration respectively [16].

C. PROGRESSIVE NEURAL NETWORKS
The design of this approach is based on leveraging the func-
tion approximation ability of the neural network and having a
high degree of similarity with transfer learning methodology.
The challenges related to achieving the optimal performance
on the multi-tasking in DRL were about the effective applica-
tion of TL and eliminating the catastrophic forgetting. As an
answer to these issues, extensive research efforts were carried
out, and as a direct result of that, an approach named progres-
sive neural networks was proposed. The technique possessed
the capability to mitigate the impacts of catastrophic forget-
ting and derived a way to utilize prior accumulate knowledge
by using the lateral connections to features that are learned
already. The progressive neural network method is proposed
by DeepMind as a multi-tasking technique by adopting the
idea of lateral features transferring with neural networks [17].
The major aspect of the proposed model by this methodology
is having not only the capability to learn new tasks but also to
maintain the prior knowledge gathered by using neural net-
works. The main objective of having a series of progressive
neural networks is to conduct the knowledge transfer across
a group of tasks quite efficiently. Theoretically, the design
of the progressive neural networks is for achieving two key
objectives. Firstly, to establish a system having the capability

44684 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

to efficiently incorporate the previously gathered knowledge
while conducting the learning at each layer of the whole
feature hierarchy. Secondly, in order to come up with a
system having enough immunity to handle the impacts of
catastrophic forgetting [7].

The major benefit of adopting this methodology is that
progressive networks possess the capability to retain a set of
pre-trained models whole throughout the training cycle [17].
Along with this, it can utilize the pre-trained model to learn
lateral connections and thereby derive useful features needed
for new tasks in the future. Having an approach with such
abilities brings the combination of both richer composition-
ality and an easy room for the integration of previously
acquired knowledge at every layer of feature hierarchy. The
continual nature of learning associated with this approach
facilitates the agents to both learn a group of tasks that are
encountered in a sequence as well as gives the capability to
perform knowledge transfer from previous tasks to enhance
the overall convergence speed [18]. Progressive networks
combine both these aspects into model architecture where
catastrophic forgetting is eliminated by instantiating a new
neural network for each of the tasks that are being solved
during an agent’s lifetime within its operating environment.
In addition to this, transfer of knowledge is made possible
through the lateral connections to the list of features from
the prior learned neural network columns [17]. At any given
time step t , when a new task is learned, the model appends
a new column of knowledge into its current framework as a
new neural network unit. Subsequently, the newly added unit
would be usedwhile learning the successive tasks. Each of the
new column or neural network units created would be trained
to solve a specific Markov decision process (MDP) [17]. One
of the plausible drawbacks related to this approach is that this
could lead to a computationally expensive model as its size
could be growing as well with the progress in the learning
cycle.

D. PathNet
PathNet is another multi-task RL methodology designed for
the purpose of achieving artificial general intelligence (AGI)
by joining together the aspects of transfer learning, continual
learning, and multitask learning [18]. The core design aspect
of PatheNet lies with a neural network-oriented algorithm that
utilizes multiple agents which are deployed within the neural
network. The major role of each agent is to identify which
all parts of the network could be re-used while learning new
tasks [19]. All agents are being treated as pathways (known
by the name genotypes) within the ecosystem of the neural
network to decide the subset of parameters that could be
utilized during the learning process [20]. All of these param-
eters used within the forward propagation of the learning
cycle undergo updates at the backpropagation phase of the
PathNet algorithm. During the learning process, a tournament
selection genetic algorithm would be deployed for selecting
the pathways through the use of a neural network. During the
operation, various actions carried out by the agents inside the

neural network build a knowledge database on the efficient
re-use of environment parameters for new tasks or actions.
All of the agents are designed to function in a parallel manner
along with all the other agents present within the system who
would be involved in learning other tasks as well as sharing
parameters among them for facilitating the positive transfer
of knowledge [20].

Generally, PathNet architecture is made up of DNN having
L layers, with each of them havingMmodules. Then each one
of these modules itself would another neural network. Con-
solidated outputs of modules belonging to each layer would
then sent into the active modules residing in the subsequent
layer [7]. For every individual layer, there would a limit on
the maximum number of modules that could be supported for
each of the pathways, and often this number lies between 3 to
4 [20]. The final layer within each of the neural networks for
each of the tasks that are being learned will be always unique.
More importantly, this would not be shared with any of the
remaining tasks running within the operating environment.
One major advantage of the PathNet approach lies within the
re-usability factor by which neural networks could leverage
and learn from existing knowledge databases, and thereby
save time by avoiding learning from scratch for the new tasks.
The impact of this would bemore prevalent within the context
of RL, as there could more interrelated tasks within the wide
action space associated with the operating environment. The
PathNet approach has shown impressive results for positive
transfer of knowledge for various datasets like binaryMNIST
(Modified National Institute of Standards and Technology),
CIFAR-100 (Canadian Institute For AdvancedResearch), and
SVHN (The Street View House Numbers) supervised learn-
ing classification tasks. The same kind of results has been
obtained with several Atari2600 gaming and Labyrinth RL
tasks.

E. POLICY DISTILLATION
Policy distillation (PD) and actor-mimic (AM) are the two
approaches that are based on the concept of distillation
intended to achieve multi-task DRL. The core objective of
distillation lies in the factor of minimalization in terms of
the costs of computations associated with ensemble meth-
ods [21]. The idea of an ensemble can be viewed as a group
of models wherein the prediction outputs of this group are
joined with help of either a technique of weighted average or
voting [22]. Studies on ensemble methods were of the promi-
nent research fields within the past decade. The most famous
ensemble-oriented methods are namely bagging, boosting,
random forests, Bayesian averaging, and stacking [22]. Two
major drawbacks related to ensemble-based methods are in
terms of their huge memory requirements for operation as
well the amount of time needed for execution during run-
time. The need for relatively high execution time makes them
slow in terms of generating the output. To mitigate these
issues, a distillation methodology was suggested, which is
designed based on the model compression approach. The
main objective of this approach is to compress the learned

VOLUME 9, 2021 44685



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

function by the complex model, which is an ensemble to a
much scaled-down and faster model that has got a relatively
comparable level of performance with the original ensem-
ble [22]. Subsequently, this same approach was mapped into
the domain of neural networks [23].

By leveraging model compression, PD is being consid-
ered as an approach that could be used for the purpose
of extracting the policy of an RL agent. Following this,
the same policy could be utilized towards training a new
network at an optimum level with a relatively smaller size
and a higher level of efficiency. Following this, an intelligent
agent could utilize the same approach for the consolidation
of multiple task-oriented policies into one policy. Earlier
research efforts conducted on the PD front were mostly car-
ried out by an RL algorithm namely DQN (deep Q-network).
With this, the PD method could be utilized in an effective
way to transfer one or more than one active policy from
a DQN to another network that is untrained [7]. DQN is
a famous, state-of-the-art model-free technique deployed in
RL with the help of deep neural networks (DNN). This
model functions within an environment having a discrete
set of action choices. DQN was proven to exhibiting a per-
formance level that outperforms human-level scores on a
collection of multiple Atari 2600 games [3]. In this con-
text, the distillation approach could be applied both at a
single task level as single game policy distillation. Similarly,
the same could be applied at a multi-task level as a knowl-
edge transfer technique from a teacher model T to a student
model S. Within the single task-based policy distillation,
the responsibility of data generation would be handled by
the teacher network, which is a trained DQN agent, and
following this a supervised training would be performed
by student network. To achieve multi-task PD, n different
DQN-based single-game experts (agents) would be trained
independently [22]. Later on, all of these individual agents
generate both the inputs and target date, which are stored
inside memory buffers. Subsequently, the distillation agent
uses all of these n different data stores sequentially for
learning.

F. ACTOR-MIMIC
The major design aspect and most desired characteristic of
an intelligent agent lies with its ability to act under differ-
ent operating environments, accumulate information, then
subsequently perform knowledge transfer from those past
experiences gathered to new situations. The idea behind the
actor-mimic is based on the aforementioned methodology
with a special focus on aspects such as multi-task learning
and transfer learning. Having these two abilities would make
an intelligent agent on learning efficiently on how to handle
and act concurrently with multiple tasks, and subsequently,
generalize that knowledge gathered or accumulated to the
new domains [24]. Typically, actor-mimic could be perceived
as a technique to train a single deep policy network with
the help of a set of source tasks that are related. Empir-
ically, it is shown that impressive levels of performance

could be achieved by using models that are trained with this
approach on several games. Specifically, with a high amount
of similarity level between source as well as target tasks,
features that are learned while training source tasks could be
quite efficiently used for the generalization of target tasks’
training [25].

The actor-mimic methodology utilizes the power of both
DRL as well as model compression techniques to train a
single policy network. The key intention behind the usage of
such a trainingmethod is to enable the network to gain knowl-
edge on how to act within a group of distinct tasks under the
guidance of multiple expert teachers [7]. Subsequently, rep-
resentational knowledge gathered by the DRL policy network
could be leveraged towards generalizing the new tasks with-
out having any sort of anterior expert guidance. Validation
of this technique was majorly carried out within the arcade
learning environment (ALE) [26]. Generally, actor-mimic
is being considered as part of the larger imitation learning
class of methods. These methods are generally rooted in the
idea of adopting expert guidance to train an agent on how
to act within a particular operating environment. Under the
imitation learning methodology, a policy would be directly
trained to mimic an expert’s behavior while sampling the set
of actions from the mimic agent’s space [24].

G. ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC
Google DeepMind proposed the idea of a simultaneous,
parallel learning-based training approach towards multi-task
learning, and formulated an algorithm by the name A3C
(asynchronous advantage actor-critic). According to this,
multiple intelligent agents, which are also called workers,
will be running simultaneously in a parallel fashion within
different instances of the same operating environment [4]. All
the workers that are running within the environment will be
in charge of updating a global value function asynchronously.
The key essence of this approach lies in the fact that at
the time of training each of these individual agents, at any
given time-stamp t , each of these agents would be undergoing
through different states within the environment. This property
offers them an independent and unique way of learning. The
impact of this unique A3C algorithm will be in a position
to deliver each of the agents with a very highly efficient
learning trajectory within the vast state space of the operating
environment [27]. A3C is designed as an enhancement of
the original actor-critic methodology, which is having two
different, independent neural network units- one for the actor
module and the other one for the critic module with its loss
functions [7]. At the basic level, an actor module could be
treated as a function approximator unit that governs agent
at each state, in a quite similar way as being judged by RL
methods like Q-learning or in REINFORCE. In these two
approaches, a neural network calculates either a function that
leads to the calculation of policy or deriving the policy itself
directly [28]. When it comes to the critic module, it acts
as a more sort of judging unit which effectively evaluates
the effectiveness of the policy created by the actor and then

44686 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

provides feedback on the same which helps further enhance-
ment of the future policy calculations [4].

IV. RELATED WORK
This section provides the details on the related work done
on the multi-task DRL front. Before the inception of deep
reinforcement learning, most of the multi-task-oriented algo-
rithms relied on transfer learning to realize proper control
over different tasks. Besides, some research efforts were
carried out to investigate the joint training of multiple value
functions or policy functions over a set of tasks [29], [30].
However, the functionalities of all of these algorithms were
limited by handcrafted features. Even though a huge amount
of work has been done to improveDRL algorithms over single
tasks, relatively there is much less amount of work done
for multi-task scenarios. Some of those research attempts
either focused on the exploration and generative models or
explored learning universal abstractions of state-action pairs
or feature successors, which are quite similar to transfer
learning methodology [31]. DiGrad (Differential Policy Gra-
dient) is an approach developed for simultaneous training
of multiple tasks sharing a set of common actions in con-
tinuous action spaces. The proposed framework is based on
differential policy gradients and can accommodate multi-task
learning in a single actor-critic network. This framework
was designed predominantly for efficient multi-task learn-
ing in complex robotic systems and tested on 8 link planar
manipulators and 27 degrees of freedom (DoF) Humanoid
for learning multi-goal reachability tasks for 3 and 2 end
effectors respectively [32]. Another research work related to
the multi-task learning done was based on the model-based
approach to deep reinforcement learning which we use to
solve different tasks simultaneously. This model was devel-
oped with a recurrent neural network inspired by residual
networks that decouple memory from computation allowing
to model complex environments that do not require lots of
memory [5]. Another relevant work at the multi-task front
done was mainly attempting to address the partial observ-
ability issue of RL with help of the deep decentralized
multi-task multi-Agent reinforcement learning method [33].
It was based on a decentralized single-task learning approach
that is robust to concurrent interactions of teammates and
presented an approach for distilling single-task policies into
a unified policy that performs well across multiple related
tasks, without explicit provision of task identity [34]. The
diffusion-based Distributed Actor-Critic (Diff-DAC) is a
deep neural network-oriented distributed actor-critic algo-
rithm designed to single-task and to average multitask rein-
forcement learning (MRL). In this method, each agent is
having access to data from its local task only, and during the
learning, process agents share their value-policy parameters
with neighbors to converge to a common policy but without
having a central node [35]. For the remainder of this section,
we will mainly focus on comparing and contrasting the three
state-of-the-art approaches namely Distral, IMPALA, and
PopArt.

A. DISTRAL
Distral (DIStil and TRAnsfer Learning) is one of the well-
known approaches developed by google DeepMind for the
purpose of multi-task training. It is a prototype made for
concurrent RL with more than one task [36]. The key design
objective was to build a generic model to distill the cen-
troid policy first and following this transfer the commonality
details and behavior patterns of multiple workers operating
within multi-task RL context. Rather than following a param-
eter sharing-based policy among the multiple worker agents
operating in the environment, Distral’s design methodology
mainly focuses on distributing a distilled policy to individual
workers, and this policy should conceive the commonality
in behavior across multiple related tasks. Once the distilled
policy is derived, then the same can be used to govern the
task-specific policies by adopting regularization with the help
of Kullback-Leibler (KL) divergence [24]. By this method,
initially, knowledge gathered from one task would be distilled
in the form of a shared policy, subsequently, the same knowl-
edge could be transferred to other related tasks operating
in the environment. By adopting this methodology, each of
the individual workers would be trained independently to
solve their task, in such a way that each of the workers
could be staying more in line with shared policy. Training
for this policy will be conducted with the help of the dis-
tillation process that serves as centroid for all the individ-
ual task policies [36]. This approach is found to present
impressive results in terms of the transfer of knowledge
within complex 3-dimensional operating environments for
RL problems.

Empirically it has been observed that the Distral approach
often outperforms the traditional methods, by a significant
margin, that are oriented on parameter sharing policy of
neural networks towards achieving multitasking or transfer
learning. The two key reasons behind this are mentioned
below. Firstly, its due to the level of impact distillation has
got on the process of optimization. It is more prevalent while
adopting KL divergences as a primemethod to regularize task
models’ output in deriving the distilled model extracted from
each of the policies of individual tasks. Secondly, the appli-
cation of distilled model itself as a means to regularize to
train the individual taskmodels within the environment.More
importantly, the application of the distilled model as a method
to regularize comes with the notion of regularizing the col-
lection of individual workers in a much impactful manner by
stressing on task policies by more margin than at the level of
parameter [20].

B. IMPALA
Google DeepMind came up with another well-known multi-
task learning approach by the name IMPALA (Importance
Weighted Actor-Learner Architecture). It is based on the idea
of having a distributed agent architecture that is designed by
adopting the model of a single RL agent with only one set
of parameters. The core design characteristic of the IMPALA
model is about operating environment flexibility. This model

VOLUME 9, 2021 44687



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

is designed with the ability to not only in the efficient uti-
lization of resources within a single-machine-oriented train-
ing environment but also it can be scaled to operate with
multiple machines without the need to sacrifice both data
efficiency and utilization of the resource. By following a
novel off-policy correction method by the name V-trace,
IMPALA is capable of gaining quite a stable learning tra-
jectory with a very high throughput level by combining
both decoupled acting as well as learning [37]. In gen-
eral, the DRL model’s architecture follows the notion of a
single learner (also known as a critic) clubbed with many
numbers actors. Under this ecosystem, initially, each of the
individual actors creates its learning parameters called tra-
jectories and subsequently shares that knowledge with the
learner (critic) by following a queue mechanism. The learner
subsequently accumulates the same kind of knowledge tra-
jectories from all of the multiple actors operating within
the environment, which eventually acts as a source of infor-
mation to prepare the central policy. Before starting the
next learning cycle (trajectory), all of the individual actors
operating within the environment gather the updated policy
parameters details from the learner(critic module) [37]. This
approach is quite analogous to the popular RL algorithm
named A3C. The architecture of the IMPALA was inspired
hugely by the same algorithm. RL algorithm model used
within the IMPALA follows a topology of a system having
a group of actors and learners who build knowledge through
collaboration.

The design of the IMPALA leverages an actor-critic-based
model to derive a policy π and, a baseline value function
named Vπ . Major units of the IMPALA system consist of
a group of actors that generates g trajectories of experience
in a continuous manner. In addition to this, there could
be at least one or more than one learner that leverage the
generated trajectories shared from the individual actors to
learn the policy π , which is an off-policy. At the beginning
of every individual trajectory, an actor initially updates its
local policy µ to the latest learner policy π . Subsequently,
each actor would adopt and run that policy for n number
of steps in its operating environment [37]. Upon completion
of these n steps, each of the individual actors sends another
set of information consisting of - the trajectory of states,
actions, and rewards together with related policy distribu-
tions to the learner. In this manner, the learner will have
the opportunity to continuously update its policy π each
time whenever the actors share their trajectory information
from the environment. In this fashion, IMPALA architecture
gathers experiences from different individual learners within
the environment, which are further passed to a central learner
module. Following this, the central learner calculates the
gradients and then generates a model having a framework
of independent actors as well as learners. One of the major
characteristics of the IMPALA architecture is its operational
flexibility which allows the actors to be present either on the
samemachine or it can be evenly distributed across numerous
machines.

C. PopArt
A third approach by the name PopArt proposed by Google
DeepMind came out as a solution to mitigate the issues asso-
ciatedwith the existing IMPALAmodel. PopArt was aimed to
address the reasons behind the suboptimal performance fac-
tors and thereby enhance the RL in multi-task-oriented envi-
ronments. The core design objective of PopArt is to reduce
the impacts of the distraction dilemma problem associated
with the IMPALA model and, thereby stabilize the learning
process in a better way to facilitate the adoption of multi-task
RL techniques [38]. The term distraction dilemma refers to
the probability of learning algorithms getting distracted only
by a fraction of few tasks from the large pool of multiple tasks
to be solved. This scenario in turn leads to the challenges
related to resource contention. It is about establishing the
right balance between the necessities of multiple tasks oper-
ating within the same environment competing for a limited
number of resources offered from a single learning system.
The design methodology of the PopArt model is based on
the original IMPALA architecture model by adding multi-
ple CNN layers combined with other techniques like word
embeddings with the help of a recurrent neural network of
type long-short term memory (LSTM) [38].

PopArt model functions by gathering the trajectories from
each of the individual tasks to the RL agent’s updates. In this
manner, the PopArt model makes sure that every agent within
the environment will have its role, subsequently proportional
impact during dynamics of overall learning. The key design
aspect of the PopArt model relies on the fact that modifying
the weights of the neural network, will be based on the output
of all tasks operating within the environment. During the
first stage of operation, PopArt estimates both mean as well
as the spread of the ultimate targets such as the score of a
game across all tasks under consideration. Following this,
PopArt capitalizes on these estimate values to normalize the
targets before making an update on the network’s weights.
This approach in turn makes the whole learning process more
stable and robust. With the set of various experiments con-
ducted with popular Atari games’ environment, PopArt has
demonstrated its capabilities and improvements over other
multi-task RL architectures [38].

V. HYBRID MULTI-TASK LEARNING MODEL
The major motivation behind the proposed hybrid multi-task
approach is to address and mitigate some of the key chal-
lenges associatedwithDRLmulti-tasking, which are not fully
covered by the state of the art. In this paper, we extend our
approach in [39] to address the DRL agent’s performance
optimization bottlenecks by adopting the hybrid multi-task
learning-based approach in complex operating environments
having a higher number of distinct DRL agents. Besides,
this work also examines the impact of semantic dissimi-
larity of DRL agents’ tasks on the overall momentum of
performance optimization. The challenges such as partial
observability, amount of the training time as well as train-
ing data samples required, and effective exploration often

44688 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

act as the bottlenecks in the performance optimization of a
DRL agent.

The proposed approach named the hybrid A3C model is
an attempt to address most of these aspects, by extending
the basic actor-critic model to two different environments
with a high level of semantic similarity. The key aspect the
of A3C algorithm is its ability to learn multiple instantia-
tions of a single target task simultaneously, and also its abil-
ity to improve the model’s performance by transferring the
knowledge between multiple instantiations [4]. The proposed
hybrid A3C approach will be leveraging this key aspect and
will attempt to achieve this objective across, two different
by semantically similar environments with related tasks. The
hybrid approach will be heavily relying on the applicability
of the multi-threaded capability of the A3C algorithm across
semantically related tasks running in two different environ-
ments. The proposed approach could be treated as a model
running two threads of the A3C algorithm, wherein each
thread will be managing the multiple instantiations of the
tasks running in each environment. Each of these individual
threads would consider itself as a subtask such as A and
B, with each of them sharing its learning with the learner
in an asynchronous manner. Further on, the learner (global
network) will be converging the knowledge from both of
these threads and deducing a new policy, that will be applied
back on the threads. The key aspect of the hybrid approach
is only to enhance the performance of the RL agent through
a joint-learning through multi-task learning approach by
using deep reinforcement learning. Fig. 2 shows a high-level
architecture model of the proposed hybrid multi-task
approach.

The hybrid A3C model deploys multi-threaded asyn-
chronous variants of the advantage actor-critic algorithm.
The major objective behind designing this model is to find
a methodology that can train deep neural network policies
reliably and without large resource requirements. During the
construction of the hybrid A3C model, initially, we con-
ducted its validation on a desktop-based environment which
is having a dual-core CPU on a single machine. Under this
environment, we have conducted basic level testing with a
pair of actor-learner worker threads. With this, one (actor-
learner) worker thread was assigned to run the task from each
game’s environment. Throughout the execution, this model
asynchronously attempts to derive and optimize the global
policy based on the observations that multiple actors-learners
running in parallel are likely to be exploring different parts
of the environment. At an individual actor-learner module
level, it is possible to have different exploration policies in
each module to maximize this diversity. In this way, hav-
ing different exploration policies in different threads of the
actor-learner module, the overall changes being made to the
global network parameters by these different actor-learners
applying asynchronous updates in parallel are likely to be less
correlated. This model is designed to run on a single machine
with a standard multi-core CPU and applied to a variety of
Atari 2600 domain games for testing.

FIGURE 2. The architecture of the hybrid parallel multi-task model.

The semantic similarity aspect of the related tasks running
two different gaming environments is the most vital factor
to achieve the above-mentioned objectives, which otherwise
give challenges in terms of negative knowledge transfer.
Negative Transfer is considered to be one of the key chal-
lenges while dealing with the multi-tasking aspect within the
reinforcement learning domain. The main idea of knowledge
transfer learning in a multi-task context is that transferring
knowledge accumulated from learning from a set of source
samples under one agent may improve the performance of
another task agent while learning on the target task [24].
However, this knowledge transfer could impact the overall
learning progress and performance of the agent in either way,
positively or negatively. If there is a considerable difference
between the source tasks and target tasks, then the transferred
knowledge could create a negative impact.

Having multiple environments with a high level of
semantic similarity would in-directly improve the par-
tial observability by exchanging the learning across the
agent’s operating environment [40]. Similarly, having mul-
tiple actor-critic models operating simultaneously across
two semantically similar environments would mitigate RL
agent’s issues associated with effective exploration, sufficient
amount of training samples, and the training time required to
reach an optimized performance level.

A. ACTOR-CRITIC METHODOLOGY
Unlike some simpler techniques which are based on either
value-iteration (Q-learning) methods or policy-gradient (PG)
methods, the actor-critic(AC)methodology combines the best
parts of both the methods, which are the algorithms that pre-
dict both the value function V(s) as well as the optimal policy
function π (s). In other words, actor-critic methods consist of
two models, namely an actor module and a critic module.
Thereby AC attempt to combine the aspects of both policy
gradient and value gradient into a single model. Fig. 3 shows
the diagram of actor-critic methodology.

The actor acts as a policy network, that decides for a given
state s which action a to be taken at each given time step t .

VOLUME 9, 2021 44689



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 3. Actor-Critic model.

FIGURE 4. A single thread of actor-critic worker execution.

The critic consists of a value network Vπ (s, a) that tells how
promising action is under the current state s. Having said that,
in its role critic outputs an evaluation value V(s, a) for the
actor, which indirectly helps the actor to adjust its policy for
better results. At the same time, both actor and critic networks
update themselves according to the knowledge gathered by
their respective neural networks from the environment. This
internally helps the agent to converge its policy to the optimal
policy π∗θ . In summary, the critic module updates the value
function parameters w, and depending on the algorithm it
could be either action-value Qw(a|s) or state-value Vw(s)
whereas the actor module updates the policy parameters θ for
πθ (a|s), in the direction suggested by the critic.
Fig. 4 shows the single actor-critic worker agent

flowchart [41]. The learning agent uses the value from the
value function calculated by the critic module to update the
optimal policy function of the actor module. Note that here
the policy function means the probabilistic distribution of
the action space. To be exact, the learning agent determines
the conditional probability P(a|s;θ ) which otherwise means
parametrized probability that the agent chooses the action a
when in state s. The policy is often modeled as a function
πθ (a|s) that is parameterized to θ . The value of the DRL
agent’s reward function depends on this policy, and the algo-
rithms are used to optimize θ . The reward function is defined
as below, wherein dπ (s) notation refers to the stationary
distribution of Markov chain for πθ (for the on-policy state
distribution under π ).

J (θ) =
∑
sεS

dπ (s)V π (s) (2)

=

∑
sεS

dπ (s)
∑
aεA

πθ (a | s)Qπ (s, a) (3)

Within the AC model, the critic is in charge of updating
the value function parameters w, and based on the DRL
algorithm it could be either an action-value function Qw(a|s)
or state value function Vw(s). Based on the details of the value
function shared by the critic, the actor updates the policy
parameter θ for the πθ (a|s). The execution of an actor-critic
algorithm can be explained by the below steps [42].

1) Initialize s,θ ,w at random, and sample a ∼ πθ (a|s)
2) For t = 1 . . . T :

a) Sample reward Rt∼R(s,a) and next state
s‘∼P(s‘|s,a);

b) Then sample next action a‘ ∼ πθ (a‘|s‘)
c) Update the policy parameters: θ ← θ +

αθQw (s, a)∇θ lnπθ (a | s) ;
d) Compute the correction (TD error) at time t for

action-value:
i) δt = rt + γQw (s‘ | a‘)− Qw(s, a)
ii) Use it to update the parameters of the

action-value function as given w ← w +
αwδt∇wQw(s, a)

e) Update a← a‘ and s← s‘
Both the learning rates αθ and αw, are predefined for policy
and value function parameter updates respectively.

B. ACTOR
An actor is a module that controls how a policy-based DRL
agent behaves within an environment. The actor takes as input
the state and outputs the best action. It essentially controls
how the agent behaves by learning the optimal policy π∗. The
policy-based algorithms such as Policy Gradients (PG) and
REINFORCE try to find the optimal policy directly without
the Q -value as the intermediate step. Often an actor could
be a function approximator such as a neural network with its
objective as to identify the best action while a DRL agent is
in a state St at time step t . The neural network could be either
fully connected or a CNN.

C. CRITIC
The critic, on the other hand, evaluates the action by comput-
ing the value function (value-based). The role of the critic is
to evaluate how good an action is taken by the agent with the
help of a value-based approach. As in the case of the actor,
the critic also could be a function approximator such as a
neural network. The result is that the overall architecture will
learn to play the game more efficiently than the two methods
separately.

D. ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC(A3C)
A3C is a state-of-the-art DRL algorithm developed based on
the AC methodology. This algorithm is designed to function
both in discrete and continuous action space environments
and can be treated as the multi-thread version of the original
AC algorithm. A3C makes the AC algorithm converge faster
by running multiple agent threads [43]. Each of these threads
consists of an independent actor-critic pair that interacts with

44690 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 5. The ecosystem of single A3C worker thread with Atari 2600.

the environment simultaneously. The agents, which are also
known as workers, are trained in parallel and update peri-
odically a global network, which holds shared parameters.
The updates are not happening simultaneously and that’s
where the asynchronous comes from. The unique exploration
experience offered by each of the global actor-critic networks.
With such multiple threads sharing the experience with a
global network in an asynchronous fashion, A3C eliminates
the bias of continuous experience trajectory by feeding only
a small batch of experience tuple (s, a,r,s‘) at any time. After
each update, the agents reset their parameters to those of the
global network and continue their independent exploration
and training for n steps until they update themselves again.
With this approach, the information flows not only from the
agents to the global network but also between agents as each
agent resets its weights by the global network, which has
the information of all the other agents. Fig. 5 shows the
ecosystem of a single actor-critic worker.

A3C uses a deep neural network to model both a policy
network π (at |st ; θ ) and a value networkV (st ; θ ). For a given
state St , the policy network (which is the ‘‘actor’’) predicts
the optimal action to take at St while the value network
(which is the ‘‘critic’’) approximates the future reward from
taking the optimal action at St . By theory, these two networks
are separate, but in practice, we use the same convolutional
layers for both the policy and value networks with separate
output layers at the end. The Asynchronous nature of A3C
means that multiple actor-critic threads are running at the
same time, each with its environment. Each thread steps
through its environment with its own local CNN, periodi-
cally updating a globally shared CNN wherein all networks
have an identical architecture. For each thread, at every tmax
local steps or when a terminal state is reached, that thread
syncs its local parameters with the global parameters, com-
putes gradients, and applies them upstream to the global
network [41].

A3C follows online learning by adopting a policy gradient
method, directly from the states as they are processed by
each worker agent thread. The policy is developed naturally
as each thread runs within its stochastic Atari 2600 based
gaming environment and updates to the global parame-
ters. Fig. 6 indicates the worker agent architecture with
CNN.

This methodology suggests that A3C does not overfit to
any particular state trajectory of a specific worker thread.
The notion of Advantage A is used to measure the difference
between the expected reward and estimated reward. By using
the value of advantage instead, the agent also learns how
much better the rewards were than its expectation. This gives

FIGURE 6. The architecture of the worker agent thread in A3C.

a new-found insight to the agent into the environment and thus
the learning process is better. The advantage metric is given
by the following expression

Advantage : A = Q(s, a)− V (s) (4)

where Q refers to the Q value calculated by the critic module
based on the actual reward and TD error following an actor’s
policy-based chosen action. The Advantage function named
A(Stat ; θ, θv) is calculated that needs to be discounted future
rewards accumulated to tmax or at the terminal state.

A(Stat ; θ, θv) =
∑k−1

i=0
γ irt+1 + γ kV (st+k ; θv)− V (st ; θv)

(5)

Gradients associated with both policy and value networks are
denoted by the following equations (6) and (7) respectively,
which are calculated by summing over all the states in the
past tmax local iterations of each worker agent thread’s exe-
cution [41].

∇θ ‘ logπ(at |st ; θ )A(st , at ; θ, θv) (6)

dθ = dθ + ∂(R− V
(
st ; θ ‘V

)
)
2
/∂θ ‘ (7)

The pseudocode of the A3C algorithm for each worker agent
thread within the hybrid multi-task model is given by the
algorithm mentioned below [4].

VI. IMPLEMENTATION OF HYBRID MULTI-TASK SYSTEM
PROTOTYPE
This section details the methodology adopted towards the
prototype implementation of the proposed hybrid multi-task
model which is based on the A3C algorithm. Throughout the
implementation, the prototype was tested with various games
under the Atari 2600 environment provided within the Ope-
nAI Gym [44]. The Gym library is a toolkit made by OpenAI
for developing and comparing RL algorithms. The first stage
of the hybrid multi-task model was constructed by adopting
the A3C algorithm for the gaming environment Breakout-
v0. The high-level architecture of the model is based on the
actor-critic methodology. In our context, the actor is a neural
network that parameterizes the policy π (a | s) and critic is
another neural network that parameterizes the value function
V(s). The policy network outputs the policy (π), based on
which the actor chooses an action within the environment,
and the value network outputs the value function V(s). Each

VOLUME 9, 2021 44691



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

Algorithm A3C Algorithm – Pseudocode for Each
Actor-Leaner Thread
// Assume global shared parameter vectors θ and θvand
global shared counter T = 0
// Assume thread-specific parameter vectors θ1 and θ ‘v
Initialize thread step counter t ← 1
repeat

Reset gradients dθ ← 0 and dθv← 0
Synchronize thread-specific parameters θ ‘ = θ and
θ ‘v = θv
tstart = t
Get state st
repeat
perform ataccording to the policy π (at |st ; θ ‘)
Receive reward rt and new state st
t ← t + 1
T ← T + 1
until terminal st or t − tstart == tmax
R = {0 terminal st
R =

{
V (st , θ ‘v) for terminal st //Bootstrap from last

state
for i ∈ {t − 1 . . . tstart do
R← ri + γR
Accumulate gradients wrt
θ ‘ : dθ ← dθ +∇θ ‘ logπ (ai|si; θ

‘)(R− V (si; θ ‘v))
Accumulate gradients wrt
θ ‘v : dθv + ∂(R− V (si; θ

‘
v))

2
/∂θv

end for
Perform asynchronous update of θ using dθ and of
θ using dθv

until T > Tmax

of these networks has its respective weights which are often
represented by notations such as θp and θv.

π (a|s, θp) = Neural Network (input : s, weights : θp)

(8)

V (s, θv) = Neural Network (inputs, weights : θv) (9)

A more graphic intense Atari 2600 game environment
named- Breakout-v0 is being relatively treated as a complex
environment as we will be having an infinite number of
state-action spaces to deal with. To accommodate and handle
this environment, the neural network-based model was used
for the validation. At the root level, this environment will
employ a pair of CNN models to implement both actor and
critic modules for a single worker. There will be multiple
instances of the CNN class objects to implement the multiple
worker threads used within the multi-task model. Similarly,
the global network was also deployed as a pair of CNN to
support the implementation of actor-critic modules at the
global network level.

Fig. 7 shows the high-level architecture view of the
multi-task model having N worker threads of execution coor-
dinated and managed by a global network. Each of these

FIGURE 7. A3C multi-task worker agent model.

FIGURE 8. Training workflow of worker agent thread.

individual blocks is made up of a pair of CNN networks,
each for the actor(policy) and critic (value function) modules.
In other words, A3C utilizes N worker agents attacking the
same game environment while being initialized differently.
This indirectly points out that each of these agents starts at a
different point in their environment so they will go through
the same environment in different ways to solve the same
problem.

Fig. 8 shows the training workflow of each worker agent.
Within the A3C-based multi-task worker agent environ-

ment, each of the individual worker agents is managed by
the global network directly. Under this scheme, initially, each
of the workers is reset with parameter values shared by the
global network, later on, the worker interacts with its copy of
the environment. Even though each of the worker agents is
operating within the same game environment, they are being
initialized differently. This allows each of these agents to start
at a different point in their environment. During its operation,
each worker agent plays a fixed number of game episodes
and calculates the value and respective policy loss. As these
modules, both actor and critic are implemented using the
neural network, gradient values are calculated from the losses
incurred during its operation. These gradient values will be
shared with the global network after the work agent finishes
a fixed number of game episodes. The algorithm behind the
operation of the A3C multi-task worker agents’ model is
mentioned below.

44692 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

Algorithm Algorithm of A3C-Based Multi-Task Model
Worker Agent
while not done:

a = sample an action a ∼πθ(a|s)
s‘, r, done = Perform action a

−env.step(a)
G = r + γV (s‘)
Lp = −(G− V (s))log(π

(
a|s,θp

)
)

Lv = (G− V (s))∧2

θp=θp − α ∗ dLp/dθp
θv = θv − α ∗ dLv/dθv

FIGURE 9. The CNN-based architecture of a single A3C worker agent.

During the operation, each of the worker agents loops
through each step of the game, and samples the action, and
updates the weights of both the neural networks- actor and
critic. The algorithm runs until a preset number of episodes
of the game are played, wherein initially action is sampled
from the actor (policy network). Further on, upon comple-
tion of that action respective reward (r) and a new state (s′)
are calculated. Based on the new state reached, the total
discounted future return (G) is calculated by applying the
discount factor (gamma). Based on this each of the individual
neural networks calculates its policy loss (Lp), and value
loss (Vp) [45]. Further on, the neural network uses gradient
descent to update the respective network weights (θp – policy
network weight and θv – value network weight) to minimize
the loss.

At the root level, this environment will employ a pair of
convolutional neural network (CNN) models to implement
both actor and critic modules for a single worker. There will
be multiple instances of the CNN class objects to imple-
ment the multiple-worker threads used within the multi-task
model. Similarly, the global network is also deployed as a
pair of CNN-based actor-critic modules at the global net-
work level. These neural network models act as a function
approximator by processing each screenshot of the game as
its input.We have used RMSpromp optimizer with this imple-
mentation. During the first stage of experiments, the eval-
uation of the multi-task learning model was performed on
a machine having two cores (dual-core). Under this ini-
tial test-setup, each worker agent will be running on each
core, and hence both worker agents are executed in parallel.
Fig. 9 is a diagrammatic representation of the CNN-based
model used to implement each of the individual worker agent
threads.

FIGURE 10. Gradient update by worker agents with the global network.

Now every so often, this global network is going to send
its weights to a set of worker agents each with their copy
of policy and value network. Further on each of these indi-
vidual worker agents will be playing a few episodes of
the game under its environment using its network weights
from its own experience. From its own experience, each
worker agent can calculate its policy gradient updates and
value updates. Knowledge of these updates will be limited
to only these individual worker agents. Eventually, worker
agents send their gradient values to the global network so
that the global network can update their weights accordingly.
Every so often the global network gives its new updated
parameters back to its working agents so worker agents are
always working with a relatively recent copy of the global
network. In this workingmodel, worker threads play episodes
of games under their respective environments, find the errors,
and calculate the update gradients which will be shared with
the global network regularly. Fig. 10 shows the sharing of
gradient updates by individual worker agents with the global
network.

VII. EXPERIMENTS AND RESULTS
A3C provides a multi-threaded and asynchronous approach
to deep reinforcement learning [43]. This algorithm gives
the capability to have a model to be trained with multiple,
different explorations of a single target task, providing data
sparsity, and avoiding the use of memory replay. Given the
multi-threading characteristics, the proposed hybrid model
attempts to leverage A3C’s ability to perform multi-task
learning without modifications when applied to different,
but semantically related tasks. To do so, we simultaneously
train multiple tasks using a single A3C model, allowing the
network to asynchronously share knowledge obtained from
and to all tasks. The hybrid A3C model attempts to learn
two different tasks and then combine the learning to accel-
erate the performance. Evaluation of the proposed hybrid
multi-task model will be conducted on a prototype based on
the A3C model and trained with the Atari 2600 environment
provided in the OpenAI Gym. The Gym library is a toolkit
for developing and comparing reinforcement learning algo-
rithms [44]. It makes no assumptions about the structure of
your agent and is compatible with numerical computation
libraries, such as TensorFlow or Theano. A3C algorithm used
for the experiments will be based on Google DeepMind’s
paper titled-asynchronous methods for deep reinforcement
learning.

VOLUME 9, 2021 44693



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 11. Single-agent actor – average rewards.

FIGURE 12. Single-agent actor- total rewards.

As a preliminary step towards the development of the
proposed systemmodel, the initial set of experiments are con-
ducted with the game of CartPole-v0 which is having a finite
set of action and state space. The methodology followed was
to individually develop the single-agent actor which is based
on policy gradient, and similarly a single agent critic which
is a value-based network to measure the performance. Both
these networks were developed as the standard feedforward
neural networks and experiments are conducted for the finite
number of episodes. As an outcome of the experiment perfor-
mance of both single-agent actor and critic are measured.

Fig. 11 to Fig. 13 represent the statistics generated for the
single-agent actor feedforward neural networks.

Fig. 14 to Fig. 16 represent the statistics generated for the
single-agent critic feedforward neural networks.

It is evident from the statistics that policy gradient-based
actors can increase the rewards over the episodes gradually.
At the same time, the value-based critic module can show
the increment in performance in the early episodes, with a
small dip in the mid episodes with a fluctuating result for the
forthcoming episodes.

Following OpenAI Atari 2600 gaming environments
will be used for the evaluation of the proposed model,

FIGURE 13. Single-agent actor- merged results.

FIGURE 14. Single-agent critic-average rewards.

FIGURE 15. Single-agent critic-total rewards.

Pong-v0, Breakout-v0, SpaceInvaders-v0, DemonAttack-
v0, and Pheonix-v0. During the first stage of evaluation,
the performance of the reinforcement learning agent will
be measured individually on each of these gaming environ-
ments to generate the initial test statistics. The test results

44694 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 16. Single-agent critic-merged results.

FIGURE 17. Breakout-v0 multi-task workers environment.

generated by the A3C model were trained within the OpenAI
Atari 2600 environments provided in the OpenAI Gym [10].
In the next step towards the evaluation of a proposed hybrid
multi-taskmodel, the A3C algorithm based on amulti-worker
agent-based environment is created for amore graphic intense
Atari 2600 game environment Breakout-v0. From the per-
spective of a DRL agent, this environment is being treated
as a complex one as we will be having an infinite number of
state-action spaces to deal with. To accommodate and han-
dle this environment, a convolutional neural network (CNN)
based model was used for the validation. This configura-
tion was tested under a desktop-based environment by using
a multi-task environment having four worker threads that
combinedly executed 500,000 steps of the game. Each of
the individual threads is having its copy of the environment
but different from one another in terms of the view of the
gaming environment. Fig. 17 shows the multi-task worker
based environment for Breakout-v0

Fig. 18 to Fig. 20 show the test results captured for the A3C
algorithm based on the multi-task worker model for the Atari
2600 gaming environment named Breakout-v0. This testing
was carried out by using 4-worker agents or worker threads
based A3C model to generate the initial set of results of a
desktop-based test environment.

FIGURE 18. Breakout-v0 multi-task workers model-average rewards.

FIGURE 19. Breakout-v0 multi-task workers model-total rewards.

FIGURE 20. Breakout-v0 multi-task workers model –merged results.

As a further attempt towards the evaluation of the pro-
posed hybrid multi-task model, the A3C algorithm-based
multi-worker agent environment is also created for one more

VOLUME 9, 2021 44695



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 21. Snapshot of Breakout-V0 and Pong-v0 environment.

graphic intense Atari 2600 game environment named- Pong-
v0. The decision to choose Pong-V0 was after the careful
examination of the high level of similarity level among these
two games, Breakout-V0 and Pong-V0. Having a reasonable
level of similarity could act as an accelerator during the
validation of the proposed hybrid multi-task learning model
execution. Similar to the way how Breakout-v0 was tested
earlier under a multi-task worker environment, the Pong-
v0 game was also tested under a desktop-based environment
by using amulti-task environment having four worker threads
that combinedly executed 5 million steps of the game.

Each of the individual threads is having its copy of the envi-
ronment but different from one another in terms of the view
of the gaming environment. This environment will be having
an infinite number of state-action spaces to deal with during
the optimization of the DRL agent. To accommodate and han-
dle the Pong-v0 gaming environment, a similar CNN-based
model was used during the validation of the multi-task learn-
ing model. In both Pong and Breakout, a player must control
a paddle to hit a ball. For Pong, the player must attempt to
make an opponent miss the ball, while for Breakout the goal
is to break as many bricks as possible. Fig. 21 shows the
graphical representation for the Atari-2600 Breakout-v0 and
Pong-v0 gaming environments.

Fig. 22 to Fig. 24 show the test results captured for the A3C
algorithm based on the multi-task worker model for the Atari
2600 gaming environment named Pong-v0.

As part of the detailed and exclusive evaluation of the
proposed hybrid multi-task model, we decided to pick one
more pair of Atari 2600 games namely Space Invaders-v0 and
DemonAttack-v0 from the Gym library. The decision to
choose these two games as the second test pair was after the
examination of the high level of semantic similarity between
their pattern play. Both these games are based on the theme
of shooting wherein the player should be able to control a
moving ship with the capability of shooting and hitting the
enemies. In terms of complexity, Space Invaders is relatively
less complex as the enemies in this game move more in a
regular fashion than in the other game. Whereas in Demon
Attack, there are a wide variety of enemies who moves more
randomly with the capability to shoot back, which makes
the gameplay more complex from the perspective of the RL
agent. More importantly, every game used in this experiment

FIGURE 22. Pong-v0 multi-task workers model-average rewards.

FIGURE 23. Pong-v0 multi-task workers model-total rewards.

FIGURE 24. Pong-v0 multi-task workers model-merged results.

has its reward structure that is in-built by the Gym library.
In other words, even though there is some level of semantic
similarity between the games chosen within each test pair,
the scoring and reward structure followed within each game
is unique.

44696 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 25. SpaceInvaders-v0 and DemonAttack-V0 environment.

FIGURE 26. SpaceInvaders-v0 multi-task workers model-average rewards.

Fig. 25 shows the graphical representation for Atari-
2600 based SpaceInvaders-v0 and DemonAttack-v0 gaming
environments.

Similar to the way how previous two games from the
first pair were tested, the SpaceInvaders-v0 game was also
tested under a desktop-based test environment by using a
multi-task worker model having four worker threads that
combinedly executed about 500,000 steps of the game.
Fig. 26 to Fig. 28 show the test results captured for the A3C
algorithm based on the multi-task worker model for the Atari
2600 gaming environment named Space Invaders-v0.

Each of the individual threads is having its copy of the
environment but different from one another in terms of the
view of the gaming environment. This environment will be
having an infinite number of state-action spaces to deal with
during the optimization of the DRL agent. To accommodate
and handle the Space Invader-v0 gaming environment, a sim-
ilar CNN based model was used during the validation of the
multi-task learning model

This testing was carried out by using 4-worker agents or
worker threads-based A3C model to generate the initial set
of results of a desktop-based test environment.

Similar to the way how Space Invader-v0 was tested earlier
under a multi-task worker environment, the DemonAttack-
v0 game was also tested under a desktop-based environment
by using amulti-task environment having four worker threads

FIGURE 27. SpaceInvaders-v0 multi-task workers model-total rewards.

FIGURE 28. SpaceInvaders-v0 multi-task workers model- merged results.

that combinedly executed 500,000 steps of the game. Each of
the individual threads is having its copy of the environment
but different from one another in terms of the view of the
gaming environment. This environment will be having an
infinite number of state-action spaces to deal with during the
optimization of the DRL agent.

Fig. 29 to Fig. 31 show the test results captured for the A3C
algorithm based on the multi-task worker model for the Atari
2600 gaming environment named Demon Attack-v0.

To test and generate better results with a higher number
of episodes of gameplay for each game under the proposed
hybrid multi-task model, we decided to test the proposed
model under a cloud-based test environment. As part of this,
we opted to move our testing to machines with GPU with
CUDA cores support under the cloud environment hosted by
Paperspace. This allowed us to rent a server in the cloud with
much higher throughput than that of our local machine.

Paperspace server used has up to 8GB of graphic mem-
ory and 32 GB of RAM and equipped with NVIDIA
GPU - Quadro P5000 having CUDA support (with

VOLUME 9, 2021 44697



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 29. Demon Attack-v0 multi-task workers model-average rewards.

FIGURE 30. DemonAttack-v0 multi-task workers model-total rewards.

2560 CUDA cores) to facilitate the parallel computing for
deep learning applications.

During this process, we configured a couple of Win-
dows OS-based virtual test machines namely Gen 2 (P4000)
having NVIDIA GPU supported with CUDA cores in the
cloud environment. Each of the Atari2600 games was tested
with 8 worker agents for a higher number of global steps.
To capture the test results, a tensor board visualization tool
was employed which uses the event file captured during the
test execution to generate the test execution results. Fig. 32
depicts the working environment of the cloud server machine.

Fig. 33 to Fig. 36 show the test results captured for the A3C
algorithm based on the multi-task worker model for the Atari
2600 gaming environments under the virtual test machines
under the cloud environment. Note that these figures were
generated within TensorBoard (TensorFlow’s visualization
toolkit), the numbers on the x-axis represent the global steps
inmillions (taken by the agent), and the numbers on the y-axis

FIGURE 31. DemonAttack-v0 multi-task workers model-merged results.

FIGURE 32. Test environment of Paperspace cloud server machine.

FIGURE 33. Breakout-v0 standalone test result with 8 multi-task workers.

represent the rewards (game score). The same convention
applies to Figures 38 to 48.

Now, as the next step in the verification of our proposed
hybridmulti-taskmodel, we have tested themodel by running
two semantically similar games simultaneously.

At the end of testing, the individual test score for each
game was captured. Since we have chosen two pairs of games
with semantic similarity, we created a separate test setup for
each pair. Fig. 37 shows the diagrammatic representation for
each pair under the hybrid multi-task model. To maintain

44698 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 34. Pong-v0 standalone test result with 8-multi-task workers.

FIGURE 35. DemonAttack-v0 with 8-multi-task workers.

FIGURE 36. SpaceInvaders-v0 with 8-multi-task workers.

the uniformity of testing, each of the individual games was
tested with 8 worker agents which totals to 16 worker threads
altogether within the test environment.We have the RMSprop
optimizer for the testing with related hyperparameters such as
learning rate, decay, momentum, epsilon, clip norm parame-
ter. We also have other hyperparameters such as the discount
rate factor for rewards, maximum global steps, and worker
threads having CNNs with 2 hidden layers with a ReLU
activation function. Fig. 38 and Fig. 39 respectively show
the test execution results captured for breakout-v0 and Pong-
v0 under the joint test environment.

These test results are generated based on the experiments
conducted with the Paperspace cloud server machines having
theNvidia GPU supported byCUDAcores. This environment
facilitates the large-scale testing for the hybrid multi-task
model having a CNN-based feature extraction module.

FIGURE 37. Hybrid multi-task model of Breakout-v0 and Pong-v0.

FIGURE 38. Breakout-v0 test results with the hybrid multi-task model.

FIGURE 39. Pong-v0 test results with the hybrid multi-task model.

Similarly, we created the joint test environment for the sec-
ond test pair consisting of Atari2600 gaming environments,
SpaceInvader-v0, and DemonAttack-v0. To maintain the
uniformity of testing, each of the individual games was
tested with 8 worker agents which totals to 16 worker
threads altogether within the test environment. Fig. 40 and
Fig. 41 show the diagrammatic representation for each
pair.

VOLUME 9, 2021 44699



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 40. DemonAttack-v0 test results with the hybrid multi-task
model.

FIGURE 41. SpaceInvaders-v0 test results with the hybrid multi-task
model.

FIGURE 42. DemonAttack-v0 results for the semantic dissimilar test.

To measure the impact of the DRL agent’s performance
with the hybrid multi-task model while testing with environ-
ments with high semantic dissimilarity, we have also con-
ducted two pairs of testing. In this testing first pair of testing
was done using DemonAttack-v0 and Pong-v0, which are
having a high level of semantic dis-similarity level. Under
this test environment, the performance of each of the indi-
vidual games will be measured to see the impact of negative
knowledge (gradient transfer). A similar test setup will be
made ready for the second pair consisting of Atari2600 gam-
ing environments namely, SpaceInvader-v0 and Breakout-v0.
Results shown from Fig. 42 to Fig. 45 show the test results for
each test pair.

During our test efforts, we also conducted experiments
to measure the impact of individual game scores when the
hybrid multi-task model is tested with three semantic sim-
ilar games namely SpaceInvader-v0, DemonAttack-v0, and
Pheonix-v0. Even though each of these games has a semantic

FIGURE 43. Pong-v0 results for the semantic dissimilar test.

FIGURE 44. SpaceInvaders-v0 results for the semantic dissimilar test.

FIGURE 45. Breakout-v0 results for the semantic dissimilar test.

FIGURE 46. DemonAttack-v0 test results with hybrid multi-task model for
3 semantically similar environments.

similarity factor, at the same time, each of them is having its
reward structure Fig. 46 to Fig. 48 show the respective test
results captured with the hybridmulti-taskmodel for the three
OpenAI Atari 2600 gaming environments with the high level
of semantic similarity.

44700 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

FIGURE 47. Pheonix-v0 test results with hybrid multi-task model for
3 semantically similar environments.

FIGURE 48. SpaceInvaders-v0 test results with hybrid multi-task model
for 3 semantically similar environments.

VIII. DISCUSSION OF TEST RESULTS
This section analyzes the test results obtained with the hybrid
multi-task model tested with various Atari 2600 gaming envi-
ronments. In the first stage of the testing, we conducted a
standalone kind of testing with each of the individual gaming
environments individually. To conduct this testing, we have
created the A3C algorithm-basedmulti-threadmodel wherein
each of the games is tested by using 8 worker threads.
To maintain the uniformity of the testing throughout this
experiment, we have kept the count of worker threads as
8 for all the gaming environments. We tested our model by
adding the final LSTM layer after the feedforward network
to obtain the best performance of the A3C algorithm as a
whole. We have extensively used NVIDIA GPU - Quadro
P5000 having CUDA support (with 2560 CUDA cores) to
facilitate parallel computing as it involves the use of CNN
to process game screen images. More importantly, in the
first stage of testing, we choose two sets of games, with set
1 consisting of Breakout-v0 and Pong-v0, then set 2 consist-
ing of games SpaceInvaders-v0 and DemonAttack-v0. The
decision to choose these games to form two sets was after
the clear examination of semantic similarity factor among
them. As anticipated, the base A3C-basedmulti-threadmodel
was able to achieve performance enhancement on all of these
games during the testing due to the parallel multi-task learn-
ing aspect of A3C. We have conducted the testing for 25 mil-
lion to 30 million global steps for each of these individual
games to have convincing test results for comparison with
future state tastings planned.

In the second stage of testing, we experimented with our
proposed hybrid multi-task model approach, wherein we
trained two games, but with high-level semantic similarity,
simultaneously. In contrast to the first stage testing, where
gradients shared to the global network by worker agents are
all of the same types, in the hybrid environment we have two
different types of worker threads. As it is anticipated, the per-
formance of individual games under the hybrid environment
was not on par with standalone performance results obtained
with the first stage of testing. As and when the progress of
the game, we could see the impact of positive knowledge
sharing among these two tasks that are trained jointly. Due
to the semantic similarity among them, updates shared by
the global network could mitigate some of the key challenges
associated with partial observability in comparison to a single
game-based environment. Based on the test results obtained
with each of the sets that we mentioned earlier, we could see
that each of the games under each set could boost its perfor-
mance throughout the training. By this, we can establish that
our hybrid multi-task model can learn multiple similar gam-
ing tasks simultaneously without degradation in performance
for any one of the individual gaming tasks. In comparison to
the state-of-the-art methods discussed which are based on the
distillation methodology, the hybrid multi-task model adopts
to train and learn the method for a multi-task actor-critic
network from the scratch. Along with this, the hybrid multi-
task approach also measures the impact amount of positive
knowledge transfer done through parameter sharing. As we
have adopted a model-free-based approach, it is relatively
less computationally intensive compared to a model-based
approach.

In the next stage of testing with the hybrid multi-task
model, we conducted experiments by testing the hybrid
multi-task model with two different pairs of games with a
high level of semantic dissimilarity. As we could see from
the test results obtained, negative knowledge transfer or the
gradients shared by two semantically dissimilar worker train-
ing threads had a huge impact on the individual games’
score. As the test results indicate, all the individual games
‘performance was hugely affected due to negative knowledge
transfer. Finally, we also tested our model to see the impact
on the positive knowledge transfer by training more than two
semantically similar tasks with the same number of workers
allocated to each game. The test results obtained indicate that
as the number of worker threads increases, updates shared
by the global network deteriorates in comparison to a hybrid
multi-task model with two semantically similar tasks. This
situation possibly requires more tuning on the hyperparame-
ter front as well as catastrophic forgetting of the neural net-
works of the gaming environments, which will be addressed
in the future work planned.

The objective behind the proposed hybrid multi-task learn-
ing model is to leverage multi-task learning capabilities
offered by the core actor-critic methodology by using the
A3C algorithm to optimize the DRL’s performance. By hav-
ing a hybrid multi-task-based learning environment, wherein

VOLUME 9, 2021 44701



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

agents belonging to different but semantically similar games,
we aimed at addressing some of the key challenges associated
with the existing multi-task DRL. To showcase, the extent to
which our model could address those issues, we would like to
have a case study based on the test results obtained. For this
purpose, we are using both the standalone and hybrid model
test results obtained for the Breakout-v0 game as indicated by
Fig. 33 and Fig. 38 respectively. To have a fair comparison
and derive a convincing conclusion, we have ensured that the
same amount of resources have been allotted in both test sce-
narios in terms of the number of worker threads, test configu-
rations, and the number of global steps parameter. By having
a comparison of these two test results, it is quite evident that
in terms of the training time needed, the hybrid model could
surpass the performance of the standalone model much ahead
of time. After running the Breakout-v0 under a standalone
model for 2.5+e5 (25 Million) global steps, the highest score
it could achieve was a little over the range of 12, whereas the
hybrid model could surpass the same level in almost half of
its execution time. In continuation to this, it is reasonable to
conclude that hybrid multi-task learning by having a group of
different but semantically similar environments with similar
tasks could reduce the impact of partial observability which
restricts a DRL agent from choosing the optimal action while
in a state. Due to the impacts of the positive knowledge
transfer facilitated by the gradient transfers from the second
environment’s agents, the actor module within each worker is
having a better policy to choose the optimal action while in a
step. Having said this, by possessing better policy parameters
actor module is in a better position to explore the environment
in a much effective way and choose the optimal action in
each state. This in turn is expected to improve throughout the
DRL agents’ execution as more positive knowledge transfer
is anticipated to happen with more global steps of gameplay.
The same kind of comparison case study could be applied to
other game test pairs from the experiment. Seen in the light of
these observations, it is reasonable to conclude that the hybrid
multi-task learning model can address the objectives, it was
aiming for, to a great extent.

Finally, we also would like to have a comparison of
the proposed hybrid multi-task learning model against the
three state-of-the-art techniques that were mentioned under
the related work. In comparison to the hybrid multi-task
model which relies on the idea of sharing the network learn-
ing parameters by a global network to individual workers,
the Distral model works on the idea of sharing a distilled
centroid policy that would regularize the workers running in
the environment. When it comes to the comparison with the
IMPALA model, its design approach is having similarity to
the hybrid multi-task learning model in terms of the actor-
critic methodology as it follows the topology of a set of actors
with either a single learner or multiple learners. Within the
IMPALAmodel, the learner’s role is to create a central policy
to be shared with the actors. Along with these learners have
the flexibility to communicate among themselves for shar-
ing the gradients. In the hybrid multi-task model, workers’

accumulated gradients transfer or knowledge transfer among
workers always governed by the global network. Addition-
ally, the current implementation of the hybrid multi-task
model mandates that all the workers be present on the same
machine, where the IMPALA model supports distributed
system-based working environment for the workers. The
PopArt model is being considered as an extension of the
IMPALAmodel itself and designed to address key issues such
as distraction dilemma and thereby stabilize the process of
multi-task learning.

IX. CONCLUSION AND FUTURE WORK
In this research work, we propose a hybrid multi-task
model-that follows a parallel, multi-tasking approach for
optimizing the performance of deep reinforcement learning
agents. We present how to combine the multi-task learnings
from two different deep reinforcement learning agents oper-
ating within two different by semantically similar environ-
ments running with related tasks. Initial stage experiments
are conducted by applying the DRL algorithm A3C to Atari
2600 gaming environment to draw the results. During the
experiments, we can establish that our hybrid multi-task
model can learn multiple similar gaming tasks, at least two,
simultaneously without making changes in the algorithm and
degradation in performance for any one of the individual
gaming tasks. The semantic similarity aspect of the related
tasks running two different environments is the most vital
factor to reduce the challenges posed in terms of the possible
negative knowledge transfer.

For future work, we plan to conduct the experiments of the
hybrid multi-task model with more complex gaming envi-
ronments having a higher number of worker threads under
GPU cloud server-basedmachine environment to draw strong
conclusions on parallel multi-task learning. Along with this,
we also would like to investigate the steps to mitigate the
impacts of negative knowledge transfer and catastrophic for-
getting in deep reinforcement multi-task learning.

ACKNOWLEDGMENT
The authors acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES
[1] R. S. Sutton, ‘‘Generalization in reinforcement learning: Successful exam-

ples using sparse coarse coding,’’ in Proc. Adv. Neural Inf. Process. Syst.,
1996, pp. 1038–1044.

[2] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski, ‘‘Human-
level control through deep reinforcement learning,’’ Nature, vol. 518,
pp. 529–533, Feb. 2015.

[4] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[5] A. Mujika, ‘‘Multi-task learning with deep model based
reinforcement learning,’’ 2016, arXiv:1611.01457. [Online]. Available:
http://arxiv.org/abs/1611.01457

[6] R. Glatt and A. H. R. Costa, ‘‘Improving deep reinforcement learning
with knowledge transfer,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 5036–5037.

44702 VOLUME 9, 2021



N. V. Varghese, Q. H. Mahmoud: Hybrid Multi-Task Learning Approach for Optimizing DRL Agents

[7] N. Vithayathil Varghese and Q. H.Mahmoud, ‘‘A survey of multi-task deep
reinforcement learning,’’ Electronics, vol. 9, no. 9, p. 1363, Aug. 2020.

[8] G. Boutsioukis, I. Partalas, and I. Vlahavas, ‘‘Transfer learning in multi-
agent reinforcement learning domains,’’ in Proc. Eur. Workshop Reinforce-
ment Learn. Berlin, Germany: Springer, 2011, pp. 249–260.

[9] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence. Cambridge, MA, USA: MIT Press, 1999.

[10] N. D. Nguyen, T. T. Nguyen, D. Creighton, and S. Nahavandi, ‘‘A visual
communication map for multi-agent deep reinforcement learning,’’ 2020,
arXiv:2002.11882. [Online]. Available: http://arxiv.org/abs/2002.11882

[11] Y. Bengio, Learning Deep Architectures for AI. Boston, MA, USA: Now,
2009.

[12] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, ‘‘Mastering the game of go with deep neural networks
and tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[13] D. Borsa, T. Graepel, and J. Shawe-Taylor, ‘‘Learning shared represen-
tations in multi-task reinforcement learning,’’ 2016, arXiv:1603.02041.
[Online]. Available: http://arxiv.org/abs/1603.02041

[14] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized
experience replay,’’ 2015, arXiv:1511.05952. [Online]. Available:
http://arxiv.org/abs/1511.05952

[16] T.-L. Vuong, D.-V. Nguyen, T.-L. Nguyen, C.-M. Bui, H.-D. Kieu,
V.-C. Ta, Q.-L. Tran, and T.-H. Le, ‘‘Sharing experience in multitask rein-
forcement learning,’’ in Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019,
pp. 3642–3648.

[17] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ‘‘Progressive
neural networks,’’ 2016, arXiv:1606.04671. [Online]. Available:
http://arxiv.org/abs/1606.04671

[18] M. E. Taylor and P. Stone, ‘‘An introduction to intertask transfer for
reinforcement learning,’’ AI Mag., vol. 32, no. 1, p. 15, Mar. 2011.

[19] R. Caruana, ‘‘Machine learning,’’Mach. Learn., vol. 28, no. 1, pp. 41–75,
1997.

[20] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D.Wierstra, ‘‘PathNet: Evolution channels gradient descent
in super neural networks,’’ 2017, arXiv:1701.08734. [Online]. Available:
http://arxiv.org/abs/1701.08734

[21] A. A. Rusu, S. Gomez Colmenarejo, C. Gulcehre, G. Desjardins,
J. Kirkpatrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell,
‘‘Policy distillation,’’ 2015, arXiv:1511.06295. [Online]. Available:
http://arxiv.org/abs/1511.06295

[22] C. Bucilu, R. Caruana, and A. Niculescu-Mizil, ‘‘Model compression,’’ in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 535–541.

[23] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge
in a neural network,’’ 2015, arXiv:1503.02531. [Online]. Available:
http://arxiv.org/abs/1503.02531

[24] E. Parisotto, J. L. Ba, and R. Salakhutdinov, ‘‘Actor-mimic: Deep multitask
and transfer reinforcement learning,’’ 2015, arXiv:1511.06342. [Online].
Available: http://arxiv.org/abs/1511.06342

[25] M. S. Akhtar, D. S. Chauhan, and A. Ekbal, ‘‘A deep multi-task contextual
attention framework for multi-modal affect analysis,’’ ACM Trans. Knowl.
Discovery Data, vol. 14, no. 3, pp. 1–27, May 2020.

[26] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘‘The arcade
learning environment: An evaluation platform for general agents,’’ J. Artif.
Intell. Res., vol. 47, pp. 253–279, Jun. 2013.

[27] Y. Wang, J. Stokes, and M. Marinescu, ‘‘Actor critic deep reinforcement
learning for neural malware control,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 34, 2020, pp. 1005–1012.

[28] J. Zou, T. Hao, C. Yu, and H. Jin, ‘‘A3C-DO: A regional resource schedul-
ing framework based on deep reinforcement learning in edge scenario,’’
IEEE Trans. Comput., vol. 70, no. 2, pp. 228–239, Feb. 2021.

[29] A. Lazaric and M. Ghavamzadeh, ‘‘Bayesian multitask reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2010, pp. 599–606.

[30] C. Dimitrakakis and C. A. Rothkopf, ‘‘Bayesian multitask inverse rein-
forcement learning,’’ in Proc. Eur. Workshop Reinforcement Learn. Berlin,
Germany: Springer, 2011, pp. 273–284.

[31] Z. Yang, K. E. Merrick, H. A. Abbass, and L. Jin, ‘‘Multi-task deep
reinforcement learning for continuous action control,’’ in Proc. IJCAI,
2017, pp. 3301–3307.

[32] P. Dewangan, S. Phaniteja, K. M. Krishna, A. Sarkar, and B. Ravindran,
‘‘DiGrad: Multi-task reinforcement learning with shared actions,’’ 2018,
arXiv:1802.10463. [Online]. Available: http://arxiv.org/abs/1802.10463

[33] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, ‘‘Deep reinforce-
ment learning for multiagent systems: A review of challenges, solutions,
and applications,’’ IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826–3839,
Sep. 2020.

[34] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, ‘‘Deep
decentralized multi-task multi-agent reinforcement learning under
partial observability,’’ 2017, arXiv:1703.06182. [Online]. Available:
http://arxiv.org/abs/1703.06182

[35] S. V. Macua, A. Tukiainen, D. G.-O. Hernández, D. Baldazo,
E. M. de Cote, and S. Zazo, ‘‘Diff-DAC: Distributed actor-critic for
average multitask deep reinforcement learning,’’ 2017, arXiv:1710.10363.
[Online]. Available: http://arxiv.org/abs/1710.10363

[36] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell,
N. Heess, and R. Pascanu, ‘‘Distral: Robust multitask reinforcement learn-
ing,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4496–4506.

[37] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
‘‘IMPALA: Scalable distributed deep-RL with importance weighted
actor-learner architectures,’’ 2018, arXiv:1802.01561. [Online]. Available:
http://arxiv.org/abs/1802.01561

[38] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and
H. van Hasselt, ‘‘Multi-task deep reinforcement learning with popart,’’ in
Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 3796–3803.

[39] N. V. Varghese and Q. H. Mahmoud, ‘‘Optimization of deep reinforcement
learning with hybrid multi-task learning,’’ in Proc. IEEE Int. Syst. Conf.
(SysCon), Vancouver, BC, Canada, 2021, pp. 1–8.

[40] D. S. Chaplot, L. Lee, R. Salakhutdinov, D. Parikh, and D. Batra, ‘‘Embod-
ied multimodal multitask learning,’’ 2019, arXiv:1902.01385. [Online].
Available: http://arxiv.org/abs/1902.01385

[41] T. Chesebro and A. Kamko. (Dec. 15, 2016). Learning Atari: An
Exploration of the A3C Reinforcement Learning Method. Accessed:
Oct. 17, 2020. [Online]. Available: https://bcourses.berkeley.edu/files/
70573736/download?download_frd=1

[42] L. Weng. (Apr. 18, 2018). Policy Gradient Algorithms. Accessed:
Dec. 28, 2020. [Online]. Available: https://lilianweng.github.io/
and https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-
algorithms.html#actor-critic

[43] Z. Gu, Z. Jia, and H. Choset, ‘‘Adversary A3C for robust rein-
forcement learning,’’ 2019, arXiv:1912.00330. [Online]. Available:
http://arxiv.org/abs/1912.00330

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

[45] Lazy Programmer. (Aug. 24, 2020). Deep Reinforcement Learning in
Python. Accessed: Oct. 21, 2020. [Online]. Available: https://github.com/
and https://github.com/lazyprogrammer

NELSON VITHAYATHIL VARGHESE received
the Bachelor of Technology degree in computer
engineering from the Cochin University of Sci-
ence and Technology, Cochin, India, and the
M.A.Sc. degree in electrical and computer engi-
neering fromOntario TechUniversity, Canada. His
research interests include machine learning, neural
networks, and data science.

QUSAY H. MAHMOUD (Senior Member, IEEE)
was the Founding Chair of the Department of
Electrical, Computer and Software Engineering,
Ontario Tech University, Canada. He has worked
as anAssociate Dean of the Faculty of Engineering
and Applied Science, Ontario Tech University. He
is currently a Professor of Software Engineering.
His research interests include intelligent software
systems and cybersecurity.

VOLUME 9, 2021 44703


