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ABSTRACT Acquiring channel state information and mitigating multi-path interference are challenging
for underwater acoustic communications under time-varying channels. We address the issues using a
superimposed training (ST) scheme with a least squares (LS) based channel estimation algorithm. The
training sequences with a small power are linearly superimposed with the symbol sequences, and the training
signals are transmitted over all time, resulting in enhanced tracking capability to deal with time-varying
underwater acoustic channels at the cost of only a small power loss. To realize the full potentials of the
ST scheme, we develop a LS based channel estimation algorithm with superimposed training, where the
Toeplitz matrix is used, which is formed by the training sequences, enabling channel estimation with
superimposed training. In particular, a low-complexity channel equalization algorithm based on generalized
approximate messaging passing (GAMP) is proposed, where the a priori, a posteriori, extrinsic means and
variances of interleaved coded bits are computed, and then convert them into extrinsic log likelihood ratios
for BCJR decoding. Its computational complexity is only in a logarithmic order per symbol. Moreover,
the channel estimation, GAMP equalization and decoding are performed jointly in an iterative manner,
so that the estimated symbol sequences can also be used as virtual training sequences to improve the channel
estimation and tracking performance, thereby remarkably enhance the overall system performance. Moving
communication experiments in JiaozhouBay (communication frequency 12 kHz, bandwidth 6 kHz, sampling
frequency 96 kHz, symbol transmission rate 4 ksym/s) were carried out, and the experimental results verify
the effectiveness of the proposed technique.

INDEX TERMS Time-varying underwater acoustic channels, superimposed training, generalized approxi-
mate messaging passing, iterative turbo receiver.

I. INTRODUCTION
Underwater acoustic communication technology is widely
applied in the fields of marine oil resources exploration,
underwater rescue, underwater operations, etc. However,
the underwater acoustic channel is hostile as the multi-path

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiquan Zhao .

interference can be severe, and it is time-varying due to
the impact of surface waves, ocean currents, turbulence, etc.
When there is the relative motion between the transmitter and
the receiver, the channels can drastically change, making it
challenging to achieve accurate estimates and reliable equal-
izations of the time-varying multi-path channels [1]–[3].

Extensive researches have been carried out in the fields
of estimation and equalization of time-varying underwater
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acoustic channels [4]–[21]. Subspace, compressed sensing,
cluster adaptation, orthogonal matching pursuit, sparse and
sparse Bayesian learning and so on were proposed to esti-
mate underwater acoustic channels. All the channel estima-
tion algorithms employed traditional time-multiplexing based
training, i.e., the training sequences (T. Seq.) are inserted
into the data sequences, which results in both spectrum
loss and power loss, and it has poor capability of tracing
time-varying channels when the channel state informations
of the training sequences and the data sequences are incon-
sistent. In order to address the issues, the superimposed train-
ing (ST) scheme is proposed, where the training sequences
are linearly superimposed with the symbol sequences, which
only brings about a small power loss. The training sig-
nals are continuously transmitted, therefore, the capabil-
ity of tracking time-varying channels can be obviously
improved [4]–[15].

Turbo equalization, decision feedback equalization, time
reversal mirror equalization, blind equalization and so on
were proposed for channel equalization, which are traditional
channel equalization algorithms. In contrast to blind equal-
ization algorithms, equalization algorithms based channel
estimation have faster convergence rate for time-varying
channels. Decision feedback equalization, time reversal mir-
ror equalization and so on can be used with channel estima-
tion to enhance the equalization performance of time-varying
channels [4]–[15]. Turbo equalization can be used to achieve
remarkable equalization performance gain through the soft
information exchange between the equalizer and the decoder.
It can be divided into two categories, i.e., turbo equaliza-
tion based on channel estimation, where channel estima-
tion is embedded in turbo equalization, and direct turbo
equalization without channel estimation, where equalizer
coefficients can be directly determined based on adaptive
algorithms. The first one is more suitable for time-varying
channels, as it has faster convergence rate than the second
one [16]–[20].

In general, the ST scheme and turbo equalization have
potential capability to deal with time-varying channels.
To realize the full potentials of the ST scheme, on the basis of
the ST scheme, least squares (LS) based channel estimation
algorithm is proposed to estimate channels and remove the
training interference. In particular, low-complexity channel
equalization based on generalized approximate messaging
passing (GAMP) is proposed. Unlike traditional turbo equal-
ization (convert the input data into the form of Gaussian
variables), GAMP keeps the form of discrete and indepen-
dent random variables of the input data (interleaved coded
bits), and effectively avoid the information loss of the inter-
leaved coded bits, thereby greatly improve the performance
of equalization and decoding. Its computational complexity
is only in a logarithmic order per symbol. Moreover, the ST
scheme, the LS algorithm, and the GAMP algorithm are
combined to construct the ST-GAMP technique, and they are
performed jointly in an iterative manner (turbo equalization)
to remarkably enhance the overall system performance. Field

experiments were carried out in JiaozhouBay in 2019, and the
experimental results verify the effectiveness of the proposed
technique.

Both channel estimation and channel equalization carry
out process on symbols. In order to distinguish channel esti-
mation and channel equalization, symbol periods of channel
estimation are described by taps. Throughout the article,
superscripts [·]T and [·]H represent transpose and conjugate
transpose, respectively.

II. SYSTEM STRUCTURE BASED ON THE ST-GAMP
TECHNIQUE
A simple communication system is constructed, which is
shown in Fig. 1. At the transmitter, information bits b are
encoded, interleaved, and mapped by QPSK into symbols
s. Then the training sequences t are linearly superimposed
with the symbol sequences s, and the illustration of the
superimposed training is shown in Fig. 2. Each data block
is appended a cyclic prefix (CP) as a guard interval, and
it is used to facilitate the frequency-domain equalization.
At the receiver, after CP removal, the time-domain received
signal y and the frequency-domain received signal z1 are
obtained and used for three tasks: the first one is to obtain
the initial channel estimates ĥ based on the LS algorithm
with the ST scheme; the second one is to estimate the noise
power p̂n based on y and ĥ; the third one is to obtain the
‘clean’ received signal z for equalization, which equals to
z1 minus the reconstructed training interference based on t
and ĥ. GAMP equalization is carried out based on ĥ, p̂n,
and z, then turbo equalization, i.e., soft information exchange
between the GAMP equalizer and the BCJR decoder, is per-
formed iteratively, as shown in Fig. 3. The iterative process
continues until a pre-set maximum number of iterations is
reached. Turbo equalization is shown in Fig. 3. 1) Based on
channel estimates ĥ, noise power estimate p̂n, and the ‘clean’
frequency-domain received signal z, GAMP equalization is
performed, where the a priori, a posteriori, extrinsic means
and variances are calculated. Then the soft outputs of the
GAMP equalizer are converted into the extrinsic logarithm
likelihood ratios (LLRs) of the interleaved coded bits, fol-
lowed by deinterleaving and decoding. The outputs of the
decoder are used by the GAMP equalizer and the channel
estimator, therefore, there are two branches coming out of the
BCJR decoder. Both of them use the latest decoding results
(the LLRs of coded bits) of the BCJR decoder, which are
updated in each iteration. In the first branch, the LLRs are
interleaved, then input to the GAMP equalizer. In the second
branch, hard decisions are performed on the estimated coded
bits, which are interleaved, and mapped by QPSK into the
estimated symbol sequences. They together with the training
sequences, are used to get ĥ. After that, based on the LLRs
of the interleaved coded bits from the first branch, ĥ, p̂n,
and z from the second branch, GAMP equalization is per-
formed and the results are converted to the extrinsic LLRs,
which are input to the decoder for the next round of turbo
iteration.
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FIGURE 1. Simple communication system. (a) Transmitter; (b) Receiver.

FIGURE 2. Illustration of the superimposed training.

III. PRINCIPLE OF THE ST-GAMP TECHNIQUE
A. CHANNEL ESTIMATION BASED ON THE ST SCHEME
The interleaved coded bits are denoted by cn =[
c1n, c

2
n, · · · , c

Q
n

]T
, cqn ∈ {0, 1}. A symbol is denoted by

sn ∈ χ=
{
α1, α2, · · · , α2Q

}
(Q is the number of the inter-

leaved coded bits used to map into a symbol), where χ0
q

and χ1
q represent all subsets of αn =

[
α1n, α

2
n, · · · , α

Q
n

]T
.

As QPSK mapping is used, αn =
[
α1n, α

2
n
]T
, and sn ∈

1/
√
2 {(1,−1) , (1, 1) , (−1,−1) , (−1, 1)}. The transmitted

signal consists of the symbol sequences denoted by s =
[s1, s2, · · · , sNs]T , and the training sequences denoted by
t = [t1, t2, · · · , tNs]T with a period of T , which are generated
using tk = ej

π
T (k−1)

2
, k = 1, · · · ,T in [25]. The power

ratio of the training sequences and the symbol sequences is
denoted as r .
Take a data block with a length of Ns as an example. Due

to the use of CPs, the channel matrix for the data block is a
circulant one, denoted as H, and the Gaussian white noise is
denoted as w. After CP removal, the received signal of the
data block can be expressed as

y = H(rt+ s)+ w

= Hs+ rHt+ w. (1)

Divide y into p segments, i.e., y =
[
yT , y2T , · · · , ypT

]T .
The channel length is denoted as L, where T ≥ L, then

the Toeplitz matrix formed by the training sequences can be
represented as

A =


t0 tT−1 · · · tT−L+1
t1 t0 · · · tT−L+2
...

...
. . .

...

tT−1 tT−2 · · · tT−L


T×L

. (2)

Based on the LS algorithm, the channel estimates of the data
block is obtained as

ĥ =
(
AHA

)−1
AH

{
1
p

p∑
i=1

yTiT

}
. (3)

F is denoted as a standard discrete Fourier transform (DFT)
matrix, and the (m, n)th element is given as N−1/2e−j2πmn/N ,
and j =

√
−1. H can be diagonalized by a DFT matrix, i.e.,

H = FHDF, (4)

where D is a diagonal matrix. From (1) and (4),
the frequency-domain received signal can be obtained as

z1 = Fy = FFHDF(rt+ s)+ Fw. (5)

F is unitary, so

FH = F−1, (6)

then we have

z1 = DFs+ rDFt+ Fw. (7)

The training interference elimination is carried out in fre-
quency domain, i.e.,

z = z1 − Fĥ. ∗ Ft

= DFs+ [D(rFt)− Fĥ. ∗ Ft+ Fw]

= DFs+ w′, (8)

VOLUME 9, 2021 56759



G. Yang et al.: Joint Channel Estimation and GAMP-Based Equalization

FIGURE 3. Turbo equalization.

where.* denotes the element-wise product of two vectors. For
the ‘clean’ data block z, we can estimate the diagonal matrix
D̂ and diagonal elements of D as[

d̂1, d̂2, · · · , d̂Ns
]T
=
√
NsFĥ, (9)

which will be used for GAMP equalization. As the power
of the transmitted symbols for the data block is 1, the noise
power for the data block p̂n is the difference between the
power of the received signal Py and the power of the channel

energy
∥∥∥ĥ∥∥∥2, i.e.,

p̂n=Py−
∥∥∥ĥ∥∥∥2. (10)

B. LOW-COMPLEXITY FREQUENCY-DOMAIN CHANNEL
EQUALIZATION BASED ON GAMP
Following [22]–[24], we compute the a priori, a posteriori,
extrinsic means and variances of the symbols, and they are
distinguished by superscripts a, p, and e, respectively. Initial-
ization: Set extrinsic variance of a symbol µ−1ren = 0, extrinsic
mean of a symbol ren = 0, and a posterior mean of a symbol
sp = 0.
Compute the meanmn and the variance vn for each sn using

the following equations

Pi = Pa (sn = αi) exp
(
−µ−1ren

∣∣αi − ren∣∣2) , (11)

P (sn = αi) =
Pi∑2Q
i′=1 Pi′

, i = 1, 2, · · · , 2Q, (12)

mn =
2Q∑
i=1

αiP (sn = αi) , (13)

vn =
2Q∑
i=1

|αi − mn|2 P (sn = αi) , (14)

where Pa (sn = αi) represents the a priori probability of
sn = αi, which can be calculated based on the output LLRs
from the decoder.

Compute the a priori variance µpan and mean pa as follows

µpan = v̄ |dn|2 , (15)

pa = D̂Fm−3pasp, (16)

where v̄ = Ns−1
∑Ns

n=1 vn,m =
[
m1,m2, · · · ,mNs

]T and

3pa = Diag
{
µpa1

, µpa2
, · · · , µpaNs

}
.

Compute the a posterior variance µspn and mean sp as
follows

µspn =
(
p̂n+µpan

)−1
, (17)

sp = 3sp
(
z− pa

)
, (18)

where 3sp = Diag
{
µsp1
, µsp2

, · · · , µspNs

}
.

Compute the extrinsic variance µren and mean re as follows

µre1
= µre2

= · · ·=µreNs=N
[∑Ns

i=1

(
|di|2µspi

)]−1
, (19)

re = m+ µre1F
H D̂H sp, (20)

where re =
[
re1, r

e
2, · · · , r

e
Ns

]T . From (11) to (20), it is
an inner iterative equalization, in order to reduce the com-
putational amount of GAMP equalization, we incorporate
the inner iteration into outer iteration between the GAMP
equalizer and the BCJR decoder, that is, the inner iteration
and the outer iteration are combined into one iteration. The
computational complexity of GAMP equalization is only in
the logarithmic order per symbol.

Combining the extrinsic mean and variance, we can obtain
the extrinsic LLRs of α1n and α

2
n as follows

Le
(
α1n

)
= 2
√
2Re

[
ren/µre1

]
, (21)

Le
(
α2n

)
= 2
√
2 Im

[
ren/µre1

]
. (22)

The extrinsic LLRs are deinterleaved and decoded (BCJR).
Then LLRs from the BCJR decoder are used for channel
estimation, noise power estimation, and GAMP equalization
for the next round of iteration.
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FIGURE 4. Structure of the transmitted signal frame.

FIGURE 5. 5-order Proakis channel. (a) Impulse response; (b) Frequency
response.

IV. SIMULATIONS AND EXPERIMENTS
Rate-1/2 nonsystematic convolutional code with generator
(5, 7)8, QPSK mapping, and the BCJR algorithm for decod-
ing are used. The power ratio of the training sequences to
the symbol sequences is set to 0.25:1. As the underwater
acoustic channels can be very long, the length of CP is set
to 512 symbol intervals. The structure of the transmitted
signal frame is shown in Fig. 4. The hyperbolic frequency
modulation (HFM) signals with negative and positive mod-
ulation rates, are employed respectively as the head and the
tail of the signal frame to estimate and eliminate the aver-
age Doppler frequency offset, and synchronize the received
signals [21].

In simulations, a baseband system is used, but it is noted
that the low-pass filter is not employed. In experiments, a sin-
gle carrier system was used, the center frequency, the band-
width, the sampling frequency, and the symbol transmission
rate were 12 kHz, 6 kHz, 96 kHz, and 4 ksym/s, respectively,
and the band-pass filter was used.

A. BASEBAND SIMULATIONS
A static 5-order Proakis channel is used for all transmissions,
as shown in Fig. 5. In each simulation, 120 blocks of informa-
tion bits are used, and each block consists of 1024 information
bits. Gaussian white noise is added to simulate the received
signal with various signal to noise ratios (SNRs).

FIGURE 6. BER performance of the ST-GAMP technique.

We examine the performance of the ST-GAMP system in
terms of the bit error rate (BER), and the corresponding BER
performance is shown in Fig. 6. Black diamond curve repre-
sents the lower bound for the BER performance of the GAMP
technique with SNR = 13 dB, where the time-multiplexed
training scheme and the real 5-order Proakis channel are
used. Star curves represent the BER performance of the
ST-GAMP technique with different SNRs, and square curves
represent the BER performance of the comparison technique
with different SNRs, where the ST scheme and the linear
minimum mean square error (LMMSE) equalization algo-
rithm are combined to construct the ST-LMMSE technique.
The BER performance of the ST-GAMP technique is sig-
nificantly better than that of the ST-LMMSE technique. The
pink star solid curve represents the BER performance of the
ST-GAMP technique with SNR = 13 dB, and it can be seen
that after 4 iterations, 120 blocks of information bits are
correctly decoded, which verify that the proposed technique
can effectively cope with harsh multi-path interference and
Gaussian white noise.

B. COMMUNICATION EXPERIMENTS IN A POOL AND IN
JIAOZHOU BAY IN 2019
A static communication experiment was carried out in a
pool at Harbin Engineering University in January 2019. The
horizontal distance between transceivers was about 7 m, and
their deployment depths were random. The SNR was up to
about 29 dB due to the short distance. The instantaneous
channel in the pool is shown in Fig. 7(a).
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FIGURE 7. Channel in a pool and decoding performance. (a) Instantaneous channel; (b) BER of the ST-GAMP system versus the
iteration number.

FIGURE 8. Decoding performance and constellation in a pool. (a) BER of the ST-GAMP system versus the block number;
(b) Constellation plots of the 1st data block, and the iteration numbers are 0, 1, 2, and 3, respectively.

FIGURE 9. Experimental deployment.

The BER of the ST-GAMP system versus the iteration
number is shown in Fig. 7(b), and the BER of the proposed
system versus the block number is shown in Fig. 8(a), where
it can be seen that, after 3 iterations, 16 blocks of information
bits are decoded correctly, demonstrating the effectiveness

of the proposed system. We show the constellation of the
estimated symbols of the 1st data block in Fig. 8(b) by
using the ST-GAMP technique with various number of iter-
ations, where it can be seen that, the constellation points are
well clustered with only 3 iterations, indicating the excellent
equalization performance of the proposed system.

Next, we examine the BER performance of the proposed
system with moving transceivers. The experiments were
conducted in Jiaozhou Bay in November 2019, and the exper-
imental layout is shown in Fig. 9. The horizontal commu-
nication distance between the ships was 700 m - 1100 m,
the ship with the hydrophone was anchored, but the ship with
the transducer drifted away from it at a speed of about 0.6m/s.
The channel is shown in Fig. 10, where we can see from
(b) that the channel changes considerably with time.

4 frames of information bits were transmitted to test the
BER performance of the proposed system, where 1 frame
contains 16 blocks, and each block is 1024 information bits.
The BER performance is shown in Fig. 11(a), and it can be
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FIGURE 10. Channels in Jiaozhou Bay. (a) Waterfall plot; (b) Channel correlation curve.

FIGURE 11. Decoding performance and constellation in Jiaozhou Bay. (a) Decoding performance of 4 frames; (b) Constellation plots of
the 1st block of the 1st frame, and the iteration numbers are 0, and 1, respectively.

seen that from the results, after 1 iteration, all 4 frames of
information bits are decoded correctly. Take the 1st block
of the 1st frame to analyze the equalization performance,
as shown in Fig. 11(b), and we can see that the estimated
symbols are well clustered with only 1 iteration, demon-
strating the effectiveness of the proposed system under the
time-varying underwater acoustic channels.

V. CONCLUSION
We have addressed the issue of the channel estimation for
the time-varying underwater acoustic channels with the ST
scheme, where the training sequences are linearly super-
imposed with the symbol sequences, which only results in
a small power loss, but the spectrum loss and the power
loss caused by the traditional inserted training sequences are
avoided. LS based channel estimation algorithm, with the
superimposed training, has been proposed to realize the full
potentials of the ST scheme. In particular, low-complexity

GAMP equalization algorithm has been proposed, which
can be performed only in the complexity of a logarithmic
order per symbol. The channel estimation, equalization and
decoding have been performed jointly, which significantly
improve the overall system performance. Simulations and
experiments results have verified the effectiveness of the
proposed technique.
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