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ABSTRACT This article investigates the partial-form model-free adaptive control (MFAC) issue for a
class of discrete-time nonlinear systems. An improved partial-form MFAC design named IPFMFAC-NN
is proposed, where neural networks are introduced to enhance the control performance. With the excellent
approximation ability of radial basis function (RBF) neural networks, the pseudo gradient (PG) values
of control method can be directly approximated online using the measured input and output data of
the controlled system. Besides, long short-term memory (LSTM) neural networks are used to tune the
essential parameters of the control method online with system error set and gradient information set. Finally,
the effectiveness and applicability are verified by SISO discrete nonlinear system simulation and three-tank
system simulation, and experimental results demonstrate that the proposed method achieves the best control
performance in all five indices. Especially compared with the partial-form MFAC, the proposed method
reduces the RMSE index by 43.83% and 6.39%, respectively in two simulations, making it a promising
control method for discrete-time nonlinear systems.

INDEX TERMS LSTM neural networks, partial-form model-free adaptive controller, RBF neural networks,
three-tank system.

I. INTRODUCTION
Since Kalman proposed the concept of state-space in the
1960s [1], [2], modern control theory has made significant
developments, and many research fields and branches have
been derived [3], such as linear system theory, system identi-
fication, optimal control, and robust control [4], etc. These
theories have been widely and successfully used in prac-
tice, especially in aerospace, national defense, and military
industry [5].

With the development of science and technology, industrial
production processes are becoming more and more complex.
It is arduous to establish precise mathematical models based
on physical and chemical mechanisms in many practical situ-
ations [6]. However, the industrial process data can be easily
measured and stored, containing a lot of information related
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to the controlled system’s actual dynamics. Therefore, it is of
great significance to utilize these measured data for modeling
and control, mostly when an accurate model of the controlled
system cannot be obtained [7].

Data-driven control (DDC) [8] refers to a control method
in which the controller’s design only utilizes the online
and offline I/O data of the controlled system without
relying on precise mathematical models [9]. Nowadays,
many kinds of data-driven control (DDC) methods have
emerged, such as proportional-integral-derivative (PID) [10],
fractional-order controller (FOC) [11], model-free adaptive
control (MFAC) [12], simultaneous perturbation stochas-
tic approximation (SPSA) [13], virtual reference feedback
tuning (VRFT) [14], iterative feedback tuning (IFT) [15],
lazy learning (LL) [16], and so on. These DDC meth-
ods have been widely used on in practice after years of
development. Besides, the study of neural networks has
made remarkable academic achievements in recent years,
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and researches based on the combination of data-driven
methods and neural networks have also derived some the-
oretical results. Rădac et al. [17] presented a new iterative
data-driven algorithm to solve the optimization problems for
nonlinear processes, which uses linear controllers accounting
for operational constraints and employs a quadratic penalty
function approach to compensate for process nonlinearities
and uncertainties; Yacoub et al. [18] proposed an active
noise control (ANC) system based on the combination of
finite-impulse response filter and functional-link neural net-
work, its combined structure can not only compensate for the
nonlinear phenomena that often appear in the real-worldANC
applications, but also improve the attenuation performance;
Yan et al. [19] developed a multivariate nonlinear controller
design method for MIMO nonlinear systems via VRFT and
neural networks, and restated the model reference control
problem with time-domain model in the absence of transfer
functions and simplify the objective function of VRFT with-
out a linear filter; Zouari et al. [20] introduced two techniques
named robust neural adaptive control and neural indirect
adaptive control to ensure the robustness of uncertain nonlin-
ear multivariable systems, and the study of the stability and
robustness of both techniques was performed by Lyapunov
theory; Esparza et al. [21] considered a generic virtual refer-
ence tuning (VRT) methodology, which includes open-loop
and closed-loop setups. This proposed VRT discussed the
computation of some required gradients via backpropagation
through time and showed the achieved improvements over
the standard 1-degree of freedom control loop when auxiliary
sensors are used.

Among above mentioned DDC methods, MFAC and its
variants are popular in industrial process control [12]. MFAC
uses dynamic linearization technology to establish the equiv-
alent dynamic linearization model of the controlled object at
each sampling time, and then it estimates the pseudo partial
derivative (PPD) values or pseudo gradient (PG) values of
this model to approximate the local dynamic of the con-
trolled system, so as to obtain the expected control perfor-
mance [22]. Compared with ordinary DDC methods such as
PID [10] or fractional-order controller [11], the equivalent
dynamic linearization method MFAC has the advantages of
simple structure, convenient design, etc., and can equivalently
convert a discrete-time nonlinear system into a series of
dynamic linearized data models based on I/O measurement
data.

In the control scheme of partial-form MFAC, individual
parameters are essential which affect the stability of the
controlled system. However, as the controlled system sta-
tus changes, these parameters should be tuned accordingly,
so they are nonlinear and time-varying. Tuning parameters is
time-consuming and labor-intensive, and inappropriate val-
ues can bring about poor control performance [24]. There-
fore, the essential parameters online tuning work is of great
practical significance [25]. So far, there are few theoretical
results about the parameters tuning ofMFAC.Wang et al. [26]
proposed a controller parameter tuning method based on

optimization technology; however, there is no comparative
experiment to show the superiority of the algorithm; Chen
and Lu [27] introduced BP neural network help MFAC com-
plete parameters tuning work; however, authors did not com-
pare it with other advanced parameter tuning algorithms;
Gao et al. [28] introduced particle swarm optimization (PSO)
to optimize the MFAC by searching the optimal parameters;
however, this algorithm has long calculation time.

In practical application scenarios, as the amount of data
grows and the controlled systems become more complex,
ordinary neural networks such as BP neural networks can no
longer tune parameters accurately, which are easy to fail into
local optimum [29]. In previous research work [30], it has
been found that the LSTM neural network can estimate the
parameters to be tuned in the MFAC in real time, and its
optimization effect on the MFAC is more obvious than that of
the BP neural network, which proves the superiority of LSTM
neural network and the necessity of introducing it to tune
essential parameters online of partial-formMFAC.Moreover,
for partial-form MFAC, PG’s change will also become com-
plicated when the controlled system is strongly nonlinear.
Suppose only the projection algorithm of partial-formMFAC
is used to estimate PG [9]; in that case, there is a risk
that the estimated values differ too much from ideal values,
thereby affecting control performance. Although theoretical
analysis demonstrates that even if there is a deviation in PG
values estimation, the system’s stability can be guaranteed
as long as the appropriate weighting factor is selected in the
control scheme [9]. However, to improve the partial-form
MFAC control performance, optimizing the PG estimation
algorithm is of research significance. RBF neural networks
have strong function approximation ability [23], and they can
be introduced to estimate PG of partial-formMFAC. Besides,
the topology of the RBF neural network is simple, which can
ensure its calculation efficiency.

This article considers that PG of the dynamic lineariza-
tion model in partial-form MFAC can be estimated more
accurately, and essential parameters in the control scheme
should be tuned in real time according to changes in the
controlled system. An improved partial-form MFAC design
named IPFMFAC-NN is proposed. The feature of the pro-
posed method is that all introduced neural networks are
trained online using the measured I/O data of the controlled
system, and no off-line training and physical model of the
controlled system are involved. Compared with ordinary con-
trol algorithms, the proposedmethod can reflect the nonlinear
characteristics of the system and tune essential parameters
online in real time, and neural networks introduced by the
proposed method has strong learning ability and fast conver-
gence speed. Therefore, it can achieve better control perfor-
mance and stability in dealing with the general discrete-time
nonlinear system problems

The significant contributions of this article are summarized
as follows:

1) The RBF neural network is introduced to estimate
the PG of the dynamic linearization data model in
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partial-formMFAC, which merely depends on the con-
trolled system’s measured I/O data. The RBF neu-
ral network is a local approximation neural network
with fast convergence speed and can avoid falling into
local optima. It is very suitable for the online estima-
tion of PG.

2) The LSTM neural network is introduced to per-
form essential parameters online tuning work. As an
improved RNN, the LSTM neural network utilizes the
gate mechanism to control information entering and
exiting with the input gate, the forget gate, and the
output gate. Each gate has a strong ability to pro-
cess massive data feature information, which alleviates
the gradient exploding and vanishing problems of the
RNN neural network and improves the performance of
parameters tuning work.

3) This article carries out qualitative and quantitative
comparisons between the proposed method and other
tested methods. The ablation analysis is conducted to
prove the effectiveness of PG estimation and online
parameters self-tuning. Besides, this article verifies the
superiority and applicability of the proposed method
by comparing it with advanced methods in cited ref-
erences. The experimental results demonstrate that the
proposed method achieves the best performance in
both SISO discrete nonlinear system simulation and
three-tank system simulation.

The outline of this article proceeds as follows: Section II
is problem formulation. Section III introduces the proposed
method’s architecture and mathematical principles, includ-
ing the PG estimation and essential parameters online tun-
ing mechanisms. Section IV is the experimental part, which
demonstrates the superiority and stability of the proposed
method in both SISO discrete nonlinear system simulation
and three-tank water system simulation. Section V concludes
this article and discuss future work.

II. PROBLEM FORMULATION
Consider a class of SISO discrete-time nonlinear sys-
tems [31]:

y(k + 1) = f
(
y(k), · · · , y

(
k − ny

)
, u(k), · · · , u (k − nu)

)
(1)

where y(k) ∈ R, u(k) ∈ R are defined as the output and input
of the system at time k; ny and nu represent the unknown order
of the system; f (· · · ) : Rnu+ny+2 7→ R is a nonlinear function.
UL(k) ∈ RL is defined as a vector composed of all control
input signals in a sliding time window [k − L + 1, k]

UL(k) = [u(k), · · · , u(k − L + 1)]T (2)

where L is the linearization length, and UL(k) = 0L when
k 6 0, 0L is a zero vector of dimension L

In order to dynamically linearize nonlinear system (1),
the following assumptions are provided [31]:
Assumption 1: f (· · · ) has continuous derivative with

respect to the (ny+2)th variable to the (ny+L+1)th variable.

Assumption 2: System (1) satisfies the generalized Lip-
schitz condition: for any k1 6= k2, k1, k2 > 0 and
UL (k1) 6= UL (k2), then |y (k1 + 1)− y (k2 + 1)| 6
b ‖UL (k1)− UL (k2)‖ is established, where b is a constant.

For the nonlinear system (1) that satisfies assumption 1 and
assumption 2, there exists a time-varying parameter vector
φp,L(k) ∈ RL called pseudo gradient (PG) that can transfer
system (1) into the following partial-form dynamic lineariza-
tion (PFDL) model:

1y(k + 1) = φT
p,L(k)1UL(k) (3)

Equation (3) is an equivalent dynamic linear representation
of the system (1), it is a linear time-varying model with a
simple incremental form which is essentially different from
the traditional models. For the design of partial-form MFAC,
the following criterion function is considered [9]:

J (u(k)) =
∣∣y∗(k + 1)− y(k + 1)

∣∣2 + λ|u(k)− u(k − 1)|2

(4)

where λ > 0 is a weighting factor that limits the change in the
control input, which is often applied in control system design,
as it guarantees the smoothness of the control input signal,
and y∗(k + 1) is the desired output signal. The criterion func-
tion J consists of two parts, the term |y∗(k + 1)− y(k + 1)|2

is introduced to minimize system error, and the term λ|u(k)−
u(k − 1)|2 is introduced to prevent excessive changes in
control input. This criterion function also takes into account
the changes in the output and input of the controlled system,
which is more general than the ordinary one-step forward
prediction error criterion function in dealing with nonlinear
process problems. Substituting Eq. (3) into criterion func-
tion (4), taking the derivative of u(k) and making it equal to
zero, the optimal solution can be determined. With regard to
system (1), the following partial-form MFAC control scheme
can be obtained:

φ̂p,L(k) = φ̂p,L(k − 1)+
η1UL(k − 1)

µ+ ‖1UL(k − 1)‖2

× (y(k)− y(k − 1)− φ̂
T
p,L(k − 1)1UL(k − 1))

(5)

φ̂p,L(k) = φ̂p,L(1), if
∣∣∣φ̂p,L(k)∣∣∣ ≤ ε or|UL(k − 1) ≤ ε

or sign
(
φ̂1(k)

)
6= sign

(
φ̂1(1)

)
(6)

u(k) = u(k − 1)+
ρ1φ̂1(k) (y∗(k + 1)− y(k))

λ+

∣∣∣φ̂1(k)∣∣∣2
−
φ̂1(k)

∑L
i=2 ρiφ̂i(k)1u(k − i+ 1)

λ+

∣∣∣φ̂1(k)∣∣∣2 (7)

where µ > 0, η ∈ (0, 2], and ρi ∈ (0, 1], i = 1, 2, · · · ,L
is an important parameter introduced as a penalty factor for
a more general and flexible control rule. µ is the weighting
factor that limits the variance of the control input u(k). φ̂p,L(1)

VOLUME 9, 2021 41443



Y. Yang et al.: Improved Partial-Form MFAC Design for Discrete-Time Nonlinear Systems With Neural Networks

is the initial value of φ̂p,L(k). Eq. (6) is the reset algo-
rithm of PG.

As shown in the control scheme (5) – (7), partial-form
MFAC only uses the online I/O data measured by the
closed-loop controlled system for controller design and has
nothing to do with the mathematical model structure as well
as the system order, and it has the advantages of small
calculation amount and easy implementation. In addition,
partial-formMFAC can be combined with other model-based
control theories and methods for modular design to achieve
complementary advantages in work.

It should be emphasized that PG needs to be determined
accurately to realize the partial-form MFAC. Considering
that the mathematical model of the controlled system is
unknown and PG is time-varying, it is difficult to obtain its
exact value. The accuracy of the default PG projection algo-
rithm in the original partial-form MFAC can be improved.
Besides, [9], [26], [27] all explain that the parameters ρi
and λ are of great importance to the design of partial-form
MFAC, including theoretical analysis and simulation results
showing that appropriate selection of these parameters can
ensure the controlled system’s stability and achieve better
control performance [9]. Therefore, an improved partial-form
design based on neural networks is proposed.

III. THE PROPOSED IPFMFAC-NN METHOD
In this section, an improved partial-form MFAC based on
neural networks is proposed to realize the accurate PG esti-
mation and complete the online parameters tuning work of
the control scheme in partial-form MFAC. More specifically,
the proposed method introduces RBF neural networks to
estimate the PG of the dynamic linearization data model
in partial-form MFAC. LSTM neural networks are utilized
to tune essential parameters online to achieve better control
performance.

A. PG ESTIMATION BASED ON RBFNN
In 1989, Moody and Darken [32] proposed the RBF neural
network, a feedforward network with a three-layer structure
of the input layer, hidden layer, and output layer. The RBF
neural network has been proved to be an effective method for
nonlinear estimation, with simple structure, fast convergence
speed, and avoiding falling into local optimum [33]. There-
fore, the RBF neural network is introduced to estimate the
time-varying PG values.

The topology of the RBF neural network is shown in Fig. 1,
and it is introduced to estimate the PG values. The input is the
I/O information vector of the controlled system:

x(k) = [y(k), . . . , y(k − i), u(k − 1), . . . , u(k − j)] (8)

where i and j are two integers. The output of the nth neuron
in the hidden layer is:

Rn(x(k)) = exp

(
−
‖x(k)− cn(k − 1)‖2

b2n(k − 1)

)
,

n = 1, 2, · · · ,m (9)

FIGURE 1. Structure diagram of recurrent neural network.

where m is the number of hidden layer node, cn denotes
the center vector of the nth hidden neuron,‖x− cn‖ is the
Euclidean distance between x and cn, and bn is the radius
of the nth hidden neuron. The lth output of RBF neural
network is:

φ̂l(k) =
m∑
n=1

wnl(k − 1)Rn(x(k)), l = 1, 2, · · · ,L (10)

where wnl is the connection weights between the hidden
neurons and the lth output layer. Therefore, the estimated
value of PG at time k is:

φ̂p,L(k) = [φ̂1(k), φ̂2(k), · · · , φ̂L(k)] (11)

Take the one-step ahead squared error as the performance
indicator function:

J =
1
2
e(k + 1)2 =

1
2

(
y∗(k + 1)− y(k + 1)

)2 (12)

The training parameters of the RBF neural network can be
obtained by the following gradient descent method [34]:

wnl(k + 1) = wnl(k)− β
∂J

∂wnl(k)
+ α1wnl(k)

∂J
∂wnl(k)

=
∂J

∂e(k + 1)
∂e(k + 1)
∂y(k + 1)

∂y(k + 1)
∂u(k)

×
∂u(k)

∂φ̂l(k)

∂φ̂l(k)
∂wnl(k)

(13)

bn(k + 1) = b(k)− β
∂J

∂bn(k)
+ α1bn(k)

∂J
∂bn(k)

=
∂J

∂e(k + 1)
∂e(k + 1)
∂y(k + 1)

∂y(k + 1)
∂u(k)

×
∂u(k)

∂φ̂l(k)

∂φ̂l(k)
∂Rn(k)

∂Rn(k)
∂bn(k)

(14)

cn(k + 1) = cn(k)− β
∂J

∂cn(k)
+ α1cn(k)

∂J
∂cn(k)

=
∂J

∂e(k + 1)
∂e(k + 1)
∂y(k + 1)

∂y(k + 1)
∂u(k)

×
∂u(k)

∂φ̂l(k)

∂φ̂l(k)
∂Rn(k)

∂Rn(k)
∂cn(k)

(15)
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where β and α are the learning rate and inertia coeffient,
respectively. The partial derivatives of u(k) with respect to
φ̂l(k) are as follows:

∂u(k)

∂φ̂1(k)
= ρ1(y∗(k + 1)− y(k))

λ− φ̂1(k)2

(λ+ φ̂1(k)2)2

−

L∑
i=2

ρiφ̂i(k)1u(k − i+ 1)
λ− φ̂1(k)2

(λ+ φ̂1(k)2)2

(16)
∂u(k)

∂φ̂l(k)
= −

φ̂1(k)ρl φ̂l(k)1u(k − l + 1)

λ+

∣∣∣φ̂1(k)∣∣∣2 , 2 ≤ l ≤ L (17)

It should be noted that the RBF neural network is a local
approximation neural network, and its activation function is
usually a Gaussian radial basis function, and the function
image is attenuated on both sides and radially symmetric.
When the selected center is very close to the query point,
it has a real mapping effect on the input, so it has the advan-
tages of faster learning speed and not easy to fall into the
local optimum, which is suitable for real-time PG estimation.
As a comparison, in a global approximation neural network
such as a BP neural network, the weight coefficients in the
network all have an impact on the output, so it needs to
adjust theweight of each sample learning, which leads to slow
convergence and easy to fall into local extremes.

B. PARAMETERS ONLINE TUNING BASED ON LSTM
A recurrent neural network [35] was proposed by Jordan
in 1986. It takes sequence data as input, recursively in the evo-
lution direction of the sequence, and all nodes are connected
in a chain. Fig. 2 illustrates the RNN structure

FIGURE 2. Structure diagram of recurrent neural network.

The forward propagation formulas for the RNN are shown
as follows:

st = f (Uxt +Wst−1) (18)

ot = g (Vst) (19)

where xt represents the network input at time t , st is the
hidden state, ot is the network output, U is the weight
coefficient of the hidden layer to the output layer, V is the
weight coefficient of the hidden layer to the output layer,
and W is the hidden value of the previous moment. f (x) is
the tanh activation function, and g(x) is the softmax activation
function.

The training method of the RNN is the back-propagation
through time (BPTT) [36].Take the weight coefficient U to
be updated as an example, the partial derivative formula of
coefficient U at time t is:

∂Lt
∂U
=

t∑
k=0

∂Lt
∂ot

∂ot
∂st

 t∏
j=k+1

∂sj
∂sj−1

 ∂sk
∂U

(20)

where Lt is the loss function at time t . According to Eq. (18)
and tanh activation function, partial derivative formula (20)
can be converted into the following form:

∂Lt
∂U
=

t∑
k=0

∂Lt
∂ot

∂ot
∂st

 t∏
j=k+1

tanh′W

 ∂sk
∂U

(21)

The activation function tanh and its derivative curves are
shown in Fig. 3. It can be seen that for most of the train-
ing process, the value of tanh′ is less than 1. If the value
range of the coefficient W is in the interval [0,1], then term∏t

j=k+1 tanh
′W will approach zero when time t is very large.

Similarly, when coefficient W is very large,
∏t

j=k+1 tanh
′W

will approach infinity. Therefore this is the problem of gradi-
ent vanishing and exploding in RNN neural networks which
limits the use of RNN in actual scenarios.

FIGURE 3. Tanh activation function and its derivative curve.

LSTM neural network can be regarded as an optimiza-
tion of the RNN proposed by Hochreiter and Schmidhuber
in 1997 [37]. Compared with an RNN, the LSTM neural
network has the advantage of a gate mechanism to alleviate
the gradient problems of an RNN. In the above-mentioned
RNN gradient problem, the key to the gradient problem is
∂st
∂st−1

, and the similar term in the LSTM backpropagation can
be expanded as follows:

ct = ft � ct−1 + it � c̃t (22)
∂ct
∂ct−1

=
∂ct
∂ft

∂ft
∂ht−1

∂ht−1
∂ct−1

+
∂ct
∂it

∂it
∂ht−1

∂ht−1
∂ct−1

+
∂ct
∂̃ct

∂̃ct
∂ht−1

∂ht−1
∂ct−1

+
∂ct
∂ct−1

(23)

where ct is the cell state which is regarded as the part of
hidden state of LSTM neural networks, ft is the forget gate,
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it is the input gate, c̃t is the candidate cell state. Partial
derivatives in Eq. (23) can be written as follows:

∂ct
∂ct−1

= ct−1σ ′(·)wf ∗ ot−1 tanh′ (ct−1)

+ c̃tσ ′(·)wi ∗ ot−1 tanh′ (ct−1)

+ it tanh′(·)wc ∗ ot−1 tanh′ (ct−1)+ ft (24)

where σ is the sigmoid activative function and wf ,wf ,wc are
weight coefficients. Different from ∂st

∂st−1
, ∂ct
∂ct−1

is a polyno-
mial including ft ∈ [0, 1], and it can take on either values that
are greater than 1 or values in the range [0,1] at any time step.
Thus if the time step t is very large, it is not guarenteed that
∂ct
∂ct−1

will end up converging to zero or infinity, which can
explain why LSTM neural networks can alleviate gradient
problems of RNN neural networks.

Therefore, the gate mechanism in the hidden layer is suit-
able for processing and predicting important events with
very long intervals and delays in the time series [38]. The
architecture of an LSTM neural network is shown in Fig. 4,
and it is used to tune essential parameters ρ and λ online
mentioned in section II.

FIGURE 4. Architecture of the LSTM neural network.

The input consists of the system error set and the gradient
information sets, which are defined as follows:

xerror =

[
e(k), e(k)− e(k − 1),

k∑
t=0

e(k)

]

xuλ =
[
∂u(k − 1)

∂λ
,
∂u(k − 2)

∂λ
,
∂u(k − 3)

∂λ

]
xuρ =

[
∂u(k − 1)
∂ρ1

,
∂u(k − 2)
∂ρ1

,
∂u(k − 3)
∂ρ1

, · · ·

∂u(k − 1)
∂ρl

,
∂u(k − 2)
∂ρl

,
∂u(k − 3)
∂ρl

, · · ·

∂u(k − 1)
∂ρL

,
∂u(k − 2)
∂ρL

,
∂u(k − 3)
∂ρL

]
(25)

where xerror is defined as system error set, xuλ and xuρ are
defined as the gradient information sets. The overall input of
the LSTM neural network is as follows:

Xk =
[
xerror , xuλ , xuρ

]
(26)

Then the LSTM neural network starts forward propagation
calculation, and the outputs of all gates of the LSTM hidden
layer are as follows:

netfi(k) = wfi [Xk , hk−1]+ bfi
fi(k) = σ

(
netfi(k)

)
(27)

netIi(k) = wIi [Xk , hk−1]+ bIi
Ii(k) = σ (netIi(k)) (28)

netc̃i(k) = wci [Xk , hk−1]+ bci
c̃i(k) = tanh (netc̄i(k)) (29)

ci(k) = ci(k − 1)� fi(k)+ Ii(k)� c̃i(k) (30)

netoi(k) = woi [Xk , hk−1]+ boi
oi(k) = σ (netoi(k)) (31)

hi(k) = oi(k)� tanh (ci(k)) , i = 1, 2, . . . lstmnum

(32)

where fi(k) is the output of forget gate, Ii(k) and c̃i(k) are two
part of input gate output, oi(k) is the output of output gate,
hi(k) is the output of the LSTM hidden layer, wfi, wli, wci,
woi are the weight coefficients of each gate state; bfi, bli, bci,
boi are the bias coefficients of each gate state, lstmnum is the
number of hidden layers. σ is the sigmoid activation function
and the tanh is also the activation function, their formulas are
shown as follows:

σ (z) =
1

1+ e−z
(33)

tanh(z) =
ez − e−z

ez + e−z
(34)

The outputs of the LSTM output layer are as follows:

onetl(k) = wmhhi(k)+ bmh (35)

outl(k) = σ (onetl(k)) (36)

where wmh and bmh are the weight and bias coefficients.
Finally, the tuned parameters of partial-formMFAC are deter-
mined as follows:

λ = outl1(k)

ρl = outl(l+1)(k), l = 1, 2, · · · ,L (37)

Combining the systematic error e(k), the control input u(k)
can be calculated. Take Eq. (12) as the performance indica-
tor function.The weight and bias coefficients to be learned
in LSTM are updated using a chain-based backpropagation
algorithm (BPTT). For the sake of brevity, only the updated
formulas of the weight coefficients are presented as follows:

wfi(k + 1) = wfi(k)− η
∂J
∂wfi

∂J
∂wfi
=

∂J
∂y(k + 1)

∂y(k + 1)
∂u(k)

∂u(k)
∂outl(k)

∂outl(k)
∂onetl(k)

×
∂onetl(k)
∂hi(k)

∂hi(k)
∂ci(k)

∂ci(k)
∂fi(k)

∂fi(k)
∂netfi(k)

×
∂netfi(k)
∂wfi

(38)
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wIi(k + 1) = wIi(k)− η
∂J
∂wIi

∂J
∂wIi
=

∂J
∂y(k + 1)

∂y(k + 1)
∂u(k)

∂u(k)
∂outl(k)

∂outl(k)
∂onetl(k)

×
∂onetl(k)
∂hi(k)

∂hi(k)
∂ci(k)

∂ci(k)
∂Ii(k)

∂Ii(k)
∂netIi(k)

×
∂netIi(k)
∂wIi

(39)

wci(k + 1) = wci(k)− η
∂J
∂wci

∂J
∂wci

=
∂J

∂y(k + 1)
∂y(k + 1)
∂u(k)

∂u(k)
∂outl(k)

∂outl(k)
∂onetl(k)

×
∂onetl(k)
∂hi(k)

∂hi(k)
∂ci(k)

∂ci(k)
∂ c̃i(k)

∂ c̃i(k)
∂netci(k)

×
∂netc̄i(k)
∂wci

(40)

woi(k + 1) = woi(k)− η
∂J
∂woi

∂J
∂woi

=
∂J

∂y(k + 1)
∂y(k + 1)
∂u(k)

∂u(k)
∂outl(k)

∂outl(k)
∂onetl(k)

×
∂onetl(k)
∂hi(k)

∂hi(k)
∂oi(k)

∂oi(k)
∂netoi(k)

∂netoi(k)
∂woi

(41)

wmh(k + 1) = wmh(k)− η
∂J
∂wmh

∂J
∂wmh

=
∂J

∂y(k + 1)
∂y(k + 1)
∂u(k)

∂u(k)
∂outl(k)

∂outl(k)
∂onetl(k)

×
∂onetl(k)
∂wmh

(42)

where η is the learning rate parameter. The updated principle
of the bias coefficients is the same as the update of the
weight coefficients. The most important component of the
above weight update is ∂u(k)/∂outl(k), which is the partial
derivative u(k) of with respect to λ and ρl , and the formulas
are as follows:

∂u(k)
∂λ
= −

ρ1φ̂1(k) (y∗(k + 1)− y(k))(
λs +

∣∣∣φ̂1(k)∣∣∣2)2

+
φ̂1(k)

∑L
l=2 ρl φ̂l(k)1u(k − l + 1)(
λ+

∣∣∣φ̂1(k)∣∣∣2)2 (43)

∂ul(k)
∂ρl

=



φ̂1(k) (y∗(k + 1)− y(k))

λ+

∣∣∣φ̂1(k)∣∣∣2 , l = 1

−
φ̂1(k)φ̂l(k)1u(k − l + 1)

λ+

∣∣∣φ̂1(k)∣∣∣2 , 2 ≤ l ≤ L
(44)

C. CONTROL SCHEME
The general framework of the proposed method is shown
in Fig. 5, and the z−1 denotes the backward time shift.
An improved partial-form MFAC based on neural networks

for discrete-time nonlinear systems is proposed. To be spe-
cific, this proposed method takes the I/O information vector
of the controlled system as the input of RBF neural networks,
and the RBF neural networks estimate the PG values online.
Then the system error set and the gradient information set
are taken together as the input of LSTM neural networks,
and essential parameters λ and ρ are tuned online by LSTM
neural networks. These introduced neural networks all take
the one-step-ahead squared error as the performance indicator
function, quickly training and updating the weight and bias
coefficients. The PG estimation value and tuned parameters
λ and ρ are passed into controller, then the input signal u(k)
and the output y(k + 1) can be calculated.

In summary, the control scheme of the proposed method is
constructed as follows:

1) PG online estimation by RBF neural networks:

φ̂l(k) =
m∑
n=1

wrbf (k − 1)Rn(xrbf (k)) (45)

φ̂p,L(k) = [φ̂1(k), φ̂2(k), · · · , φ̂L(k)] (46)

2) Essential parameters online tuning by LSTM neural
networks:

outl(k) = σ (wlstmh(xlstm(k))+ blstm) (47)

λ = outl1(k)

ρl = outl(l+1)(k) (48)

3) Control method:

u(k) = u(k − 1)+
ρ1φ̂1(k) (y∗(k + 1)− y(k))

λ+

∣∣∣φ̂1(k)∣∣∣2
−
φ̂1(k)

∑L
i=2 ρiφ̂i(k)1u(k − i+ 1)

λ+

∣∣∣φ̂1(k)∣∣∣2 (49)

1UL(k) = [1u(k), · · · ,1u(k − L + 1)]T (50)

y(k + 1) = y(k)+ φT
p,L(k)1UL(k) (51)

4) Weight coefficient training of neural networks:

wnl(k + 1) = wrbf (k)− β
∂J

∂wrbf (k)
+ α1wrbf (k) (52)

wlstm(k + 1) = wlstm(k)− η
∂J

∂wlstm
(53)

where Rn(· · · ) represents the output of RBFNN’s hid-
den layer, h(· · · ) represents the output of LSTM’s hid-
den layer, xrbf (k) and xlstm(k) represent the inputs of RBF
neural networks and LSTM neural networks respectively.
Eq. (52) and (53) show the weight coefficients training of
output layers. The weight coefficients of the other layers are
trained similarly, which is omitted here for brevity.

IV. SIMULATION AND EXPERIMENTAL RESULTS
In this section, two simulations, single input single out-
put (SISO) discrete nonlinear system simulation, and
three-tank system simulation are given to demonstrate the

VOLUME 9, 2021 41447



Y. Yang et al.: Improved Partial-Form MFAC Design for Discrete-Time Nonlinear Systems With Neural Networks

FIGURE 5. Structure diagram of the proposed algorithm.

effectiveness and applicability of the proposed method. The
comparison methods selected in these two simulations are
PID [15], partial-form MFAC [8], BP-based partial-form
MFAC [27], and PSO-based partial-form MFAC [28], which
are named by the following abbreviations for simplicity:
PID, PFMFAC, PFMFAC-BP, and PFMFAC-PSO. Besides,
to evaluate the effectiveness of PG estimation and essential
parameters online tuning, a temporary tested method named
PFMFAC-PG is introduced for subsequent ablation analysis.
PFMFAC-PG can be considered as IPFMFAC-NN without
the parameter tuning module based on LSTM.

A. SISO DISCRETE NONLINEAR SYSTEM SIMULATION
A classical SISO discrete nonlinear system can be described
as [9]:

y(k + 1) =
2.5y(k)y(k − 1)

1+ y2(k)+ y2(k − 1)
+ 1.2u(k)

+ 0.09u(k)u(k − 1)+ 1.6u(k − 2)

+ 0.7 sin(0.5(y(k)+ y(k − 1)))

× cos(0.5(y(k)+ y(k − 1))) (54)

The desired value of the system output is as follows:

y∗(k + 1) = 5 sin(kπ/50)+ 2 cos(kπ/20) (55)

The proposed method initialization work is shown in the
table 1. The control input linearization length L is 3, which
means that the number of PG estimation at each time step
is 3, and the number of parameters to be tuned at each time
step is 4 (λ, ρ1, ρ2 and ρ3). In neural networks, the num-
ber of hidden layers is approximately twice the number of
input layers, which can fully learn nonlinear features. The
initial values of the partial-form MFAC parameters in the
table 1 are consistent with the initial values set in the cited
reference [9].

All tracking curves of tested methods are shown
in Fig. 6 and Fig. 7, which illustrate the control performance
of each tested methods. It should be noted that the tracking
curve of PFMFAC in Fig. 6 is almost consistent with the
corresponding experimental tracking curve in the cited ref-
erence [9] so that it can be used as the benchmark for the
comparison of the proposed algorithm.
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TABLE 1. Initialization in SISO discrete nonlinear system simulation.

Fig. 6 demonstrates the tracking curves of PFMFAC,
PFMFAC-PG, and the proposed method. As shown in Fig. 6,
The tracking performance of these three methods is improved
gradually. In the first 20s, the tracking curves of PFMFAC
and PFMFAC-PG have apparent fluctuations, and the fluc-
tuation of the PFMFAC-PG tracking curve decreases rapidly
after 20s. In comparison, the PFMFAC tracking curve does
not show a steady trend until after the 40s, reflecting that
PG values estimated by RBF neural networks are closer to
the ideal value. Compared with PFMFAC-PG, the proposed
IPFMFAC-NN performs better in tracking the target curve,
not only has the smaller fluctuation in the first 20s but also can
track the target curve smoothly in the follow-up, proving that
the online tuning of essential parameters λ and ρ can further
optimize the control performance.

FIGURE 6. Tracking curves of PFMFAC, PFMFAC-PG, IPFMFAC-NN.

Fig. 7 compares the proposed algorithm with methods
in other cited references. Similar to Fig. 6, the proposed
method achieves the best tracking performance among all
tested methods, which can quickly track the target curve
while tracking curves of other methods show fluctuations of
different degrees in the first 20s. After the 20s, except for the
PID method, all tested methods can track the target curve
well, of which the proposed method has the best tracking
performance, proving the superiority of RBF neural networks
and LSTM neural networks in optimizing the tracking perfor-
mance. Take the period between the 20s and 35s as an exam-
ple, there is a nonnegligible gap between the tracking curve of
other algorithms and the target curve, and the tracking curve

FIGURE 7. Tracking curves of cited methods and IPFMFAC-NN.

of the proposed method is closer to the target curve, which
can be found from the detailed view in Fig. 7.

Fig. 8 demonstrates the controller input curves of each
algorithm. Each method control input curve is similar to the
corresponding tracking curve trend in Fig. 6 and Fig. 7. It can
be found that the control input curve of the proposed method
has smaller fluctuations than other curves, indicating that the
proposed method’s control input is more stable

FIGURE 8. Control input of all tested methods.

Fig. 9 demonstrates the parameter online tuning results of
λ and ρ. As described in these two subfigures, the proposed
algorithm can tune these essential parameters sensitively, and
the difference between parameters tuning results and the cor-
responding default values is relatively small, which guaran-
tees the stability of parameters online tuning work. Therefore,
combined with Fig. 6, the proposed method can tune essential
parameters online sensitively to obtain better tracking perfor-
mance than ordinary partial-formMFAC, reflecting the effec-
tiveness of parameters online tuning. Moreover, it is worth
noting that value curves of λ and ρ have a certain degree
of similarity which can be explained with the theoretical
analysis. Eq. (7) presents the control scheme which can be
converted to the following form:

1u(k) =
ρ1φ̂1(k) (y∗(k + 1)− y(k))

λ+

∣∣∣φ̂1(k)∣∣∣2
−
φ̂1(k)

∑L
i=2 ρiφ̂i(k)1u(k − i+ 1)

λ+

∣∣∣φ̂1(k)∣∣∣2
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FIGURE 9. Parameter tuning results of λ(a) and ρ(b).

=
ρ1

λ+

∣∣∣φ̂1(k)∣∣∣2 φ̂1(k)
(
y∗(k + 1)− y(k)

)
−

ρ2

λ+

∣∣∣φ̂1(k)∣∣∣2 φ̂1(k)φ̂2(k)1u(k − 1)

−
ρ3

λ+

∣∣∣φ̂1(k)∣∣∣2 φ̂1(k)φ̂3(k)1u(k − 2)

...

−
ρL

λ+

∣∣∣φ̂1(k)∣∣∣2 φ̂1(k)φ̂L(k)1u(k − L + 1) (56)

where λ and ρ are introduced to ensure the smoothness of
input u(k), and the fluctuation of the PG value is relatively
small, which means λ and ρ play a role in preventing the term
ρlφ1(k)/

(
λ+ |φ1(k)|2

)
from changing too much. Therefore,

the value curves of λ and ρ have similar trends
Fig. 10, Fig. 11, and Fig. 12 demonstrate the PG estimated

value curves of partial-formMFAC and the proposed method.
As described in these three figures, the proposed method’s
PG estimation curves tend to be stable after a short period of
fluctuation. In contrast, the dynamics of PFMFAC’s PG val-
ues are so complicated that the default projection estimation
algorithm cannot track its true values well, which results in
its tracking performance is not as good as the IPFMFAC-NN
in Fig. 6.

All the figures shown above can prove that the pro-
posed algorithm can accurately estimate PG values of
partial-form MFAC and tune essential parameters λ and ρ
online sensitively. Therefore, it can achieve the best tracking

FIGURE 10. φ̂1 estimated value curve.

FIGURE 11. φ̂2 estimated value curve.

FIGURE 12. φ̂3 estimated value curve.

performance in the SISO discrete nonlinear system simula-
tion, proving the superiority of RBF neural networks and
LSTM neural networks.

B. THREE-TANK SYSTEM SIMULATION
The three-tank system [39] is a typical nonlinear and
time-delayed object, which belongs to the controlled object
in the liquid level control system. The output Y (cm) of the
system is the liquid level of the third tank, and the control
input U is the flow opening (%) into the tank. The work-
ing principle of the three-tank system is: when the liquid
level rises to a certain high and low pressure, the outflow is
increased to be equal to the inflow, to re-establish a balanced
relationship, the liquid level finally stabilized at a certain
height, the schematic diagram of the three-tank system is
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FIGURE 13. Schematic diagram of the three-tank system.

shown in Fig. 13. The transfer function of the liquid level Y
and control input U in the simple three-tank system is calcu-
lated as follows:

G(s) =
Y (s)
U (s)

=
Ke−τ s

(T1s+ 1) (T2s+ 1) (T3s+ 1)
(57)

where K is system gain, τ is delay factor, T1, T2, T3 are
time constants. In this simulation, the following parameters
are selected:

[K τ T1 T2 T3] =
[4.5 24 8 8 8] k < 400

[5 24 8 8 8] 400 ≤ k < 800

[5 40 6 6 6] 800 ≤ k < 1000

(58)

Based on the transfer function and above mentioned
parameters, the following three-tank system can be
calculated:

y(k + 1) =

2.6475 y(k)− 2.3364 y(k − 1)+ 0.6873 y(k − 2)
+0.001334 u(k − 24)+ 0.00486 u(k − 25)
+0.001106 u(k − 26), k < 400
2.6475 y(k)− 2.3364 y(k − 1)+ 0.6873 y(k − 2)
+0.001482 u(k − 24)+ 0.0054 u(k − 25)
+0.001229 u(k − 26), 400 ≤ k < 800
2.5394 y(k)− 2.1496 y(k − 1)+ 0.6065 y(k − 2)
+0.003406 u(k − 40)+ 0.01203 u(k − 41)
+0.0026 u(k − 42), 800 ≤ k < 1000

(59)

The desired value of the system output is as follows:

y∗(k) = 10 (60)

The proposed method initialization work is shown in the
table2. The control input linearization length L is 3, which
means that the number of RBF neural networks output layers
is 3, and the number of LSTM neural networks output layers
is 4 (λ, ρ1, ρ2 and ρ3). To prove the superiority of the
proposed method, the initial values of the partial-formMFAC

TABLE 2. Initialization in three-tank system simulation.

FIGURE 14. Tracking curves of PFMFAC, PFMFAC-PG, IPFMFAC-NN.

parameters in the table 2 are consistent with the initial values
set in the cited reference [39].

Similar to the SISO discrete nonlinear system simulation,
it also should be noted that the tracking curve of PFMFAC
in Fig. 14 is almost consistent with the corresponding exper-
imental curves in the cited reference [39], which can be
regarded as the benchmark to reflect the superiority of the
proposed method.

All tracking curves of tested methods are shown
in Fig.14 and Fig.15, which are used to illustrate each tested
method’s control performance. Fig. 14 demonstrates the
tracking curves of PFMFAC, PFMFAC-PG, and the proposed
method. As described in Fig. 14, in the first 400s, the pro-
posed method has the shortest rise time and tends to be stable
quickly, while the other two tested methods have longer rise
time and larger overshoots. Similarly, between 400s and 800s,
the tracking curves of the proposed method and PFMFAC-PG
tend to be stable at 600s after a small fluctuation. In compar-
ison, the PFMFAC method does not reach a steady-state until
650s later, reflecting the effectiveness of the PG estimation
method for improving the tracking performance. In the last
200s, the tracking performances of all testedmethods are very
close. From the overall point of view, the proposed method’s
tracking performance is the best among the three, showing
the necessity of PG value estimation and parameters online
tuning in the partial-form MFAC.
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FIGURE 15. Tracking curves of cited methods and IPFMFAC-NN.

FIGURE 16. Control input of all tested methods.

In Fig. 15, the proposed method is compared with other
methods in cited references. From the overall tracking curves
of all tested methods, the proposed method achieves the best
tracking performance, tracking the target value quickly, and
has the best stability. Although the other three testedmethods’
rise time is shorter, their curves fluctuate considerably and
fail to reach a stable state in the first 400s, showing that these
algorithms cannot guarantee control stability while shorten-
ing the response speed. The algorithm proposed in this article
can reach a stable state fastest and has the smallest overshoot,
which reflects the superiority of RBF neural networks and
LSTM neural networks for algorithm optimization

Fig. 16 demonstrates the controller input curves of each
algorithm. Each method control input curve is similar to the
corresponding tracking curve trend in Fig. 14 and Fig. 15.

Fig. 17 demonstrates the parameter online tuning results
of parameter λ and ρ. As described in these two subfigures,
these tuned parameter values are relatively close to the cor-
responding default values, which guarantees the accuracy of
parameters online tuning work. Therefore, compared with
ordinary partial-form MFAC, the proposed method can tune
parameters online sensitively to obtain better tracking perfor-
mance, reflecting the effectiveness of LSTM neural networks
in parameters tuning. Besides, the changes of these two kind
of tuned parameters curves have a certain degree of similarity,
the reason for this phenomenon is similar to that in the SISO
discrete nonlinear system simulation.

Fig. 18, Fig. 19, and Fig.20 demonstrate the PG estimated
value curves of partial-formMFAC and the proposed method.
As shown in these three figures, PG values of PFMFAC

FIGURE 17. Parameter tuning results of λ(a) and ρ(b).

FIGURE 18. φ̂1 estimated value curve.

are equal to the initial values φ̂p,L(1) = [1 0 0] after
350s, indicating that the PG parameter estimation algorithm
in the partial-form MFAC triggers the reset mechanism after
350s. Therefore, in this three-tank system simulation with
a large time-lag, the PG value calculated by the PFMAFC
projection algorithm is constant after 350s and cannot reflect
the controlled system’s dynamic characteristics. In contrast,
the algorithm proposed in this article can estimate the PG
value very well, and estimated values can tend to be stable
within a specific range after the initial stage of rising, proving
RBF neural networks’ effectiveness.

All the figures shown above can prove that the PG pro-
jection algorithm in partial-form MFAC will fail to deal with
control process with a large time-lag, and the proposed algo-
rithm can accurately estimate PG of partial-form MFAC and
tune the parameters λ and ρ online correctly and sensitively.
Therefore, it can achieve the best tracking performance in the
three-tank water system simulation, proving the effectiveness
of the introduced RBF neural networks and LSTM neural
networks.
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TABLE 3. Evaluation results of SISO discrete nonlinear system simulation.

TABLE 4. Evaluation results of three-tank system simulation.

FIGURE 19. φ̂2 estimated value curve.

FIGURE 20. φ̂3 estimated value curve.

C. SIMULATION RESULTS AND ANALYSIS
To further analyze the control performance of the proposed
method, five individual performance indices are introduced
for quantitative comparison. The first two indices are used
to evaluate each method’s tracking accuracy, which are the
root mean square error (RMSE) and the integral absolute
error (IAE). The integral absolute variation of the control
signal (IAVU ) is used to evaluate the stability of the control
input. This article proposes two other indices to evaluate
the algorithm. The first is the maximum overshoot (MO),
which is presented to evaluate the tracking instability, and
the imprecise control ratio (ICR) is used to calculate the

time proportion of imprecise control. These five indices are
expressed in (61) – (65) as follows:

RMSE =

√√√√ 1
N

N∑
k=1

e(k)2 (61)

IAE =
∫ t

0
|ei(t)| dt (62)

IAVU =
∫ t

0

∣∣∣∣du(t)dt

∣∣∣∣ dt (63)

MO = max
((
y(1)− y∗(1)

)
, · · · ,

(
y(N )− y∗(N )

))
(64)

ICR(ξ ) =
1
N

∑N

k=1
IC(k, ξ )

IC(k, ξ ) =

{
0 when

∣∣y(k)− y∗(k)∣∣ < ξ

1 when
∣∣y(k)− y∗(k)∣∣ ≥ ξ (65)

The performance evaluation results of each algorithm in
the experiment are presented in Tables 3 and 4. It is easy to
find that the proposed method performs best in all indices in
two simulations. In comparison with the original PFMFAC,
both the proposed algorithm and the PFMFAC-PG exhibit
significant improvement in various indices, demonstrating
that accurate estimation of PG and essential parameters
online tuning of partial-form MFAC is necessary and mean-
ingful in the field of control theory.

1) ANALYSIS OF SISO DISCRETE NONLINEAR SYSTEM
SIMULATION
For results of SISO discrete nonlinear system simulation as
listed in Table 3, PID has the worst performance on var-
ious indices and can be reflected in Fig. 7. PFMFAC-BP
and PFMFAC-PSO introduce different algorithms to tune
the parameters of partial-form MFAC. However, these two
algorithms only have better performance in the two indices of
RMSE and IAVU , and Fig. 7 shows that these two algorithms
solve the problem of the fluctuation of the tracking curve in
the first 40s, but the tracking performance is not as good as
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PFMFAC afterward, indicating that the effect of parameter
tuning is not stable enough.

PFMFAC-PG, which introduces RBF neural networks to
estimate PG values, achieves better results than PFMFAC
under all indices except MO in the first simulation, mainly
because PFMFAC-PG has a more obvious fluctuation in the
first 10s, but the tracking performance is better than PFMFAC
afterwards. Therefore, it can be proved that the PG estimation
by RBF neural networks is effective. In addition, in compar-
ison with PFMFAC-BP, PFMFAC-PG achieves better results
in all five indices and it is reduced by 7.39% in the MFAC
index, which reflects the advantages of the local approxima-
tion neural network.

Furthermore, compared with PFMFAC, the proposed
method is reduced by 43.83%, 33.71%, 53.61%, 52.74% and
20.48% in all indices, indicating that the proposed method
has a significant improvement in control performance and
control input stability. Besides, compared with PFMFAC-PG,
the proposed method is reduced by 33.48% and 18.09% in the
two main indices of RMSE and IAVU , proving the effective-
ness of parameter tuning and the superiority of LSTM neural
networks.

2) ANALYSIS OF THREE-TANK SYSTEM SIMULATION
In the three-tank system simulation as listed in Table 4, all
algorithms except PID have relatively small gaps in various
indices, which can be reflected from these methods’ tracking
curves in Fig. 14 and Fig. 15. Similarly, tracking curves
of PFMFAC-BP and PFMFAC-PSO have faster response
speed but greater fluctuations than PFMFAC’s curve, so they
only have better performance in the two indices of RMSE
and IAVU , indicating the necessity of introducing different
indices to measure the effectiveness of the method.

In addition, PFMFAC-PG achieves better results than
PFMFAC under all indices to verify the effectiveness of PG
estimation by RBF neural networks, it is reduced by 3.70%,
7.36%, 12.07%, 6.61% and 20.80% in all indices. Similar to
the results of the SISO discrete nonlinear system simulation,
PFMFAC-PG achieves better results than PFMFAC-BP in all
five indices, the most obvious of which is that it is reduced
by 26.6% compared to PFMFAC-BP under the IAVU index,
showing the advantages of RBF neural networks.

Finally, compared with PFMFAC, the proposed method is
reduced by 6.39%, 23.91%, 13.02%, 10.11% and 29.07%
in all indices, and it also performs better in all indices than
PFMFAC-PG and reduces the two main indices of RMSE and
IAVU by 2.68% and 0.95%. The above analysis proves the
effectiveness of parameters tuning work and PG estimation,
and also reflects the superiority of the proposed algorithm.

Generally speaking, the methods in the cited references
only achieve better results than partial-form MFAC in some
indices, indicating that the optimization effect is not good
enough, and it also proves the necessity of multiple indices
to measure the performance of the method. In addition,
through ablation analysis, the optimization effects of the RBF
neural network and the LSTMneural network are respectively

proved. Therefore, the proposed method has the significant
improvement in all indices, which shows the rationality of
the algorithm design.

V. CONCLUSION
This article proposes an improved partial-formMFAC named
IPFMFAC-NN for a class of discrete-time nonlinear sys-
tems. The importance and originality of this article are that
the proposed method introduces RBF neural networks to
estimate PG values of partial-form MFAC and uses LSTM
neural networks to tune essential parameters online sensi-
tively, which significantly improves the control performance.
The correctness of the proposed method has been verified
by SISO discrete nonlinear system simulation and three-tank
system simulation, and five evaluation indices are introduced.
The experimental results demonstrate that the proposed algo-
rithm achieves the best control performance among all tested
methods. The proposed method thus has advantages in sta-
bility and accuracy. This joint optimization method is not
available in previous theoretical results.

The proposed method in this article still has room for
improvement. In Fig. 6 and Fig. 14, the tracking errors of
IPFMFAC-NN do not converge to zero. In fact, the sys-
tem output at the next moment may also be related to
the system output in the sliding window. Therefore, in the
future research, the partial-form dynamic linearization can
be expanded to take into account the control input and output
of the system in the sliding time window, which can better
capture the complex dynamic characteristics of the controlled
system.

More importantly, the proposed method is a pure DDC
method and only validates its advantages in SISO discrete
nonlinear system simulation and classical practical indus-
trial scene like the three-tank system. However, it has not
been evaluated in the actual industrial scene with some fac-
tors such as measurement noise and control saturation [40].
Therefore, in the future work, noise reduction techniques like
wavelet denoising [41] will be introduced into the algorithm
to deal with some disturbance factors in the actual production
process, which is different from the experiments conducted
in this article such as the chemical production process, oil
refining production process, etc. Studying these factors in the
actual industrial scene is an important research area from an
engineering perspective.
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