
Received February 28, 2021, accepted March 8, 2021, date of publication March 10, 2021, date of current version March 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3065597

Hybrid Auto-Scaled Service-Cloud-Based
Predictive Workload Modeling and
Analysis for Smart Campus System
MIRZA ABDUR RAZZAQ 1, JAVED AHMED MAHAR1, MUNEER AHMAD 2, (Member, IEEE),
NAJIA SAHER3, ARIF MEHMOOD 3, AND GYU SANG CHOI 4, (Member, IEEE)
1Department of Computer Science, Shah Abdul Latif University, Khairpur 66020, Pakistan
2Department of Information Systems, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia
3Department of Computer Science and IT, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
4Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea

Corresponding author: Gyu Sang Choi (castchoi@ynu.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant NRF-2019R1A2C1006159, and in part by the Ministry of Science and ICT (MSIT),
Korea, under the Information Technology Research Center (ITRC) Support Program supervised by the Institute for Information and
communications Technology Promotion (IITP) under Grant IITP-2020-2016-0-00313.

ABSTRACT The internet of things is an emerging technology used in cloud computing and provides
many services of the cloud. The cloud services users mostly suffer from service delays and disruptions
due to service cloud resource management based on vertical and horizontal scalable systems. Adding
more resources to a single cloud server is called vertical scaling, and an increasing number of servers is
known as horizontal scaling. The service-bursts significantly impact the vertical scaled environment where
the scale-up degrades the service quality and users’ trust after reaching the server’s maximum capacity.
Besides, the horizontally scaled environment, though being resilient, is cost-inefficient. It is also hard to
detect and manage bursts online to sustain application efficiency for complex workloads. Burst detection
in real-time workloads is a complicated issue because even in the presence of auto-scaling methods,
it can dramatically degrade the application’s efficiency. This research study presents a new bursts-aware
auto-scaling approach that detects bursts in dynamic workloads using resource estimation, decision-making
scaling, and workload forecasting while reducing response time. This study proposes a hybrid auto-scaled
service cloud model that ensures the best approximation of vertical and horizontal scalable systems to
ensure Quality of Service (QoS) for smart campus-based applications. This study carries out the workload
prediction and auto-scaling employing an ensemble algorithm. The model pre-scales the scalable vertical
system by leveraging the service-load predictive modeling using an ensemble classification of defined
workload estimation. The prediction of the upcoming workload helped scale-up the system, and auto-scaling
dynamically scaled the assigned resources to many users’ service requests. The proposed model efficiently
managed service-bursts by addressing load balancing challenges through horizontal auto-scaling to ensure
application consistency and service availability. The study simulated the smart campus environment model
to monitor the time-stamped diverse service-requests appearing with different workloads.

INDEX TERMS Auto-scaling, cloud computing, horizontal scalability, the Internet of Things, predictive
modeling, quality of service (QoS), smart campus, vertical scalability, workloads.

I. INTRODUCTION
The Internet of Things (IoT) has gained tremendous attention
in the last few years. The definition of the IoT was proposed

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Merlino .

in 1999 by Kevin Ashton. The IoT is seen as the Internet’s
future. IoT will play a vibrant contribution in the future and
improve our living habits, standards, and business patterns.
In the next coming years, the use of IoT in various apps is
expected to increase rapidly [1]. In every area of life, the IoT
is applied to render its vision anywhere for anyone at any

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 42081

https://orcid.org/0000-0003-4288-7992
https://orcid.org/0000-0001-5047-1108
https://orcid.org/0000-0001-5822-4005
https://orcid.org/0000-0002-0854-768X
https://orcid.org/0000-0002-1469-7860


M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

time. Smart devices are utilized to sense in IoT applications
to collect data and transmit to servers on the cloud via a
communication medium such as Wi-Fi, and information is
communicated to smart actuator devices after processing for
decision making [2].

The educational campuses are smart using IoT to collect
real-time data for decision making to accommodate increas-
ing needs [3].The smart campus results from the rapid growth
of computer networks, IoT, and servers’ advancement. It has
three main features: customized services, information ser-
vices, and platforms for the workplace. The concept for
developing a smart campus is based on IoT to use advance-
ments in information technology to incorporate the digital
environment-based application framework to deliver services
with better quality [4] It supports the convergence and com-
bination of applications’ benefits for the collection of data
from campus and exchange to facilitate the teaching process,
services, and research facilities [5].

Creating a smart campus is gaining popularity at univer-
sities worldwide due to the consequences of diverse use of
the campus and load on resources like power, human and
financial resources. The IoT will help to provide big data on
patterns of use to guide users to take better decisions [3].
The smart campus is an evolving notion that enables edu-
cational institutes to upgrade their physical architecture with
intelligent technology for better facilities, campus durability,
and decision-making. Different technologies have been intro-
duced on campus under the smart campuses’ umbrella, such
as smart classrooms, intelligent microgrids, resource and
employee management, intelligent utility, etc. [6]. The use of
IoT technology plays a vital role in advancing the educational
environment in universities and colleges to improve teaching
staff and education elasticity.

The superior qualities of a smart campus suggest an archi-
tecture model in the views of business, technology, and
structure. The teaching framework in the smart campus con-
sists of data capture and storage about the research content
assessment to measure teaching performance in universities
and colleges. The smart campus architecture model consists
of four layers, including the intelligent sensing layer, data
communication layer, intelligent processing layer, and smart
recommendation layer [7]. The first smart sensing layer uses
Zigbee protocol, IP CAM, and other sensors to sense the
environment [8] for user data collection from the smart cam-
pus via the network. The second layer provides efficient
data connection services by using different communication
networks such as 4G. The third layer builds up comprehen-
sive data support for the smart campus environment. It also
integrates intelligent algorithms, raw data management, and
other data mining engines to attain effective cloud services
and computing and storage support for the smart campus.
The fourth layer works with big data that is further combined
with smart devices through networks. It provides users with
personalized teaching methods, services, and research [7].

Smart campus is connected with IoT servers, users, periph-
erals, and infrastructure [9]. Classroom teaching is based

on an IoT model with cloud integration for the educational
system in smart campus. In education, IoT offers students
access to learning novel technology that helps students build
up innovative ideas and make social issues logical. Cloud
computing based on IoT technology provides an intelli-
gent framework, integrated portal, services, maintenance, and
security systems. Digitally converged campuses strengthen
environmental sustainability and learning for students. IoT
objects monitor students who are bunking their classes, send
notifications to assist students in focusing on academics, and
locate missing personal belongings. Payments can be made
simply at cafeteria and admin office activities via IoT devices.
IoT infrastructure consists of sensors, microcontroller, wired
or wireless channel [10]. The information is processed using
the application module and communicated to cloud storage
collected from the sensor modules. IoT and cloud comput-
ing effectively restructure conventional methods of learning
and education. The IoT-based classrooms in smart campuses
would advance the education system resulting in high pro-
ductivity and quality of the teaching approach for class-
rooms [11].

System scalability means a system’s capacity to withstand
an upsurge in data processing demands. There are twoways to
categorize the big data processing platforms. One is Vertical
Scalability that includes upgrading one server with extra pro-
cessors, faster memory, and hardware. The scaling up is the
concept referred to this way. Another is Horizontal Scalability
that includes the spread of workloads over many servers
(these could also be commodity machines). The scaling out
is the concept defined in this manner. To maximize data
processing efficiency, it requires the stacking of several inde-
pendent devices. Usually, separate computers run different
operating systems [12].

Vertical and horizontal scalabilities are promising strate-
gies to distribute resources efficiently at runtime and in an
adaptive means; the earlier diverges the resource shares on
each machine individually, while the last deals with select-
ing the number of virtual machines working. Unfortunately,
in an isolated manner, up-to-date techniques primarily imple-
ment vertical and horizontal scalability [13]. According to
the infrastructure point of view, a new scalability taxon-
omy is proposed and described in this article and classified
into four groups, i.e., server, communication, gateway, and
device-level scaling. Vertical and horizontal scaling is a clas-
sification according to future flexibility [14]. In this paper,
the server level access the vertical scalability. A smart campus
transport system is considered a case study—a custom-built
simulator and virtual server test the scalability.

In automatic scaling, the server cluster can dynamically
add or remove virtual resources according to platform operat-
ing states to attain scalability. Adding virtual resources when
the system senses that the system’s usage exceeds the thresh-
old is the scalability mechanism’s general approach. We can
then perform the horizontal or vertical scaling. Horizontal
scalability (Virtual Machine level scalability) is not con-
cerned with the resource’s limitations, but it accomplishes in

42082 VOLUME 9, 2021



M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

a while. It can contribute to violations of user SLA, Service
Level Agreement. It is possible to disregard the scalability
time taken by the vertical scalability (resource-level scalabil-
ity, self-healing scalability), but resources bound the vertical
scalability. Consequently, it is required if the platform can
be pre-scaled earlier based on predictions, recommending
a workload prediction approach [15]. The authors in [16]
proposed an advanced nova-scheduler that improved CPU
utilization by lessoning execution time of applications to 50%
resulting in multiple virtual machines running on a cloud
server avoiding user SLA.

Autoscaling approach experience multiple burst-
workloads. It containerizes microservices through a
trace-driven simulation. It enhances efficiency compared
with current state-of-the-art autoscaling techniques. Exper-
imental assessment defines specific testbed facilities, and the
benchmark microservices check the trace-driven simulation
findings. The proposed autoscaling system canmanage burst-
ing workloads with Service Level Objectives (SLO) breaches
of minimum response time [17].

With IoT based frameworks, predictive analytics dramat-
ically advance smart healthcare systems in predicting death
tendencies due to in-time involvement. The model uses
an automated technique of gaining knowledge to rate the
Information-rich mortality for precise predictions. The clas-
sifiers evaluated the real-world datasets, such as the induc-
tion of rules, Naive Bayes, Random Forest, decision tree,
and perceptron multi-layer, for prediction. The experiment
has shown that the Naive Bayes classifier predicts the rate
of infant mortality with the maximum average correctness
of 96.4 % [18].

The contribution of this paper is as follows

• The model automatically detects service-bursts and han-
dles a large number of requests for services from users.

• The approach builds up a time-stamped server queue that
lists incoming users’ requests according to service load.

• The load will be shifted to horizontally scaled server in
case of any burst otherwise it will be accommodated by
vertically scaled server.

The rest of the paper is as follows. Section II dis-
cusses the literature review, section III proposed methodol-
ogy, section IV presents results and discussion, and finally,
the article is concluded in section V.

II. LITERATURE REVIEW
In [19], the authors presented proactive and reactive
auto-scaling concepts to handle cloud resource alloca-
tion/deallocation elasticity. The application serving on the
cloud is facing a problem due to workload spikes, thus
responding slow or denying requests. In proactive autoscal-
ing, the workload is predicted before providing resources to
handle the surge in claims. Whereas in the reactive autoscal-
ing approach, resources are allocated/deallocated on surging
workload. Scaling Machine Learning is not just about scal-
ing the datasets to larger ones. Imagine we create an email

service, and there are millions of users all of a sudden.We can
develop an excellent model for spam detection, and it scales
to massive datasets evenly, but it is needed to make hundreds
of millions of forecasts a day now. That amounts to more than
ten thousand per second. It is required to exploreways to scale
the prediction volume and scale the pace when predictions
need to be used in real-time. Small computing resources (fog
nodes) are positioned next to the end devices through fog
computing, and these nodes process data in real-time and
control local devices. The smart campus becomes distributed
and scalable in this way. Recently, the IoT incorporates cloud
computing. More end devices are deployed and linked to the
cloud, including IoT devices, power equipment, and smart-
phone users. Fog-computing processes user data in real-time
with distributed resources and uses local contextual knowl-
edge [20].

In virtual platforms to achieve the performance goals of
distributed co-existing applications is a challenging task.
In this situation, capable approaches include vertical and
horizontal scalability. The first adds or removes the resources
like processing power, memory, or storage on a specific
machine, whereas the other allocates or deallocates the virtual
machines. Advanced approaches primarily apply isolated ver-
tical and horizontal scalability, particularly assuming a sym-
metrical and fixed load balancing system through replicas.
Unfortunately, when replicas are executed in environments
with various computing resources, this can be unsatisfactory.
A new combined runtime strategy is suggested to assess the
resource sharing quota and the horizontal load balancing
policy to address this constraint to achieve performance goals
such as response time and throughput of co-existing applica-
tions. Authors further formulate a model predictive control
problem starting from a performance model as a multi-class
queueing network, which can be effectively resolved by linear
programming. A validation conducted on a shared virtualized
system hosting two real applications demonstrates that only a
combined vertical and horizontal load balancing adaptation
can effectively achieve desired performance targets in the
presence of heterogeneous computing tools. The main devel-
opments were the simultaneous use of autoscaling methods
for vertical and horizontal load balancing [13].

A lightweight approach (vertical scaling) is proposed to
allow cloud applications elasticity cost-effectively. In addi-
tion to VM-level scaling (horizontal scaling), light scaling
executes a fine-grained method at the resource level CPUs,
I/O, memory, etc. A design is also presented and implemented
for an intelligent framework to manage cloud applications
with lightweight resources. Algorithms for lightweight scal-
ability and VM-level scalability are discussed to show their
communication. Light scaling can be dependent upon two
methods. The first is Self-healing scaling, which is applied
when two application servers are installed on a single physical
machine. Free resources of one Virtual Machine can be used
to free the overcrowded resources of others. It can remove
one or more CPUs assigned to a VM with less CPU usage
and allocate to others. The second method is Resource level

VOLUME 9, 2021 42083



M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

scaling depends upon the use of free resources accessible
by a specific Physical Machine up-scale a Virtual Machine
running on it. A PhysicalMachinewith less CPU andmemory
consumption can assign these kinds of resources to one of the
Virtual Machines operating on it and scales up. The strategy
can scale up and down the cloud application’s help effec-
tively to meet the given quality requirements while reducing
cloud vendors’ expenses. An intelligent framework based on
lightweight scaling has been developed [21].

A model-based technique is presented to guarantee the
application’s performance achieves the user-defined SLO
capability during runtime vertical scalability, i.e., allocat-
ing or deallocating resources of distinct Virtual Machines
VMs running the program. Using resource request predic-
tion methods, a layered performance framework explains the
relationship between the allocation of resources and appli-
cation observation performance is automatically calculated
and modified online. This model adapts the number of virtual
CPUs of every VM dynamically [22].

The study [23] proposes an auto-scaling method based on
the prediction of workload. It reduces the cost of scalability
and improves resource usage without facing any difficulty by
the users. The framework is distributed into two fragments,
i.e., autoscaling and load prediction. In the auto-scaling envi-
ronment, the systems add and remove the required resources
with minimal vertical and horizontal scalability costs using
the integer programming approach. The study presents the
auto-scaling approach to decrease the cost by 14% and 11%
compared to horizontal and vertical scaling. The authors
in [24] discussed Google’s autoscaling approach, Autopilot,
to organize resources with horizontal scaling in a job of
simultaneous threads and with vertical scaling for distinct
tasks to control limits of CPU/memory automatically. Autopi-
lot’s goal is to minimize slack primarily to limit the use of
resources by reducing out-of-memory risk without degrada-
tion of CPU performance.

The authors in [15] suggested a linear regression model
to forecast the workload of service cloud platforms, and a
novel service cloud architecture is presented that provides
various services and an auto-scaling approach in service
clouds. It incorporates the pre-scaling and real-time scaling
method. Three scalingways are taken into account at different
resource levels self-healing scalability, resource-level scal-
ability, and VM-level scalability. The auto-scaling process
dynamically adds or releases virtual resources according to
the running states of the platform. The scaling method’s ulti-
mate strategy is to add virtual resourceswhen it is observed by
the system that the system utilization exceeds the threshold.
Horizontal and Vertical scaling can be performed. Horizontal
scaling (VM-level scaling) is not subject to the resource’s
limitations, but it takes some time to complete. It can lead
to users being violations of the SLA.

Service platforms have drawbacks, such as long construc-
tion times, low utilization of resources, and isolated struc-
tures. These issues can be addressed by migrating service
systems into clouds. Reference [25] proposed an auto-scaling

mechanism based on expected workload to scale virtual
resources into service clouds at different resource levels.
Real-time scaling and pre-scaling are combined with the
automated scalingmechanism. A cloud scaling architecture is
presented to incorporate these mechanisms. According to the
test findings, the solution forecasts reliable and cost-effective
ways to lower SLA breaches by the customer. The answer is
generic, and in most service cloud situations, it can be used
well [25].

In the study [26], the authors introduced a new
software-defined networking (SDN) architecture to address
the QoS requirements of different IoT services and han-
dle traffic among IoT servers concurrently. The problem is
defined as an integer linear programming (ILP) model, which
is NP-hard. A proactive and predictive heuristic method is
then suggested based on fuzzy logic and analysis on time
series. Later, the proposed system is then installed in an actual
testbed consisting of the Kaa servers, Open vSwitch, and
Floodlight controller. In paper [27], the authors focused on
the early spotting variation in the deviation popularity of
videos, which is discussed as a statistically Change Point
recognition problem. In the parametric frameworks, it is lin-
ear in the shape of ARMA,Auto RegressiveMovingAverage.
Without an appropriate procedure to predict, the use of cloud
resources may face a scalability problem [28]. To handle
the scaling situation, Neural Network’s approach based on
the programming of cartesian genetic to estimate resources
scalability based on the rule for a cloud server. The proposed
technique consists of monitoring and estimating resources
for the scaling approach. The resource monitor measures the
utilization of resources efficiently. The scalability mechanism
scales the resources after the estimation of resources.

The authors in [29] used the Autoregressive Integrated
Moving Average (ARIMA) model to predict the estimated
number of cases of COVID-19 daily in the next four weeks
in Saudi Arabia. To find the best fit model, the authors tested
four different prediction models: Moving Average, Autore-
gressive Model, a mixture of ARMA and Integrated ARMA
(ARIMA). Finally, theARIMAmodel outperformed the other
models.

Auto-scaling techniques would pay attention to use
resources suitably along with service quality. A procedure to
forecast the workload is essential for servers to accommodate
users’ requests [30]. An auto-scaling arrangement is needed
to manage load and balance the service to provide resources
with dynamism without disruption. The researchers in [31]
proposed a reinforcement learning RL autoscaling approach
for servers in the cloud, which is dynamic, transparent, and
provides resource management for applications. It used dis-
tinctive features in an ad-hoc manner and heuristics based
on statistics. Autoscaling optimizes the application execution
elastically accordingly given optimal criteria, which decides
how and when to scale-up or scale-down resources and how
to allocate the resources to the next coming workload.

Different techniques like linear regression, moving aver-
age, ARMA, ARIMA, etc. are used to enhance system’s

42084 VOLUME 9, 2021



M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

throughput by scaling up or scaling out. The existing research
adopted either horizontal or vertical scaling. We have consid-
ered auto-scaling having hybrid characteristics empowered
with burst identification using an ensemble classification.

III. METHODOLOGY
This study proposes a hybrid auto-scaled service cloud
predictive model that leverages the vertical and horizon-
tal scalable service-models. The model auto-detects the
service-bursts and manages a large number of users’
services-requests. The model builds a server queue that
enlists the incoming users’ requests. These service-requests
are time-stamped queued with their respective service-
load. At the first instance, the model predicts the queued
service-requests for any possibility of service-bursts. If the
system identifies the service-requests as service-bursts,
the system balances the workload by shifting the service-load
to horizontally scaled servers. In such a case, the system
can dynamically perform the horizontal scaling to distribute
the workload among horizontally scaled systems further.
On the other hand, if the system doesn’t flag the incom-
ing service-requests to be service-bursts, then the vertically
scaled server can efficiently entertain the users’ requests.

Figure 1 presents the proposed hybrid auto-scaled cloud
service model. This model consists of three main compo-
nents. The first component is the input-channel that enlists
the incoming users’ requests for different cloud services. The
input channel queued the incoming requests with time-stamp
and calculated the workloads. The model contains an input
queue that supports 750 service requests to simulate the
proposed system in a smart campus scenario. We assume that
each service request consumes 0.1% of system resources.
This way, the 750 service requests can finish, on average,
75% of resources. If the incoming service requests are within
this threshold, the vertically scaled system can monitor and
assign the system resources. In case the next batch of service
requests breach the defined threshold, the system predicts the
incoming requests as burst and tries to balance the workload
by scaling the service requests using horizontal nodes. The
system can perform the auto-scaling to uniformly distribute
the workload among the different nodes at the horizontal
scaled level.

Figure 2 describes the predictive model of the sys-
tem for automatic service-burst identification. We have
employed an ensemble classification to classify the incom-
ing service-requests as bursts or non-bursts. This predictive
model is trained on the historical users’ services-request
data developed due to 750 initial users’ requests. Since
we are adopting the smart campus model, we assume
that different users request different service requests. Let’s
take that the server can provide ten different kinds of
resources/services. For each resource/service type, the time
stamp and workload parameters assign a certain weight to
the individual request. The predictive model estimates the
bunch of service-requests as bursts based on the availability
and assignment of resource/service to each request. Here,

FIGURE 1. The proposed hybrid auto-scaled cloud service model.

FIGURE 2. Predictive modeling for service-bursts classification.

we adopt another assumption that if the server can assign 75%
of its resources/services to individual requests, the individual
requests are marked with a probability of resulting in bursts.
This way, a historical transactional database is formed that
enlists each request as an instance with ten independent fea-
tures (representing the assignment or otherwise of a system
resource to a user request) and once dependent feature (class
instance). The class instance carries the flag either set to zero
or one, based on the 75% (or more) assignment of system
resources to users-requests.

To perform the predictive modeling for auto-bursts iden-
tification, we have employed ensemble classification. The
research proves that ensemble classifiers outperform the pre-
diction accuracy of individual classifiers. We have taken the
popular classifiers, namely, Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), and K-nearest
neighbor (KNN). The majority voting policy inspires the
ensemble classification, and the best prediction outcomes
are adopted to enhance the prediction accuracy of individual
classification methods. Using different evaluation measures,
the study ensures that the ensemble method outperforms the
listed individual classifiers. The improved classification out-
comes significantly helped estimate the workload of incom-
ing users-requests and further distributed them across vertical
and horizontal service managers.

Figure 3 presents the schematic implementation of the pro-
posed model. Let’s assume a user request queue R contains
N users’ requests denoted by R = {R1, R2, R3,. . .Ri} for
i <= N. The system enqueues the users’ requests based on
their arrival sequence concerning time and workload. Ini-
tially, we set the flag variable to zero. This flag variable

VOLUME 9, 2021 42085



M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

TABLE 1. Service requests with resultant burst.

FIGURE 3. The schematic implementation of the proposed model.

helps us identify that many users’ requests are incoming
for the first time or some other time. We then calculate the
aggregate time T and service load S from the time stamp
and service-request queue of i instances (users), where i < N.
The model ensures that the flag variable has the default zero
value. If the flag meets the default condition, the system
develops a historical Pre-Scaling database to predict the later
instances for any possible burst situation so that the load could
be shifted to other systems. The system then sets the flag
variable to one so that the subsequent bunch of users’ requests
could be used for the allocation of resources/services. The
new incoming requests are validated against R instances’
service load approximating with the server load threshold ST
to judge the burst that can occur for R number of requests.
Here, we estimate S > ST. If this happens to true, the burst
occurs, and the system shifts the service load to other systems
to implement the horizontal scalability. On the other hand,
if the system does not detect a burst, the Vertical Server can
continue serving the R users instanceswithout distributing the
load.

IV. RESULTS AND DISCUSSION
This study implements the hybrid auto-scaling model of
users’ service requests in a smart campus scenario. In the
intelligent campus concept, various users are accessing web
services in a variety of different ways. Although various
web applications are entertaining users’ demands in such
an environment, we assumed an aggregate service workload
from a large number of users’ service requests.

FIGURE 4. The aggregate workload of users requests for server resources.

The experimentation involves a dataset of 7500 instances
with a prototype service model of 10 user requests rang-
ing from R1 to R10. We treat each service request with a
binary value ‘‘0’’ or ‘‘1’’ corresponding to a respective service
request, shown in Table 1. The prototype model evaluates
the number of requests and maps to the available virtual
resources.

We implement it, considering that the server maintains
75% of its resources to meet users’ demands. Each ser-
vice request from a user is treated as consuming 0.1% of
the vertically scalable server-resources. This way, a service
queue of length 750 is maintained at the server. When the
user requests’ service load exceeds this threshold, the server
auto-scales the incoming request to other nodes arranged in a
horizontally scalable manner.

Figure 4 describes the aggregate workload of users’ service
requests. The first four bars present the workload of campus
operating hours frommorning until noon. The fifth bar shows
a minimum workload due to break time. From bar six to bar
ten, we can see an increase in the service requests, which
gradually adopts a decreasing load trend towards campus
activities’ closing time.

Figure 5 shows the cutoff line (threshold) of approximately
75% is maintained to ensure that any extra or exceeding
workload will be scaled to horizontal nodes. It ensures that
the vertical server never remains scales-out while serving
the users’ requests. Any additional workload is implicated
to the other systems. The red line represents the average

42086 VOLUME 9, 2021



M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

FIGURE 5. A cutoff line of the aggregate workload of users requests for
server resources.

FIGURE 6. Utilization of system resources during operating hours.

service-burst that usually can occur at the peak load times
during the campus operative hours.

Figure 6 depicts the computational cost in terms of sys-
tem resources (CPU and memory utilization). The average
cluster CPU utilization for reservation of user requests is
the mean of all CPU utilization in such a resource allo-
cation cluster. The average CPU utilization for processing
requests is the mean utilization of CPU units during operative
hours. We considered three services operating hours where
the cost of resources varies according to services demand.
The peak working hours demonstrate a relatively higher
price, the break time shows a passive operating behavior,
while moderate operations illustrate an average utilization
of system resources. Aligned to the cutoff point, the system
can balance the load by shifting the requests breaching the
defined threshold.

This study develops a predictive model based on an ensem-
ble classifier. We evaluated the performance of ensemble
classification in comparison with the performance of indi-
vidual classifiers, namely, Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF), and K-nearest
neighbor (KNN). The majority voting policy inspires the
ensemble classification, and the best prediction outcomes
are adopted to enhance the prediction accuracy of individual
classification methods. Using different evaluation measures,
the study ensures that the ensemble method outperforms
the listed individual classifiers. The improved classification

FIGURE 7. A comparative analysis of classifiers.

outcomes significantly helped estimate the workload of
incoming users-requests and further distributed them across
vertical and horizontal service managers.

The study conducted 10-fold cross-validations to measure
the significance of different classification methods to identify
the specific workload leading to burst. We have used the
following metrics to measure the performance of different
classifiers.

Accuracy =
TP

TP+ FN
× 100%. (1)

TP is the number of true positives and FN stands for false
negative.

Precision =
TP
PP
× 100%. (2)

PP is the number of predicted positives, and TP is the
number of true positives.

Recall =
TP
AP
× 100%. (3)

TP is the number of true positives, and AP is the number
of actual positives.

F1− Score =
2TP

2TP+ FP+ FN
× 100%. (4)

FP is the number of false positives, FN is the number of
false negatives, and TP is the number of true positives. The
area under ROC as an evaluation measure is defined as a ratio
of true positive rate to (1-false positive rate).

We evaluated the performance of different classifiers for
the prediction of burst or non-burst situations. Here accuracy
is the percentage of test instances correctly identified. Sen-
sitivity and specificity relate to imbalance situations when
class labels are highly biased. In our case, since the burst
situation occurs rarely, the target variable’s data is more
inclined towards ‘‘non-bursts’’ scenarios. Further, we con-
sidered precision to find the exactness between our 10-fold
cross-validations. Recall and F-Score are demonstrating com-
pleteness and harmonic mean of precision.

Figure 7 presents the comparative analysis of different
classifiers in the classification of the service workload that
appears as burst to auto-scale the servers accordingly. We can
observe that the ensemble classifier outperforms the other
classifiers. The lowest precision was recorded for the SVM
classifier. The random forest and decision tree performed

VOLUME 9, 2021 42087



M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

FIGURE 8. Comparative analysis of ROC curves of classifiers.

more likely in a similar fashion. The KNN performed better
than SVM and decision trees. The average recall of each
classifier is the aggregate of individual readings. The decision
tree and SVM had the same performance, while the random
forest and KNN turned out to be the same. Regarding AUC
analysis, the SVMclassifier remained under-performedwhile
the decision tree’s performance and KNN remained the same.

Figure 8 presents the comparative analysis of different
classifiers in terms of ROC curve analysis.We can see that the
ensemble classifier performs better than the individual clas-
sifiers. The curve is more leaned towards the top left corner
that bestows it significantly different from other curves.

V. CONCLUSION
This study presented a hybrid and auto-scalable cloud service
model inspired by integrating the features of vertical and
horizontal scalable models. This study develops a predictive
model based on an ensemble classifier. We evaluated the per-
formance of ensemble classification in comparison with the
performance of individual classifiers, namely, Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF),
and K-nearest neighbor (KNN). The vertical service model
develops a users’ request service queue maintaining the time
stamp and service load of queries. The model auto-scales the
resources depending on the incoming requests from users.
The model calculates the aggregate workload and predicts the
scalability factor. A cutoff line (threshold) of approximately
75% is maintained to ensure that any extra or exceeding
workload will be scaled to horizontal nodes. It ensures that
the vertical server never remains scales-out while serving
the users’ requests. Any additional workload is implicated to
the other systems. The input channel queued the incoming
requests with time-stamped and calculated the workloads.
The model contains an input queue that supports 750 service
requests to simulate the smart campus scenario’s proposed
approach. We assume that each service request consumes
0.1% of system resources. This way, the 750 service requests
can consume, on average, 75% of resources. If the incom-
ing service requests are within this threshold, the vertically
scaled system can monitor and assign the system resources.
In case the next batch of service requests breach the defined

threshold, the system predicts the incoming requests as burst
and tries to balance the workload by scaling the service
requests using horizontal nodes. The system can perform
the auto-scaling to uniformly distribute the workload among
the different nodes at the horizontal scaled level. Since we
conducted a prototype study at the campus level, we did not
consider the SLA aspect, and we hope to include this aspect
as a future direction of work.

REFERENCES
[1] M. Abdur, S. Habib, M. Ali, and S. Ullah, ‘‘Security issues in the Internet

of Things (IoT): A comprehensive study,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 8, no. 6, pp. 383–388, 2017.

[2] A. Razzaq, ‘‘Internet of Things (Iot) applications an overview,’’ Int. J.
Comput. Sci. Emerg. Technol., vol. 1, no. 1, pp. 43–48, 2017.

[3] B. Valks,M. H. Arkesteijn, A. Koutamanis, andA. C. denHeijer, ‘‘Towards
a smart campus: Supporting campus decisions with Internet of Things
applications,’’ Building Res. Inf., vol. 49, no. 1, pp. 1–20, 2020, doi: 10.
1080/09613218.2020.1784702.

[4] A. Alghamdi and S. Shetty, ‘‘Survey toward a smart campus using the
Internet of Things,’’ in Proc. IEEE 4th Int. Conf. Future Internet Things
Cloud (FiCloud), Aug. 2016, pp. 235–239, doi: 10.1109/FiCloud.2016.41.

[5] T. Bi, X. Yang, and M. Ren, ‘‘The design and implementation of smart
campus system,’’ JCP, vol. 12, no. 6, pp. 527–533, 2017.

[6] N.Min-Allah and S. Alrashed, ‘‘Smart campus—A sketch,’’ Sustain. Cities
Soc., vol. 59, Aug. 2020, Art. no. 102231, doi: 10.1016/j.scs.2020.102231.

[7] X. Xu, Y. Wang, and S. Yu, ‘‘Teaching performance evaluation in smart
campus,’’ IEEE Access, vol. 6, pp. 77754–77766, 2018, doi: 10.1109/
ACCESS.2018.2884022.

[8] M. Srivastava and R. Kumar, ‘‘Smart environmental monitoring based
on IoT: Architecture, issues, and challenges,’’ in Advances in Computa-
tional Intelligence and Communication Technology, vol. 1086. Singapore:
Springer, 2021, pp. 349–358, doi: 10.1007/978-981-15-1275-9_28.

[9] V. Subbarao, K. Srinivas, and R. S. Pavithr, ‘‘A survey on Internet of Things
based smart, digital green and intelligent campus,’’ in Proc. 4th Int. Conf.
Internet Things: Smart Innov. Usages (IoT-SIU), Apr. 2019, pp. 1–6, doi:
10.1109/IoT-SIU.2019.8777476.

[10] A. Majeed and M. Ali, ‘‘How Internet-of-Things (IoT) making the univer-
sity campuses smart? QA higher education (QAHE) perspective,’’ in Proc.
IEEE 8th Annu. Comput. Commun. Workshop Conf. (CCWC), Jan. 2018,
pp. 646–648, doi: 10.1109/CCWC.2018.8301774.

[11] R. Revathi, M. Suganya, and N. R. G. Merlin, ‘‘IoT based cloud integrated
smart classroom for smart and a sustainable campus,’’ Procedia Comput.
Sci., vol. 172, pp. 77–81, Jan. 2020.

[12] A. H. Ali and M. Z. Abdullah, ‘‘A survey on vertical and horizontal scaling
platforms for big data analytics,’’ Int. J. Integr. Eng., vol. 11, no. 6, pp. 138–
150, Sep. 2019.

[13] E. Incerto, M. Tribastone, and C. Trubiani, ‘‘Combined vertical and hori-
zontal autoscaling through model predictive control,’’ in Proc. Eur. Conf.
Parallel Process., Cham, Switzerland: Springer, 2018, pp. 147–159.

[14] M. A. Razzaq, J. A. Mahar, M. A. Qureshi, and Z. Abidin, ‘‘Smart campus
system using Internet of Things: Simulation and assessment of vertical
scalability,’’ Indian J. Sci. Technol., vol. 13, no. 28, pp. 2902–2910, 2020,
doi: 10.17485/IJST/v13i28.1034.

[15] J. Yang, C. Liu, Y. Shang, Z. Mao, and B. Cheng, J. A. Chen.
(2013). A Cost-Aware Auto-Scaling Approach Based on Workload Pre-
dictions in Service Clouds. [Online]. Available: https://infocom2013.ieee-
infocom.org/images/stories/infocom/studentposter/1569715211.pdf

[16] M. Liaqat, A. Naveed, R. L. Ali, J. Shuja, and K.-M. Ko, ‘‘Characterizing
dynamic load balancing in cloud environments using virtual machine
deployment models,’’ IEEE Access, vol. 7, pp. 145767–145776, 2019, doi:
10.1109/ACCESS.2019.2945499.

[17] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera, ‘‘Burst-
aware predictive autoscaling for containerized microservices,’’ IEEE
Trans. Services Comput., early access, May 20, 2020, doi: 10.1109/
TSC.2020.2995937.

[18] M. Islam, M. Usman, A. Mahmood, A. A. Abbasi, and O.-Y. Song, ‘‘Pre-
dictive analytics framework for accurate estimation of child mortality rates
for Internet of Things enabled smart healthcare systems,’’ Int. J. Distrib.
Sensor Netw., vol. 16, no. 5, May 2020, Art. no. 155014772092889, doi:
10.1177/1550147720928897.

42088 VOLUME 9, 2021

http://dx.doi.org/10.1080/09613218.2020.1784702
http://dx.doi.org/10.1080/09613218.2020.1784702
http://dx.doi.org/10.1109/FiCloud.2016.41
http://dx.doi.org/10.1016/j.scs.2020.102231
http://dx.doi.org/10.1109/ACCESS.2018.2884022
http://dx.doi.org/10.1109/ACCESS.2018.2884022
http://dx.doi.org/10.1007/978-981-15-1275-9_28
http://dx.doi.org/10.1109/IoT-SIU.2019.8777476
http://dx.doi.org/10.1109/CCWC.2018.8301774
http://dx.doi.org/10.17485/IJST/v13i28.1034
http://dx.doi.org/10.1109/ACCESS.2019.2945499
http://dx.doi.org/10.1109/TSC.2020.2995937
http://dx.doi.org/10.1109/TSC.2020.2995937
http://dx.doi.org/10.1177/1550147720928897


M. A. Razzaq et al.: Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis

[19] R. Y. Secaran and E. Sathiyamoorthy, ‘‘A survey on workload prediction
models in cloud based on spot instances for proactive auto scaling strat-
egy,’’ J. Crit. Rev., vol. 7, no. 4, pp. 791–795, 2020.

[20] U. Na and E.-K. Lee, ‘‘Fog BEMS: An agent-based hierarchical fog
layer architecture for improving scalability in a building energy man-
agement system,’’ Sustainability, vol. 12, no. 7, p. 2831, Apr. 2020, doi:
10.3390/su12072831.

[21] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, ‘‘Lightweight resource scal-
ing for cloud applications,’’ in Proc. 12th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput. (CCGRID), May 2012, pp. 644–651.

[22] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and R. Griffith,
‘‘Runtime vertical scaling of virtualized applications via online model
estimation,’’ in Proc. IEEE 8th Int. Conf. Self-Adaptive Self-Organizing
Syst., Sep. 2014, pp. 157–166.

[23] C. Li, J. Tang, and Y. Luo, ‘‘Elastic edge cloud resource management
based on horizontal and vertical scaling,’’ The J. Supercomputing, vol. 76,
pp. 1–26, 2020, doi: 10.1007/s11227-020-03192-3.

[24] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, ‘‘Autopilot:
Workload autoscaling at Google,’’ in Proc. 15th Eur. Conf. Comput. Syst.,
Apr. 2020, pp. 1–16.

[25] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, ‘‘Workload predicting-
based automatic scaling in service clouds,’’ in Proc. IEEE 6th Int. Conf.
Cloud Comput., Jun. 2013, pp. 810–815.

[26] A. Montazerolghaem and M. H. Yaghmaee, ‘‘Load-balanced and
QoS-aware software-defined Internet of Things,’’ IEEE Internet Things J.,
vol. 7, no. 4, pp. 3323–3337, 2020, doi: 10.1109/JIOT.2020.2967081.

[27] S. Skaperas, L. Mamatas, and A. Chorti, ‘‘Real-time algorithms for
the detection of changes in the variance of video content popularity,’’
IEEE Access, vol. 8, pp. 30445–30457, 2020, doi: 10.1109/ACCESS.2020.
2972640.

[28] Q. Z. Ullah, G. M. Khan, and S. Hassan, ‘‘Cloud infrastructure esti-
mation and auto-scaling using recurrent Cartesian genetic programming-
based ANN,’’ IEEE Access, vol. 8, pp. 17965–17985, 2020, doi: 10.1109/
ACCESS.2020.2966678.

[29] S. I. Alzahrani, I. A. Aljamaan, and E. A. Al-Fakih, ‘‘Forecasting the
spread of the COVID-19 pandemic in Saudi Arabia using ARIMA predic-
tion model under current public health interventions,’’ J. Infection Public
Health, vol. 13, no. 7, pp. 914–919, 2020.

[30] S. Bhagavathiperumal, ‘‘Auto scaling of cloud resources using time series
and machine learning prediction,’’ M.S. thesis, School Comput. Sci., Univ.
Technol. Sydney, Ultimo, NSW, Australia, 2020.

[31] Y. Garí, D. A. Monge, E. Pacini, C. Mateos, and C. García Garino,
‘‘Reinforcement learning-based application autoscaling in the cloud: A
survey,’’ 2020, arXiv:2001.09957. [Online]. Available: http://arxiv.org/
abs/2001.09957

MIRZA ABDUR RAZZAQ received the Master
of Computer Science degree from The Islamia
University of Bahawalpur, Bahawalpur, Pakistan,
in 2002, and the M.S. degree in computer science
from the Virtual University of Pakistan, Lahore,
Pakistan, in 2015. He is currently pursuing the
Ph.D. degree with Shah Abdul Latif University,
Khairpur, Pakistan. He is serving as an Assistant
Professor of computer science and the Head of
the Department of Computer Science, with the

Government Associate College, Sadiqabad, Pakistan. His research inter-
ests include the Internet of Things, Smart Campus, the IoT Security, and
Watermarking.

JAVED AHMED MAHAR received the M.Sc.
degree in computer science from Shah Abdul Latif
University, Khairpur, Pakistan, in 1996, the M.S.
degree in computer science from the Karachi Insti-
tute of Economics and Technology (PAF-KIET),
Karachi, Pakistan, in 2007, and the Ph.D. degree
from Hamdard University, Karachi, in 2012. He is
currently a Professor with the Department of Com-
puter Science, Shah Abdul Latif University, Khair-
pur. He has got more than 22 years of teaching

experience. He has published several articles in national and international
journals and peer-reviewed conference proceedings. His research interests
include natural language processing, speech and image processing, big data
analytics, software engineering, and programming paradigms.

MUNEER AHMAD (Member, IEEE) received the
Ph.D. degree in computer science from Univer-
siti Teknologi PETRONAS, Malaysia, in 2014.
He has 18 years of teaching, research, and
administrative experience internationally. He has
authored numerous research articles in refereed
research journals, international conferences and
books. He successfully completed several funded
research projects. His research interests include
data science, big data analysis, machine learning,
bioinformatics, and medical informatics.

NAJIA SAHER received the degree in soft-
ware project management from the FAST-National
University of Computer and Emerging Science,
Pakistan, in 2012, and the Ph.D. degree in
computer science from the School of Comput-
ing, Universiti Utara Malaysia. She is currently
an Assistant Professor with the Department of
Computer Science and IT, The Islamia Univer-
sity Bahawalpur, Pakistan. Her research interest
includes human and social aspects of software

engineering, empirical software engineering, software project management,
agile software development, and software quality.

ARIF MEHMOOD received the Ph.D. degree
from the Department of Information and Com-
munication Engineering, Yeungnam University,
South Korea, in November 2017. He is currently
working as an Assistant Professor with the Depart-
ment of Computer Science and IT, The Islamia
University of Bahawalpur, Pakistan. His research
interests include data mining, mainly working on
AI and deep learning-based text mining, and data
science management technologies.

GYU SANG CHOI (Member, IEEE) received the
Ph.D. degree from the Department of Computer
Science and Engineering, Pennsylvania State Uni-
versity, University Park, USA, in 2005. He was
a Research Staff Member with the Samsung
Advanced Institute of Technology (SAIT), Sam-
sung Electronics, from 2006 to 2009. Since 2009,
he has been a Faculty Member with the Depart-
ment of Information and Communication, Yeung-
nam University, South Korea. His research inter-

ests include AI and data mining. He is a member of ACM.

VOLUME 9, 2021 42089

http://dx.doi.org/10.3390/su12072831
http://dx.doi.org/10.1007/s11227-020-03192-3
http://dx.doi.org/10.1109/JIOT.2020.2967081
http://dx.doi.org/10.1109/ACCESS.2020.2972640
http://dx.doi.org/10.1109/ACCESS.2020.2972640
http://dx.doi.org/10.1109/ACCESS.2020.2966678
http://dx.doi.org/10.1109/ACCESS.2020.2966678

