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ABSTRACT This paper proposes an improved emotional voice conversion (EVC) method with emotional
strength and duration controllability. EVC methods without duration mapping generate emotional speech
with identical duration to that of the neutral input speech. In reality, even the same sentences would have
different speeds and rhythms depending on the emotions. To solve this, the proposed method adopts a
sequence-to-sequence network with an attention module that enables the network to learn attention in the
neutral input sequence should be focused on which part of the emotional output sequence. Besides, to capture
the multi-attribute aspects of emotional variations, an emotion encoder is designed for transforming acoustic
features into emotion embedding vectors. By aggregating the emotion embedding vectors for each emotion,
a representative vector for the target emotion is obtained and weighted to reflect emotion strength. By
introducing a speaker encoder, the proposed method can preserve speaker identity even after the emotion
conversion. Objective and subjective evaluation results confirm that the proposed method is superior to other
previous works. Especially, in emotion strength control, we achieve in getting successful results.

INDEX TERMS Voice conversion, emotional voice conversion, emotion strength, sequence-to-sequence
learning, controllable emotional voice conversion.

I. INTRODUCTION
Voice conversion (VC) refers to a technique of converting
voice characteristics while preserving the linguistic informa-
tion of an input utterance. The technique has been mainly
used to change voice color. Voice characteristics contain
not only the speaker identity information but also the pitch,
speech rate, prosody, and emotion. Among them, we will
focus on changing the emotion. Desirable emotional voice
conversion (EVC) can transform the emotion without dam-
aging linguistic information or speaker identity.

The general procedure of VC is to extract the acous-
tic features of the source voice at first, then to map these
acoustic features onto those of the target voice, and finally,
to synthesize the waveforms using the converted acoustic
features. Before training the mapping function, dynamic time
warping (DTW) [1] is used to achieve the time alignment
between source and target acoustic features when utiliz-
ing parallel utterance data in pairs from different speakers.
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A statistical feature mapping function such as a Gaussian
mixture model (GMM) is often employed in conventional
VC [2], [3]. With deep neural networks (DNNs), speech pro-
cessing tasks, including VC, have been developed so rapidly.
Several techniques based on DNNs, such as a feed-forward
neural network (FNN) [4], [5] and a recurrent neural net-
work (RNN) [6], have been proposed to convert the acous-
tic features of the source speaker into those of the target
speaker. Considering the difficulty in collecting parallel utter-
ances from different speakers, recent studies have examined
a restricted Boltzmann machine (RBM), a variational autoen-
coder (VAE), and a generative adversarial network (GAN) for
non-parallel VC [7]–[13].

EVC techniques have evolved similarly to VC techniques.
As prosody plays an important role in expressing emotional
speech, several studies have focused on modelling spectral
and fundamental frequency (F0) features with parallel data.
Some previous works have explored prosody and spec-
tral mapping separately using GMM [14]–[16], FNN [17],
deep belief network (DBN) [18], and GAN [19] methods.
Ming et al. [20] converted the spectrum and F0
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simultaneously with bidirectional long-short term mem-
ory (LSTM) using parallel data. To circumvent the need
for parallel data, some recent studies have explored disen-
tangled representations of emotion using autoencoder [21]
and VAE [22] approaches. Zhou et al. [23] demonstrated
simultaneous spectrum and F0 conversion based on Cycle-
GAN [24] using non-parallel data. While these methods
had been fairly successful in single-speaker tasks, they have
inevitable limitations when adopted for multi-speaker cases.
In other words, they usually fail on multi-speaker datasets
because features from different emotions tend to overlap
considerably among various speakers. In an attempt to solve
this, multi-speaker EVC systems [25], [26] that correspond-
ingly modified the pitch and the energy, using a highway
network [27] and a convolutional GAN network [28], were
introduced. One of the recent studies [29] demonstrated
variational autoencoding Wasserstein generative adversarial
network (VAWGAN) based EVC utilizing the continuous
wavelet transform (CWT) decomposition of F0 which allows
the network to learn the speaker-independent emotion pattern
across different speakers.

Even all the above approaches can rather successfully
change emotions and retain the linguistic content and speaker
identity, but the converted speech length remains the same
as the input speech length. In reality, speakers tend to speak
at different rates with different rhythms for their emotions.
Therefore, for successful EVC, it becomes inevitable for a
converted speech to have properly changed duration with
suitable energy and pitch depending on the emotions.

To address this, we propose a novel EVC method that can
synthesize emotional output speech with adjusted duration
using a sequence-to-sequence network. Similar to an earlier
approach [21], a speech is modelled separately into con-
tent features and emotion features. To learn emotion repre-
sentations, an emotion encoder based on the style transfer
method [30] is added to the sequence-to-sequence network.
We utilize a multi-speaker emotional dataset to include vari-
ous speakers’ emotional patterns so that speaker-independent
training is used to capture universal attributes embedded in
multiple speakers and the speaker identity information is also
be used as a supplement. By adding the speaker informa-
tion, the proposed system can transform neutral speech into
emotional speech without speaker change. As an extension,
by scaling the emotion embedding vector values, we can also
control the emotion strength. Namely, the emotion level can
be adjusted to become stronger or weaker than the normal
target level.

Although the mapping network is well trained, some
factors such as the parameterization error and the
over-smoothing effect still degrade the output voice qual-
ity when converted with a traditional parametric vocoder
using F0 and spectrum. To deal with the problem, several
studies have applied WaveNet-based waveform genera-
tion [31] to synthesize waveforms using converted acous-
tic features [32]–[34]. Thus, we utilize Parallel WaveGAN
vocoder [35], which is also a WaveNet-based model,

to recover speech waveforms and adopt mel-spectrograms as
acoustic features.

The organization of this paper is as follows. Section II
reviews the related works on sequence-to-sequence VC,
unsupervised expressive modelling, and emotion strength
control modelling. Section III describes the proposed EVC
method. The procedures and results of the experiments are
presented in Section IV and finally, Section V concludes this
paper.

II. RELATED WORKS
A. SEQUENCE-TO-SEQUENCE VOICE CONVERSION
Given that the temporal lengths of the input and the out-
put features are not equal, a sequence-to-sequence network
makes it possible to map their alignments through an atten-
tion module. Several techniques have been proposed for
sequence-to-sequence VC leveraging an automatic speech
recognition (ASR) system [36]–[39] or a text-to-speech
(TTS) system [40]. There also have been attempts to use
only acoustic features for learning sequence-to-sequence VC
without requiring a transcript [41], [42]. To accelerate and
stabilize the training procedure, the concepts of the guided
attention loss [43] and the context preservation loss were
considered. Instead of separately learning mappings between
each speaker pair, Kameoka et al. [42] achieved many-
to-many VC with a speaker index as an additional input.

Compared to VC, which can utilize the same index for
multiple speeches spoken by the same speaker, the emo-
tional characteristics of EVC require delicate modelling,
as they vary among the multiple speeches or within a single
speech. In our work, we also leverage a sequence-to-sequence
network without any transcript for emotion duration mapping
but achieve one-to-many EVC by adding an emotion encoder
that derives individual emotion information for each speech
to deal with emotion characteristics.

B. UNSUPERVISED EXPRESSIVE MODELLING
To produce a human-like voice, various TTS systems
have been proposed to model the expressive elements of
speech [44], [30]. Skerry-Ryan et al. [44] introduced the
concept of prosody embedding. A prosody embedding vector
is computed through a prosody encoder and is used as an
additional input to Tacotron [45] so that not monotonous but
expressive speech can be synthesized. In another study [30],
the prosody embedding vector is passed to a style token layer.
The style token layer consists of an attention module and
randomly initialized embedding vectors, referred to as global
style tokens (GSTs). The attention module learns a similarity
measure between the prosody embedding vector and each
token in the GSTs and outputs a set of combination weights.
The weighted sum of the GSTs called a style embedding
vector is applied to Tacotron to enable the unsupervised style
control and transfer.

In our previous work [46], given a text and a speaker
index, the mel-spectrogram of the desired emotion was fed
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into a prosody encoder to extract an appropriate emotion
embedding vector. The synthesized speech then successfully
showed the target emotion. Motivated in a way similar to
the above previous studies, we use the prosody encoder and
the style token layer as the emotion encoder for training.
We appropriately handle emotion embeddings obtained from
the emotion encoder to compute representative emotion vec-
tors, then manipulate them in inference to select the desired
emotion.

C. EMOTION STRENGTH CONTROL MODELLING
To synthesize expressive speech, approaches for controlling
emotion strength were mainly addressed in the TTS field.
In [47], a multidimensional scaling method is adopted to
project the arousal-valence (AV) space for continuous emo-
tion modelling. To define the AV values, annotators were
asked to label the AV values for each utterance. It has been a
great challenge for human annotators to label subtle emotion
strength levels. Naturally, there have been several attempts to
obtain emotion strength information without manual works.
Zhu and Xue [48] applied a K-means clustering algorithm
to partition emotion strength levels for a speech corpus and
developed an embedding vector that continuously represents
the emotion strength using a t-distributed stochastic neigh-
bor embedding (t-SNE) algorithm [49]. Zhu et al. [50] also
applied the concept of a relative attribute to learn a ranking
function for each emotion category and controlled the emo-
tion strength continuously. Um et al. [51] employed an inter-
to-intra distance ratio algorithm that considered embedding
distances between inter- and intra-categorical style token
weights and applied an interpolation technique to change the
emotion strength level.

Inspired by the controllable emotion strength in TTS,
we propose an EVCmethod that controls the degree of the tar-
get emotion. We design the representative emotion-weighted
vectors from the representative emotion vectors so that
the proposed method can control the emotion strength
in inference.

III. SEQUENCE-TO-SEQUENCE EMOTIONAL VOICE
CONVERSION
In this section, we describe the proposed EVC method.
We augment a sequence-to-sequence network with addi-
tional two encoders and two decoders: an emotion encoder,
a speaker encoder, a source decoder, and a target decoder.

A. FEATURES
First, we define the acoustic features for the input and the out-
put of the network. Conventional VC studies have shown that
vocoder parameters such as F0, aperiodicity, and spectrum
performed well when used to represent voice characteristics.
Recently, neural vocoders have been successfully applied to
TTS and VC [32]–[34] [37], [52], [53]. Mel-spectrogram
effectively implies various information in speech, not only
linguistic but also non-linguistic, such as the speaker and the

emotion. Hence, in this paper, we utilize mel-spectrograms
for acoustic features.

Mel-spectrograms are computed with a logarithmic mel-
filterbank and a short-time Fourier transform (STFT). For
training, log mel-spectrograms are mean-variance normal-
ized individually for the source and the target.

B. MODEL
Similar to Tacotron2 [53], our sequence-to-sequence network
contains a source encoder, a target encoder, an attention
module, an autoregressive (AR) decoder, and a postnet. The
encoders transform acoustic features into content embedding
matrices, as follows,

Hs = SourceEncoder(Xs) (1)

Ht = TargetEncoder(Xt ), (2)

where Xs = [x(1)s ,. . . , x(Ns)s ] denotes the sequence of the
source acoustic features, Xt = [x(1)t ,. . . , x(Nt)t ] denotes that of
the target acoustic features, Hs = [h(1)s ,. . . , h(Ns)s ] represents
the source content embedding matrix, and Ht = [h(1)t ,. . . ,
h(Nt)t ] represents the target content embedding matrix. Ns
and Nt represent the source and the target sequence lengths,
respectively. The target encoder acts as a pre-net in earlier
work [53]. For each decoder output step, an attention module
is used to summarize the full source content embedding
matrix as a fixed-length attention context vector. The atten-
tion context vector and the previous time-step target content
embedding vector are passed to the AR decoder:

c(n), a(n) = Attention(Hs, l(n−1), a(n−1)) (3)

l(n),d(n), õ(n) = ARDecoder(c(n),h(n−1)t ) (4)

Here, c(n) represents the attention context vector and a(n)

represents the attention probability vector at time-step n. l(n)

is a hidden representation vector of the AR decoder, d(n) is the
output vector of the AR decoder, and õ(n) is the probability
of the stop token at time-step n. We use location-sensitive
attention [54], which extends content-based attention [55] to
become location-aware by referring to the attention probabil-
ity vector produced at the previous step.

To improve possible over-smoothed acoustic features from
the AR decoder and to incorporate past and future frames,
a postnet predicts the residual which would be added to the
output of the AR decoder,

X̃seq = D+ PostNet(D), (5)

where X̃seq denotes the predicted acoustic features of the
sequence-to-sequence network and D is the output matrix of
the AR decoder. In the inference procedure, the output of the
AR decoder replaces the target acoustic features in (6). Fig. 1
shows the overall architecture of our sequence-to-sequence
network.

Ht = TargetEncoder(D), (6)
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FIGURE 1. The sequence-to-sequence network for emotional voice
conversion: (a) training procedure (b) inference procedure.

1) SPEAKER ENCODER
To separate the speaker information from emotion embed-
dings and represent the inherent characteristics of each
speaker, we adopt a scheme similar to one in the literature [56]
for a speaker encoder that transforms a speaker index into a
speaker embedding vector. The speaker embedding vector p
is combined with the source content embedding matrix via
broadcast concatenation, with (3) then modified as follows:

c(n), a(n) = Attention([p;Hs], l(n−1), a(n−1)) (7)

Here, [;] is for concatenation. For concatenation of amatrix
and a vector, the fixed vector expands across all time-steps of
the matrix.

2) EMOTION ENCODER
An emotion encoder takes the acoustic features as the input
and computes the following emotion embedding vectors,

es = EmotionEncoder(Xs) (8)

et = EmotionEncoder(Xt ), (9)

where es and et correspondingly denote the emotion embed-
ding vectors of the source and the target. The emotion encoder
is based on the style model [30] which compresses the style
embedding vectors from the acoustic features. The style
consists of rich information such as intention and emotion,
but if the style model is built for emotional data, the style
embedding vector can be specified as the emotion embed-
ding vector. Similar to the speaker embedding vector in
Section III-B-1, the target emotion embedding vector is also
broadcast-concatenated with the source content embedding
matrix, and (7) is modified as follows:

c(n), a(n) = Attention([et ;p;Hs], l(n−1), a(n−1)) (10)

3) SOURCE DECODER AND TARGET DECODER
To ensure that the content embedding matrices of the
source and the target preserve the contextual information, we

reconstruct those matrices by a source decoder and a tar-
get decoder acting as an autoencoder. These decoders are
inspired by the earlier work [41], which prevents the failure
of the training for the sequence-to-sequence network. The
emotion and the speaker embedding vectors are concate-
nated with the content embedding matrices and fed into the
decoders,

X̃s = SourceDecoder[es;p;Hs] (11)

X̃t = TargetDecoder[et ;p;Ht ], (12)

where X̃s and X̃t indicate the predicted acoustic features of
the source and the target decoders, respectively.

4) LOSS
Fig. 2 presents the detailed structure of the proposed archi-
tecture. All of these components are jointly trained from
scratch. The training of the overall loss for the sequence-
to-sequence network includes L1 and L2 losses from before
and after the postnet to facilitate convergence as well as the
binary cross-entropy (BCE) loss of the stop token prediction.
Hence the loss function of the sequence-to-sequence network,
Lseq can be written as,

Lseq = L1(X̃seq,Xt )+ L2(X̃seq,Xt )

+L1(D,Xt )+ L2(D,Xt )+ BCE(õ, o), (13)

where õ represents the prediction of the stop token and o is
the true label of the stop token.

To preserve the linguistic information in the content
embedding matrices, the source and the target decoder out-
puts have to be reflected in the overall loss as shown below.

Lsrc = L1(X̃s,Xs)+ L2(X̃s,Xs) (14)

Ltrg = L1(X̃t ,Xt )+ L2(X̃t ,Xt ) (15)

In these equations, Lsrc and Ltrg are the corresponding
loss functions of the source decoder and the target decoder,
respectively.

In practice, the attention module is quite costly to learn;
accordingly, we consider that the acoustic features of the
source and the target are a pair of parallel sequences with
identical linguistic contents uttered with neutral and emo-
tional speaking styles, respectively. It can be assumed that
the content of the nsth frame of the source acoustic features is
identical to the content of the nt th frame of the target acoustic
features. Consequently, we apply guided attention in [43] to
increase the training efficiency.We impose a constraint on the
attention probability matrix such that it is nearly diagonal and
strongly penalize it with the corresponding loss function,

Latt = L1(W� A), (16)

where � denotes the elementwise product, W is a
non-negative weight matrix whose w(ns)(nt) value is defined
as w(ns)(nt)

= 1−exp{− (ns/Ns − nt/Nt )2/ (2g2)}, ns and nt
are the corresponding index frames of the source and target
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FIGURE 2. Training procedure of the proposed emotional voice conversion architecture:
(a) emotion encoder and speaker encoder, (b) source decoder and target decoder, and (c)
sequence-to-sequence network with speaker encoder and emotion encoder.

FIGURE 3. Inference procedure of the proposed emotional voice
conversion architecture.

acoustic features, and g is set 0.2. The total loss function of
the proposed model, L, can now be formulated as follows,

L = Lseq + Lsrc + Ltrg + λattLatt , (17)

where λatt is a regularization parameter for guided attention.

C. EMOTIONAL VOICE CONVERSION WITH
STRENGTH CONTROL
To convert the neutral speech into the desired emotional
speech after training, the target emotion embedding vector
is unseen so that an appropriate emotion embedding vector
should be provided for the inference phase. We generate rep-
resentative emotion vectors for each emotion by calculating
the mean vector of the emotion embeddings from the training
data as follows,

Ej =
1
Mj

∑
ej, (18)

where Ej,Mj and ej denote the representative emotion vector,
the number of training data, and the emotion embedding
vector for emotion j.
To control the emotion strength, we multiply the emotion

embedding vector by the strength value. The representative
emotion-weighted vector then is generated by calculating the
mean vector of the weighted emotion embeddings,

Ej,w =
1
Mj

∑
ej × w = Ej × w, (19)

where Ej,w signifies the representative emotion-weighted
vector for the strength value w for emotion j.
In the inference phase, the source and target decoders

are not utilized. With the representative emotion-weighted
vector, the inference procedure of the proposed method is
illustrated in Fig. 3. As the representative emotion-weighted
vector for target emotion and the speaker embedding vector
are used to condition the source content embedding matrix,
the proposed method can produce the converted emotional
acoustic features, and (10) can be modified as follows:

c(n), a(n) = Attention([Ej,w;p;Hs], l(n−1), a(n−1)) (20)

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In our experiments, we used an emotional Korean speech
corpus1 built to realize an interactive TTS system that
can express various emotions and personalities. For EVC,

1 https://github.com/emotiontts/emotiontts_open_db
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TABLE 1. Average duration per sentence.

TABLE 2. Detailed model configuration.

we adopted a ‘‘plain-to-emotional dataset’’ in the corpus. This
dataset consists of 100 sentences in four speaking styles, i.e.,
neutral, happy, sad, and angry, uttered by five voice actresses
and five voice actors. Thus, the overall number of speech
samples became 4000. We set the plain, i.e., neutral speech
as the source and the emotional (happy, sad, angry) speech as
the target. Three types of pairs are constructed, consisting of
neutral-to-happy, neutral-to-sad, and neutral-to-angry for par-
allel EVC. We randomly divided 3000 pairs into 2700 pairs
of the training set and 300 pairs of the evaluation set. There
are no overlapping sentences between the two sets. Speech
signals were sampled at 22.05 kHz with a 16-bit resolution.
Table 1 shows the average duration per sentence for each
emotion category. On average, the duration for emotional
speech tends to be greater than that for neutral speech, espe-
cially for sad emotion. As a whole, the total duration of the
dataset is about 7.36 hours. As noted in Section III-A, for each
utterance, we extracted the 80th log mel-spectrogram ranging
from 80 to 7600 Hz. The hop length was set to 256 points
with a 1024-point Hann window and also a 1024-point FFT
window length.

B. NETWORK DETAILS
The details of the proposed model configuration are listed
in Table 2. In the emotion encoder, GSTs are a bank of ran-
domly initialized 256-dimensional embeddings with a tanh
activation applied. The last gated recurrent units (GRU) state
andGSTs are the query and the key vectors to four-head atten-
tion, which generates a 256-dimensional emotion embedding
vector. In location-sensitive attention, location features are
extracted by convolving the attention probabilities at the pre-
vious step with trainable filters. The 128-dimensional atten-
tion probability vector is evaluated by utilizing the hidden
representations of the AR decoder at the previous time-step,
the source content embedding matrix, and the location fea-
tures. The location features are computed using 1-D convolu-
tion with 32 filters of 31 kernels.

For the training of our proposed model, the value of λatt in
the loss function is heuristically set to 10000. All networks
were trained simultaneously with a batch size of 12 on an
NVIDIA 1080ti GPU.We used the Adam optimizer [58] with
β1 = 0.9, β2 = 0.999, ε = 10−6, and the learning rate of
10−3. It took 50k steps for training until convergence.

We generate waveforms using Parallel WaveGAN [35],
which is a GAN-based knowledge-distillation-free vocoder
using non-autoregressive WaveNet [31]. We followed the
open-source implementation2 and trained ParallelWaveGAN
speaker-independently using our training data.

C. BASELINES
For performance comparison with the proposed method, four
methods were utilized: Sprocket, VAWGAN, sequence-to-
sequence network (S2S), and sequence-to-sequence network
with speaker and emotion identities (S2S-SE).

1) SPROCKET
We used the open-source VC software Sprocket,3 which
was one of the baseline systems used in Voice Conversion
Challenge (VCC) 2018 [59]. This software consists of a
trajectory-based conversion method using a GMM. We used
the same architecture and hyperparameters, except for the
F0 range. As Sprocket is constructed independently for every
pair, we trained three systems for three types of emotion
pairs. For waveform recovery, the WORLD vocoder [60] was
adopted.

2) VAWGAN
To compare with state-of-the-art EVC, we used the
open-source implementation of VAWGAN based speaker-
independent framework4 [29] which consists of two
encoder-decoder structures to separately learn the spectrum
and CWT-based F0 mappings. To represent different emo-
tions, one-hot vector as emotion identity was provided to the

2 https://github.com/kan-bayashi/ParallelWaveGAN
3 https://github.com/k2kobayashi/sprocket
4https://github.com/KunZhou9646/Speaker-independent-emotional-

voice-conversion-based-on-conditional-VAW-GAN-and-CWT
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TABLE 3. Objective evaluation results with DTW.

generator. We used the same architecture and hyperparame-
ters, except for the F0 range. As in Sprocket, the WORLD
vocoder [60] was used for speech analysis and synthesis.

3) S2S
We implemented a sequence-to-sequence network with atten-
tion as a baseline method by referring to an earlier method
in [41]. Different from our proposed architecture, the archi-
tecture in [41] does not have the emotion encoder and the
speaker encoder. As in Sprocket, S2S was also trained inde-
pendently for every emotion pair.

4) S2S-SE
To demonstrate the effectiveness of our emotion modelling,
we implemented S2S-SE to replace the emotion encoder in
our proposed method with embedding lookup, as they did
in [42].

D. OBJECTIVE EVALUATION
We evaluated the converted speech with the target speech
generated by the vocoder corresponding to each system. The
metrics are mel-cepstral distortion (MCD) [61], voicing deci-
sion error (VDE) [62], gross pitch error (GPE) [62], and
F0 frame error (FFE) [63].

MCD, an indicator used for spectral conversion, is based
on mel-cepstral coefficients (MCEPs) defined as follows.

MCD[dB] =
1
T

T∑
t=1

10
log 10

√√√√2
14∑
d=1

m̃d,t − md,t (21)

Here, m̃d,t and md,t respectively denote the d th dimension
of the converted MCEPs and that of the target MCEPs at

frame t while T is the total number of frames. We used
the average of the MCD values for all target samples. The
WORLD vocoder [60] was used for MCEP estimation.

Although VDE, GPE, and FFE originally evaluated
the performance of F0 estimation methods, recent stud-
ies [44] [64] [65] utilized them as pitch and voicing metrics
between converted and target speeches. VDE measures the
percentage of frames for which an error in the voicing and is
defined as,

VDE[%] =

T∑
t=1

1
[
ṽt 6= vt

]
T

, (22)

where ṽt and vt respectively denote the voicing decisions
from the converted speech and the target speech at frame t ,
and 1 is the indicator function. GPE measures the percentage
of voiced frames that deviate in pitch by more than 20%
compared to the target speech and can be written as,

GPE[%] =

T∑
t=1

1
[∣∣∣f̃t − ft ∣∣∣ > 0.2ft

]
1
[
ṽt
]
1 [vt ]

T∑
t=1

1
[
ṽt
]
1 [vt ]

, (23)

where f̃t and ft are the F0 values from the converted speech
and the target speech, respectively. FFE takes both GPE and
VDE into consideration and is defined as follows.

FFE[%]=

T∑
t=1

[∣∣∣f̃t − ft ∣∣∣ > 0.2ft
]
1
[
ṽt
]
1 [vt ]+ 1

[
ṽt
]
1 [vt ]

T
(24)

YIN’s algorithm [66] was used for F0 and the voiced
decision.

Tables 3 and 4 show the MCD, GPE, VDE, and FFE
results obtained with the proposed and the baseline methods
for each emotion conversion. In Table 3, we applied DTW
to align the converted speech and the target speech so that
differences in the timing were not penalized. As shown in
the table, Sprocket performed better than VAWGAN for all
emotion pairs. We also observed that S2S, S2S-SE, and the
proposed method outperformed Sprocket for three emotion
pairs, excepting MCD and VDE, for the neutral-to-angry
pair of S2S. Specifically, the GPE result showed that S2S,
S2S-SE, and the proposed methods converted the pitch of the
target emotion much better than Sprocket. Although there are
a few exceptions, the proposed method performed better than
S2S and S2S-SE formost cases. In terms of the averageMCD,
GPE, VDE, and FFE values, the proposed method noticeably
outperformed the other methods in all cases.

To consider objective measures as well as synchroniza-
tion between the converted speech and the target speech on
time, the results without DTW are summarized in Table 4.
Instead of time-warping, we aligned the shorter signal to the
length of the longer signal by padding zeros at the begin-
ning and the end [44]. Sprocket and VAWGAN are designed
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TABLE 4. Objective evaluation results without DTW.

TABLE 5. MOS results (95% confidence intervals).

to maintain the speaking rate, but S2S, S2S-SE, and the
proposed methods embed the duration mapping so that the
neutral speech can be time-synchronized with the emotional
speech. As indicated in Table 1, the length of the sad speech
is noticeably longer than that of the neutral speech com-
pared to those of happy and angry speeches. Consequently,
three methods with duration mapping achieved more notable
performance than Sprocket and VAWGAN for neutral-to-sad
conversion. Except for VAWGAN, the performances of all
methods were similar for neutral-to-happy conversion. For
angry conversion, one-to-many mappings such as S2S-SE
and the proposed methods outperformed one-to-one map-
pings such as Sprocket, VAWGAN, and S2S, showing that
angry emotion is better modelled when combined with other
emotions. Among three methods using duration mapping, the
proposed method was slightly superior to the other networks
for neutral-to-sad and neutral-to-angry conversions. Consid-
ering all pairs together, the proposed method still performed
better than the other methods.

E. SUBJECTIVE EVALUATION
For subjective performance evaluation, speech naturalness,
emotion similarity, speaker consistency, and emotion clas-
sification tests were executed. In addition, to confirm the
controllable emotion expressiveness of the proposed method,
we also conducted an emotion strength recognition test.

1) NATURALNESS
We conducted a mean opinion score (MOS) test for natural-
ness evaluation. The neutral speeches with the same sentence
were randomly selected for all speakers. For each method,
the converted speeches from three neutral speeches uttered
by each of ten speakers into three different target emotions
were used for the evaluation. We also included ground truth
speech corresponding to the converted speech. Thirty Korean
subjects with considerable experience in speech quality eval-
uation listened to the speeches through high-quality head-
phones and were asked to evaluate the naturalness as follows:
5: Excellent, 4: Good, 3: Fair, 2: Poor, or 1: Bad.

The MOS results with 95% confidence intervals are sum-
marized in Table 5. As shown, S2S, S2S-SE, and the pro-
posed method achieved better performance than Sprocket and
VAWGAN in neutral-to-happy conversion. For neutral-to-sad
and neutral-to-angry conversion, Sprocket outperformed S2S
and S2S-SE. This implied that acoustic features with unstable
alignment were generated in S2S and S2S-SE. Nonetheless,
the proposed method showed relatively stable alignment per-
formance, and it was significantly superior to all other meth-
ods for three emotion pairs. Specifically, the proposedmethod
almost approached the upper limit obtained with the ground
truth for neutral-to-happy conversion.

2) EMOTION SIMILARITY AND SPEAKER CONSISTENCY
For successful EVC, the converted speech needs to be similar
to the target emotion while preserving the speaker identity.
Accordingly, we conducted not only an emotion similarity
test but also a speaker consistency test. We adopted the
same/different paradigm from VCC 2016 [67] to compare
the converted speech and the target speech. The target speech
was generated with a corresponding vocoder for each system.
The same thirty Korean subjects listened to two speeches and
were asked to evaluate the degrees of emotion similarity and
speaker consistency by selecting ‘‘Same, absolutely sure,’’
‘‘Same, not sure,’’ ‘‘Different, not sure,’’ or ‘‘Different, abso-
lutely sure.’’ As in the previous experiment, we used the same
converted speeches from three neutral sentences uttered by
each of ten speakers into three different target emotions.

The emotion similarity evaluation results are shown
in Fig. 4. In the three emotion pairs, S2S, S2S-SE, and the
proposed method were superior to Sprocket and VAWGAN,
especially for sad and angry conversions with a large margin.
Among the methods using duration mapping, S2S-SE and
the proposed method were comparatively better than S2S.
In more detail, S2S-SE and the proposed method showed
similar performance for happy and angry conversions, but

VOLUME 9, 2021 42681



H. Choi, M. Hahn: Sequence-to-Sequence EVC With Strength Control

FIGURE 4. Emotion similarity evaluation results.

FIGURE 5. Speaker consistency evaluation results.

the proposed method slightly outperformed S2S-SE for sad
conversion.

Fig. 5 shows the speaker consistency evaluation results.
As indicated in the figure, the methods using duration map-
ping outstripped Sprocket by a smaller gap compared to that
for emotion similarity, as shown in Fig. 4. Although the gap
among the methods using duration mapping was not large,
the proposed method consistently maintained the speaker
information better than all other methods for all emotion
conversion. Specifically, VAWGAN outperformed Sprocket
in emotion similarity for most cases, but opposite, in speaker
consistency.

3) EMOTION CLASSIFICATION
To verify the emotional expressiveness of the converted
speech, we conducted a subjective emotion classification test.
As before, we used the same converted speeches from three
neutral sentences uttered by each of ten speakers into three
different target emotions and the same thirty Korean subjects
selected the emotions they thought the speech expressed.
We also verified target ground truth speeches.

TABLE 6. Confusion matrix of emotion classification results.

Table 6 summarizes the results of the emotion classifica-
tion test. In all emotion pairs, with Sprocket and VAWGAN,
more than half of the converted speeches were selected as
non-target emotions, suggesting the limited ability of emo-
tion conversion, especially for angry conversion. The meth-
ods using duration mapping were superior to Sprocket and
VAWGAN for all conversions and were similar to ground
truth, especially for happy and sad conversions. The proposed
method not only outperformed the baseline methods consis-
tently for all emotions but also showed better results than the
ground truth for happy and sad conversions.

4) EMOTION STRENGTH
To evaluate the emotion strength controllability, we gradually
changed the strength value for the representative emotion-
weighted vector. We chose the converted speeches from three
neutral sentences uttered by each of ten speakers into three
different target emotions with three different strength values
of 0.5 for weak, 1.0 for moderate, and 2.0 for strong emo-
tion. To evaluate the expressiveness of weak emotion, neutral
ground truth speeches were also utilized in the test. Two
speech samples, A and B, were paired according to the neigh-
boring weight ratios. Namely, neutral-weak emotion pairs,
weak-moderate emotion pairs, and moderate-strong emotion
pairs are constructed. The same thirty Korean subjects lis-
tened to the speech samples of A and B through headphones
andwere asked to choose ‘A’, ‘B’, or ‘Same’, which expresses
stronger emotion.

The emotion strength recognition results are presented
in Table 7. For all emotion pairs, stronger emotion
speeches were correctly distinguished, especially for the
moderate-strong emotion pair of the neutral-to-sad conver-
sion. As shown in the table, weaker emotion speeches were
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TABLE 7. Recognition accuracy results for the proposed method.

FIGURE 6. Visualization of emotion embedding vectors for the training
set and the representative emotion-weighted vectors.

rarely chosen as can be easily expected. These results demon-
strate that the representative emotion-weighted vectors can
express the emotional speech with various levels fairly well
by controlling the strength value.

F. VISUALIZATION
1) ANAYLSYS OF EMOTION EMBEDDING VECTOR
To demonstrate that our representative emotion vector can
represent the emotion as predicted, we used t-SNE [49] to
visualize the high-dimensional emotion space.

Together with the representative emotion-weighted vec-
tors, the emotion embedding vectors produced by target
acoustic features in the training set through the emo-
tion encoder were projected into a two-dimensional space
by t-SNE, as shown in Fig. 6. For the representative
emotion-weighted vector, we used the same previous strength
values of 0.5, 1.0, and 2.0. We found that emotion embedding
vectors were similar between identical emotions and were
distinct with different emotions. The representative emotion
vectors obtained by normalizing the emotion embedding vec-
tors for each emotionwere alsowell shown as the center of the
emotion embedding vectors corresponding to the emotion.
For the representative emotion-weighted vectors, the smaller
the strength value, the closer to the neutral region, and the
greater it becomes, the further away from the neutral region.

To show how similar our representative emotion vectors
were to the emotion embedding vectors in the evaluation set,
we visualized them, as shown in Fig. 7. The representative

FIGURE 7. Visualization of emotion embedding vectors for the evaluation
set and the representative emotion-weighted vectors.

emotion vectors generated with the training data were also
located within the clusters of unseen emotion embedding
vectors of the same emotion, which can be considered to
indicate the robustness of our emotion encoder.

2) ANAYLSYS OF MEL-SPECTROGRAM AND F0
To compare the results by proposed and baseline methods,
we visualized source, target, and converted mel-spectrograms
and F0 contours in Fig. 8. As discussed in Section IV-D, for
all emotion conversions, VAWGAN and Sprocket generated
the same lengths and rhythms of emotional speech as those
of source speech. On the other hand, the lengths and rhythms
of the emotional speech converted by S2S, S2S-SE, and the
proposed methods differed from the source speech and varied
depending on the target emotion. Specifically, in sad conver-
sion, the proposed method generated F0 contours remarkably
similar to the target speech compared to the other methods.
We obtained the converted mel-spectrograms which were
most similar to the target mel-spectrograms by adding the
emotion encoder to the sequence-to-sequence network, espe-
cially covering up to the high-frequency part.

To demonstrate the change in mel-spectrograms and
F0 contours generated according to the representative
emotion-weighted vector conditioned on the proposed
method, we visualized them in Fig. 9. Note that the converted
speeches, which were converted from the one neutral speech
through the proposed methods into three target emotions with
three strength values, were shown in the figure. We found
that the different mel-spectrograms and F0 contours respec-
tively, showing variations in speaking speed, rhythm, and
duration. Specifically, in the sad conversion, the higher the
strength value, the slower the speaking speed, and the more
monotonous the pitch variation. We also observed that as
the strength value increased, the average pitch was higher in
happy conversion, and the pitch variation was wider in angry
conversion. Despite the input of the same neutral speech, dif-
ferent F0 contours and mel-spectrograms could be observed
depending on the representative emotion-weighted vector,
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FIGURE 8. The mel-spectrograms and F0 contours of one test utterance converted to three target emotions by
different methods. From left to right, we specify the converted emotion: happy, sad, and angry, respectively. The
red curves denote F0 contours.

indicating that the proposed method can flexibly handle one-
to-many EVC with strength control. Furthermore, even if

the fixed representative emotion-weighted vector was condi-
tioned for all time-steps, the pitch was dynamically applied
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FIGURE 9. The mel-spectrograms and F0 contours of one test utterance converted to three target emotions with three
strength values. From left to right, we specify the strength value of representative emotion-weighted vectors: 0.5 for
weak, 1.0 for moderate, and 2.0 for strong, respectively. The red curves denote F0 contours.

for each time step. To help to understand our work better,
audio samples used in our evaluations are provided.5

V. CONCLUSION
This paper proposed a sequence-to-sequence-based EVC
method with emotion strength control. To compute the emo-
tion characteristics from raw acoustic features, we applied
an unsupervised learning model to a sequence-to-sequence
network. To utilize the various emotional characteristics from
multiple speakers, a speaker index was applied using an
embedding table. By investigating the relationship between
the unsupervised emotion embedding vectors and each
emotion further, we produced the representative emotion
vectors by calculating the mean vector of each emotion
cluster.

Thus, the emotion strength was controlled easily by scaling
the representative emotion vector.

Major contributions of this work can be summarized as:
(1) The proposed method based on the sequence-to-sequence

5 https://chj1330.github.io/ACCESS2021/index.html

network produced speechwith different rhythms and adjusted
utterance duration depending on the target emotion. (2) It
also could flexibly control the emotion as well as emo-
tion strength. (3) The multi-speaker emotion conversion was
rather successfully achieved with our proposed method.

Objective and subjective evaluation results showed that the
proposed method generated target emotional speech while
preserving speaker identity. Particularly in the subjective
emotion classification test, converted speech utterances into
happy and sad emotions with our proposedmethodweremore
similar to the target emotion than ground truth speech.

For future works, we plan to extend the proposed method
further to apply to generating speech for unseen emo-
tions. Moreover, it would be another challenge to adapt our
proposed method for noisy environments and accordingly
modify it into a rather noise-robust one, even though EVC
usually considers noise-free clean speech data. We also hope,
combining the proposed method with pre-trained speaker
embedding could help generate emotional speech for unseen
speakers.
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