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ABSTRACT For heterogeneous demands in fifth-generation (5G) new radio (NR), a massive machine type
communication (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable and low-latency commu-
nication (URLLC) services have been introduced. To ensure these quality-of-service (QoS) requirements,
non-orthogonal multiple access (NOMA) has been introduced in which multiple devices can be served
from the same frequency by manipulating the power domain and successive interference cancellation (SIC)
technique. To maximize the efficiency of NOMA systems, an optimal resource allocation, such as power
allocation and channel assignment, is a key issue that needs to be solved. Although many researchers have
proposed multiple solutions, there have been no studies addressing the 5G QoS requirements and three ser-
vices that coexist in the same network. In this paper, we formulate an optimal power allocation scheme under
Karush–Kuhn–Tucker (KKT) optimality conditions incorporating different NOMA constraints to maximize
the channel sum-rate and system fairness. We then propose a priority-based channel assignment with a
deep Q-learning algorithm to maintain the 5G QoS requirements and increase the network performance.
Finally, We conduct extensive simulations with respect to different system parameters and can confirm that
the proposed scheme performs better than other existing schemes.

INDEX TERMS Deep Q-learning, Internet of Things, joint resource allocation, non-orthogonal multiple
access (NOMA).

I. INTRODUCTION
With the rapid increase in the popularity of the Internet of
Things (IoT) and cloud computing, the demand for highly
reliable data rates and massive connectivity is increasing day
by day for wireless communication networks [1]. IoT can
provide connections among many types of smart devices,
such as mobile devices, smart sensors, and all kind of robots,
using radio or wireless access networks to build a massive
Eco-system [2]. To fulfill these demands, the 3rd Generation
Partnership Project (3GPP) introduced the fifth generation
(5G) wireless network that provides three major services [3].
These major services include massive machine type commu-
nication (mMTC) that allows massive connectivity for IoT
devices, enhanced mobile broadband (eMBB) that provides
a high data rate for mobile platforms, and ultra-reliable and
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low-latency communication (URLLC) that ensures reliability
and low latency for highly sensitive and crucial applica-
tions [4]–[6]. These services are categorized in terms of their
quality-of-service (QoS), where URLLC has a strict QoS
policy for high reliability and low latency, eMBB service
has a moderate QoS policy, and mMTC has no specific
QoS policy except for massive connectivity [7].

These types of QoS policies are extremely difficult to
fulfill with the traditional orthogonal multiple access (OMA)
due to limited spectrum resources, great transmission losses,
and long queuing delays [8], [9]. To maintain these diverse
QoS requirements many potential technologies have been
introduced into 5G communication network [10]. Among
them, non-orthogonal multiple access (NOMA) is gaining
popularity because it can support massive connectivity with
limited resources, highly reliable transmissions, low trans-
mission delays, and high spectral efficiency [11]–[13]. The
key feature of NOMA is that multiple devices can be served

41468 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2890-6413
https://orcid.org/0000-0002-7834-4044
https://orcid.org/0000-0003-3183-1467


S. Rezwan, W. Choi: Priority-Based Joint Resource Allocation With DQL for Heterogeneous NOMA Systems

from the same radio resource block (RRB), such as time,
frequency, and codes, simultaneously utilizing the power
domain [14], [15]. NOMA applies superposition coding to
combine signals of multiple devices at the transmitter and
successive interference cancellation (SIC) at the receiver to
differentiate the signals of multiple devices manipulating the
power domain [16], [17]. This not only mitigates the multiple
access interference, but also increases the spectral efficiency
and device fairness [18]. Thus, NOMA can easily maintain
strict QoS policies for eMBB, mMTC, and URLLC services.
By contrast, with conventional OMA, only one device can
be served from each RRB at a time to avoid multiple access
interference which is insufficient to support high data rates
and massive connectivity [19].

However, there are some major challenges when it
comes to resource allocation in the NOMA system, which
includes power allocation and channel assignment. One
of the major challenges is that joint power allocation
and channel assignment involve a mixed-integer program
which is a non-deterministic polynomial-time hard (NP-hard)
problem [20]–[22]. For example, all possible combinations
of channel assignment and power allocation are required to
reach an optimal solutionwhichmake the system complicated
and requires extremely high computational power [23], [24].
When it comes to multi-carrier NOMA the system becomes
more complex.

Another problem in multi-carrier NOMA is the channel
sum-rate fairness as an increase in the system sum-rate, does
not necessarily increase the sum-rate of each channel. The
Poor sum-rate of any channel can decrease the performance
of the devices assigned to that channel [25].Moreover, perfect
signal decoding using SIC and fulfilling the QoS require-
ments of 5G services also depends on the power alloca-
tion and channel assignment [26]. An imperfect SIC and
an inappropriate channel assignment can easily decrease the
overall performance of the system. Therefore, in this paper,
we investigate the power allocation and channel assign-
ment jointly to overcome the challenges of the downlink
NOMA system under various criteria.

A. RELATED WORKS
Optimal resource allocation, such as power allocation and
channel assignment, is the key to increase the overall sys-
tem performance and fulfill the QoS requirements of the
5G network. Many researchers have proposed many
approaches to obtain optimal solutions with different perfor-
mance objectives [27], [28]. The most common objectives are
to maximize the overall sum-rate of the system and fulfill the
minimum data rate.

Ali et al. [27] proposed a power allocation technique with
a user grouping scheme for a single-carrier NOMA system
to maximize the sum-rate using Lagrange equations under
Karush–Kuhn–Tucker (KKT) conditions. The authors have
derived the Lagrange equations to obtain an optimal power
allocation scheme while considering total power limitation,
minimum data rate requirement, and SIC constraints under

Karush–Kuhn–Tucker (KKT) conditions. Shao et al. [29]
derived a dynamic device clustering technique and an optimal
power allocation solution using the Nash bargaining solu-
tion (NBS) for NOMAsystem based on the number of devices
and channel gains. However, only single-carrier NOMA sys-
tem for IoT devices is considered. In [7], Shahini et al.
proposed priority-based URLLC andmMTC device grouping
with fixed power allocation scheme. However, no authors
considered the presence of URLLC, eMBB, and mMTC ser-
vices in 5G networks. Parida and Das [30] solved only the
non-convex power allocation problem using the difference of
two convex functions (DC) programming to maximize the
sum-rate of orthogonal frequency division multiple access
(OFDMA)-based NOMA system. In another paper [31],
Hojeij et al. used the water-filling algorithm for resource
allocation to obtain the highest sum-rate possible. However,
no optimality was provided for the obtained solution.

Nevertheless, the system sum-rate increases when it comes
to multi-carrier NOMA. In [1], Zhu et al. derived an
near-optimal power allocation solution considering two users
per channel and iteratively assigned channel to the users.
They also considered the minimum data rate constraints
for each user while maximizing the sum-rate. However,
authors did not consider different services of the 5G network.
Choi [28] used convex optimization to approximate the max-
imization problem for the minimum data rate requirement of
users. Ning et al. [32] adopted a heuristic approach to solve
the power allocation and channel assignment problem of the
NOMA system for vehicular ad-hoc networks.

In addition to conventional convex optimization, many
researchers explored the machine learning and artificial intel-
ligence sectors to optimize the resource allocation prob-
lem of the NOMA system. In [33], Xiao et al. proposed
fast and dynamic reinforcement learning (RL) based power
allocation to maximize sum-rate and spectral efficiency of
a multiple-input multiple-output (MIMO) NOMA system
in presence of smart jamming. The authors initially for-
mulated the anti-jamming transmission game and derived
the Stackelberg equilibrium of the game. Q-learning-based
power allocation is then used to allocate power to users
against jamming attacks. He et al. [34] proposed a joint power
allocation and channel assignment for the NOMA system
using deep reinforcement learning (DRL). They used the
derived near-optimal power allocation from [1] considering
two users per channel and performed channel assignment
using DRL algorithm consisting an attention-based neural
network. The authors then used a DRL algorithm consisting
an attention-based neural network to perform channel assign-
ment while maximizing the overall sum-rate and minimum
data rate for user fairness. An actor-critic (A2C) RL algorithm
was used in [35] to obtain the optimal policy for resource allo-
cation and user scheduling in HetNets with a hybrid energy
supply. The actor parameterizes the policy using the Gaussian
distribution to take stochastic actions, and the critic evalu-
ates the value function and helps the actor learn the optimal
policy.
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FIGURE 1. Simple multi-carrier NOMA system.

In summary, many researchers found many optimal and
near-optimal power allocation solutions for a single-carrier
only. Most researchers focused on increasing the overall
sum-rate while maintaining a minimum data rate for fair-
ness. However, an increase in the overall sum-rate does not
ensure an increase in the sum-rate of each channel. Further-
more, the sum-rate of a device is directly connected with the
sum-rate of the channel. Some researchers have also found
the optimal and near-optimal solutions for both power allo-
cation and channel assignment problems while considering
only eMBB services of 5G network and have not done it for
more than two devices per channel. Nevertheless, achieving
optimal and near-optimal solutions using conventional meth-
ods are very computationally complex. Some researchers
have adopted neural networks (NN) to replace the complex
methods owing to their low complexity.

B. CONTRIBUTIONS
In this paper, we investigate resource allocation schemes to
maximize the performance of multi-carrier NOMA system
under multiple performance metrics. We propose a priority-
based joint resource allocation scheme with DQL for hetero-
geneous NOMA system considering the key constraints and
services of 5G networks. The contributions of this paper are
described as follows:

• We formulate an optimal power allocation scheme that
maximizes the overall system efficiency for any given
channel assignment using Lagrange multipliers under
KKT optimality conditions and incorporates different
constraints of NOMA.

• We propose a priority-based channel assignment scheme
using deep Q-learning (DQL) to maximize the perfor-
mance and fairness of multi-carrier NOMA. We pri-
oritize the devices present in the 5G network based
on the QoS requirement and categorize them based on
URLLC, eMBB, and mMTC services. The agent of the
DQL explores the 5G network environment and learns
the prioritization and channel assignment to achieve
an optimal policy. We use an autoencoder architecture

for the policy network, followed by a long short-term
memory (LSTM) network.

• We consider different constraints of the NOMA system,
including the total power budget of the base station
(BS), the minimum data rate requirement of each device,
the QoS policies of different services of the 5G network,
and the sum-rate maximization with channel fairness
constraints.

• We consider maximizing sum-rate (MSR), maximizing
channel sum-rate (MCSR), and maintaining the 5G QoS
policies as our main objectives.

• Finally, we analyze and compare the proposed
schemes in different scenarios with the conventional
OMA system.

The remainder of this paper is organized as follows.
Section II introduces the problem statement of the NOMA
system. The power allocation solution derivation and pro-
posed priority-based channel assignment scheme are dis-
cussed in Sections III, and IV, respectively. The simulation
results are then analyzed in Section V and some concluding
remarks are given in Section VI.

II. PROBLEM STATEMENT
In this section, we discuss the fundamentals of multi-carrier
NOMA.We also briefly describe the systemmodel and derive
different equations based on the constraints of NOMA system
and the objectives of our proposed solution.

A. MULTI-CARRIER NOMA
With NOMA, multiple devices can be served using the
same RRB utilizing the power domain for both uplink and
downlink transmissions. We consider a simple downlink
multi-carrier NOMA system where the BS serves different
types of devices at the same time over the wireless channels.
Fig. 1 shows, a scenario of 5G network consisting of three
different devices. The BS assigns one channel to every three
devices, where the signals of the three devices aremultiplexed
at different power levels. Therefore, the devices receive their
desire signals along with the signals of other two devices of
that channel as noise or interference. The unwanted signals
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will act as noise if the power level of the desired signal is
high; otherwise the unwanted signals will act as interference.
To decode the desired signal, each device uses SIC tech-
nology. SIC decodes the signal with the highest power and
subtracts that signal from the main signal until it decodes the
desire signal. The perfect SIC depends on the channel state
information (CSI) such as signal-to-noise and interference
ratio (SINR) [36], and the SINR depends on the channel
assignment and power allocation. In this case, the data rate
for each device for its channel can be calculated using (1).

Rki = log2

(
1+

Pki 0
k
i∑i−1

j=1 P
k
j 0

k
i + 1

)
, k, i = 1, 2, 3, (1)

where 0 is the channel to noise ratio (CNR) for the assigned
channel k and P is the assigned power. The details of (1) are
given in Section II-B.

B. SYSTEM MODEL
We consider a micro-cell of a 5G network consisting of 5G
enabled devices with a base station (BS). We also con-
sider the downlink of single-input and single-output (SISO)
NOMA system as shown in Fig. 2, where the total number
of devices is N and the number of channels is K . There
are three types of devices that require three different ser-
vices of 5G network: eMBB devices UE1,UE2, . . . ,UEe;
URLLC devices UL1,UL2, . . . ,ULl ; and mMTC devices
MC1,MC2, . . . ,MCm. We also consider that the total avail-
able bandwidth (BWt ) is divided into all channels having
channel bandwidth (BWch) of 180 kHz. The maximum num-
ber of devices per channel is n, which ranges from 2 ≤ n ≤ N ,
and the total number of channels is K = ceil(N/n).
We consider perfect CSI to develop the proposed scheme.

However, for a practical wireless environment, we also con-
sider an imperfect CSI to evaluate the proposed scheme. Let
us assume that the k th channel is assigned to n devices, where
the power allocated to the nth device is Pn and the desired
signal of the nth device is xn. After combining the signals
of the n devices, the BS transmits them over the k th channel
which can be represented as follows:

X k =
n∑
i=1

√
Pki xi, i = 1, 2, . . . , n (2)

At the device end, the transmitted signal reaches with path
loss component and additive white Gaussian noise (AWGN),
which can be represented as

yk =
n∑
i=1

√
Pki h

k
i xi + w

k , i = 1, 2, . . . , n, (3)

where hki is the channel gain of the i
th device and wk denotes

the AWGN with thermal noise power variance, σk . After
receiving the signal, the receiver uses the SIC technique
to decode its signal. Perfect SIC depends on the SINR of
the device on the channel that it has been using for com-
munication. Let us consider the CNR of the nth device for

FIGURE 2. System architecture of multi-carrier SISO-NOMA system.

k th channel is

0kn =
| hi |2

σk
. (4)

We know from the earlier discussion that different power
levels are allocated to the devices of a channel. As per
NOMA, the highest power is allocated to the device with
the lowest CNR and vice versa. For example, for devices
having 0k1 > 0k2 > . . . > 0kn CNR are assigned with power
Pk1 < Pk2 < . . . < Pkn, respectively. Therefore, the SINR
and the data rate for each device of a specific channel can
represented as (5) and (1), respectively.

γ ki =
Pki 0

k
i∑i−1

j=1 P
k
j 0

k
i + 1

, i = 1, 2, . . . , n. (5)

To perform perfect SIC, the BS allocate power to each device
above certain threshold level Pth as shown in (6). For exam-
ple, the device with low CNR must have higher power than
the sum of other high CNR devices’ power for perfect com-
pletion of the SIC technique.Pki −

 i−1∑
j=1

Pkj

0kd ≥ Pth,
i = 1, 2, . . . , (n− 1),

d = n, . . . , 2, 1,

k = 1, 2, . . . ,K . (6)

C. PROBLEM FORMULATION
We consider each device has a set of channels 0N =

{01
N , 0

2
N , . . . , 0

k
N } for channel assignment and range of

power from PN ∈ [0.01, 0.99] × PT where PT is the total
power budget per channel for power allocation. In this paper,
we focus on the sum-rate as the key performance indicator for
the optimization of channel assignment and power allocation
in the NOMA system which can be represented as

Rsum =
K∑
1

n∑
i=1

log2

(
1+

Pki 0
k
i∑i−1

j=1 P
k
j 0

k
i + 1

)
,

i = 1, 2, . . . , n,

k = 1, 2, . . . ,K . (7)
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We also consider the minimum data rate requirement of all
devices which can be expressed as

log2

(
1+

Pki 0
k
i∑i−1

j=1 P
k
j 0

k
i + 1

)
≥ Rki ,

i = 1, 2, . . . , n,

k = 1, 2, . . . ,K . (8)

The sum of the power per device in a channel must less or
equal than PT , and can be written as

n∑
i=1

Pki ≤ PT, k = 1, 2, . . . ,K . (9)

In this paper, we derive an optimal power allocation
scheme and propose a priority-based channel assignment
with a deep Q-learning algorithm for maintaining the QoS
policies of the 5G services, MSR, and MCSR to ensure
fairness among the devices and the increase in system per-
formance. As DQL requires power allocation to evaluate the
channel assignment and train the DNN, we first derive a
power allocation solution for any given channels, and then we
build the DQL framework for priority-based channel assign-
ment to obtain an optimal solution for the NOMA system.

III. POWER ALLOCATION
In this section, we derive the optimal power allocation for
any given channel while considering different constraints
of NOMA to increase the maximum sum-rates and system
efficiency. The power allocation solution is derived based on
the power allocation solution in [27]. We consider sorting
the devices in descending order based on their distances
from BS. As our main target is to maximize the sum-rates,
we can represent (7) as a maximizing convex function for a
given channel k considering (6), (8), and (9), which can be
formulated as follows:

maximize
Pki

n∑
i=1

log2

(
1+

Pki 0
k
i∑i−1

j=1 P
k
j 0

k
i + 1

)

subject to log2

(
1+

Pki 0
k
i∑i−1

j=1 P
k
j 0

k
i + 1

)
≥ Rki ,

n∑
i=1

Pki ≤ PT,Pki −
 i−1∑
j=1

Pkj

0kd ≥ Pth,
∀i = 1, 2, . . . , n; d = n, . . . , 2, 1. (10)

The convex problem (10) can also be expressed in Lagrangian
form as

L (P, τ, ν, ψ)

=

n∑
i=1

log2

(
1+

Pki 0
k
i∑i−1

j=1 P
k
j 0

k
i + 1

)

= τ k

(
PT −

n∑
i=1

Pki

)

+

n∑
i=1

νki

Pki 0ki −
 i−1∑
j=1

Pkj 0
k
i − 1

× (φki − 1
)

+

n∑
i=2

ψk
i

(
Pki 0

k
d −

i∑
l=1

Pkl 0
k
d − PTh

)
, (11)

where τ , ν, and ψ are the Lagrange multipliers, ∀i =

1, 2, . . . , n, and φki = 2
Rki

KBWch . Taking the derivatives of (11)
with respect to Pi, τ, ν, and ψ , multiple KKT conditions
can be found. For n-device NOMA, there are 2n Lagrange
multipliers resulting in 22n combinations. For example,
for n = 2, 3, 4, . . . , 8, the number of combinations are
16, 64, 256, . . . , 65536, respectively. However, checking all
types of combinations is not computationally feasible. After
solving only n equations according to [37] for 2, 3, 4-device
NOMA, 2, 4, 8 combinations are found that satisfy the
KKT conditions, respectively. Therefore, the closed-form
solution of the power allocation for n-device NOMA for a
given channel k is near-optimal and can be written as

Px =
PT

2(n−1)
+

(x − 1)Pth
2(x−1)0(x−1)

−

(
n−1∑
i=x

Pth
2i0i

)
,

Pj =
PT

2(n−q−2)
+

Pth
20(j−1)

−

n−1∑
i=j

Pth
20i

 , (12)

where x = 1, 2, j = 3, 4, . . . , n, q = 0, 1, . . . , (n − 3),
and devices have 0k1 > 0k2 > . . . > 0kn CNR with power
Pk1 < Pk2 < . . . < Pkn, respectively.

IV. PRIORITY-BASED CHANNEL ASSIGNMENT
In this section, we propose a priority-based channel assign-
ment scheme using deep Q-learning. First, we formulate the
channel assignment problem based on the priority, MSR, and
MCSR, and then model the channel assignment problem as
a reinforcement task and introduce an autoencoder followed
by an LSTM network to create the DQL framework. Finally,
we use the near-optimal power allocation solution and train
the DNN for validation.

A. PRIORITY-BASED CHANNEL ASSIGNMENT
The 5G wireless network provides three different services
with different QoS requirements, such as URLLC service
has highest QoS requirements, eMBB service has average
QoS requirements, and mMTC service has least QoS require-
ments. We prioritize the devices in the network based on the
services they are using and their QoS requirements where the
URLLC devices have the highest priority, the eMBB devices
have the second-highest priority and the mMTC devices are
the least priority devices. The BS sorts the URLLC, eMBB,
and mMTC devices in descending order based on their
distances from BS. Subsequently, the BS assigns URLLC
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devices to the channels with highest gain first, then assigns
the eMBB devices and mMTC devices accordingly to the
channels available as shown in Fig. 3. This figure shows an
illustration of priority-based channel assignment for 3-device
NOMAwhere 4 URLLC, 5 eMBB, and 3 mMTC devices are
present. However, assigning channels is subject to the CNR
of each device with the BS.

FIGURE 3. Proposed priority-based sample channel assignment for
3-device NOMA system for 12 active devices.

Another main requirement of the optimization of the chan-
nel assignment is to maximize the channel and overall sum-
rates. The BS have

(N
n

)
combinations for each channel k

to check for maximize the sum-rate. Therefore, the total
combination in general is

∑K
i=1

(N−(n×i)
n

)
for MCSR.When it

comes to priority, the low priority devices cannot replace the
high priority devices in a channel. However, high or equal
priority devices can replace the equal or low priority devices
in any given channel. The maximization process incorpo-
rating with the priority scheme is computationally complex
since the BS has to check all the possible combinations of the
device. To reduce the computational complexity, we propose
a DQL framework to assign channels to the devices while
maintaining the priority and maximizing the sum-rates.

B. DEEP Q-LEARNING FRAMEWORK
In this subsection, we propose a DQL framework and train it
to optimize the priority-based channel assignment problem.
The deepQ-learning algorithm generally consists of an agent
with a deep neural network (DNN) and an environment.
The agent interacts with the environment and decides which
action to take. The BS acts as an agent and interacts with
the environment consisting of URLLC, eMBB, and mMTC
devices’ information. Initially, the agent starts exploring the
environment to collect the channel information of every
device. At each time step t , based on the present state st of
the agent in the environment, the agent predicts an action
at using the DNN to assign a channel. In return, the agent
receives an immediate reward rt and the next state st+1 from
the environment as shown in Fig. 4. The agent receives a
good reward rt if it performs a good channel assignment.
By predicting actions, the agent learns about the environ-
ment and achieves an optimal channel assignment policy πc.

FIGURE 4. Simple Q-learning.

This optimal policy is learned at each time step t by the DNN.
The agent updates and improves the policy πc by repeat-
ing the channel assignment process for multiple episodes.
One episode terminates when there are no channels left for
assignment.

We define the state, action, and reward for use in the
proposed DNN as follows:
• State: We consider the channel information for each
device as the states of the environment. There are
N devices having K channel preferences. Therefore,
the state space has N × K elements and can be repre-
sented as S = {01

1, 0
2
1, 0

3
1, . . . , 0

K
1 , 0

K
2 , 0

K
3 , . . . , 0

K
N }.

• Action: The main action of the agent is to assign chan-
nels to the devices which belong to the action space A.
At each episode for a set of S, the agent has to takeN ∈ A
actions while maintaining one action per K elements
from S. For 2, 3, . . . , n-device NOMA, the agent can
take one action 2, 3, . . . , n-times, respectively.

• Reward: Whenever the agent completes taking N
actions, the agent gets a reward r lt for each action. For
each correct action, the agent gets a positive reward ri
and when the agent takes correct n actions, the agent gets
the sum-rate of that channel as a reward for the taken
actions. For example, let us assume a 3-device NOMA.
The agent has to assign 3 devices per channel. In this
case, when the agent successfully selects an appropriate
channel based on priority for a device, the agent gets
a positive reward ri (i.e., 10). If the agent can select
the same appropriate channel for 3 devices, the agent
gets the sum-rate calculated by (1) as a reward for its
3 actions. The reward function can be defined as

r lt =


∑n

i=1 R
k
i if akp = n

0 < ri
<
∑n

i=1 R
k
i for each a

l
t if akp < n

0 if akp = 0

, (13)

where akp is the number of appropriate action alt taken per
channel k and ∀l = 1, 2, . . . ,N ∈ A. Here, we consider
maximizing the sum-rate for each channel which results
in increased performance and fairness of the whole
system.
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FIGURE 5. Proposed DNN structure.

With the state, action, and reward, we propose the deep
neural network (DNN) structure shown in Fig. 5 as the policy
controller for channel assignment. The DNN replaces the
Q-table and estimates the Q-values for each state-action pair
of the environment. Eventually, the DNN approximates the
optimal policy for channel assignment. The proposed DNN
has two parts, an autoencoder model and an LSTM model.
The main goal of the DNN is to derive probabilities for
each device-channel pair for each state space, which can be
expressed as Q(S,A). These probabilities are the Q-values
for DQL.

1) AUTOENCODER
An autoencoder is a feed-forward neural network where the
number of inputs is same as the number of output neurons.
It compresses the input into a lower-dimensional code and
then reconstructs the input data from the code at the output.
The autoencoder can easily handle raw input data without
any fancy processing or labeling. Therefore, the autoen-
coder is considered as a part of the unsupervised learning
technique [38] and can generate their labels from the training
data. The autoencoder has threemain parts named an encoder,
code, and decoder as shown in Fig. 6. Both the encoder and
decoder are fully connected neural networks. The encoder
starts with an input layer having 2n neurons followed by
multiple hidden layers having 2n−h neurons, where h is the
position of the layer. The number of neurons per hidden layer
continues to decrease till the code part of the autoencoder.
In this paper, we use 23 neurons for the code layer. The
decoder part is the mirror image of the encoder ending with
an output layer. This type of structure is known as stacked
autoencoder as the layers are stacked one after another, like a
sandwich. Moreover, we use ReLU as an activation function
for each layer in the autoencoder.

2) LONG SHORT-TERM MEMORY
Long short-term memory (LSTM) is an evolved form of
recurrent neural network (RNN). LSTMs are a special type

FIGURE 6. Autoencoder architecture.

of RNN that can learn long-term dependencies and remember
previous information for future usage. The LSTM network
has a chain structure composed of multiple LSTM cells.
We use three LSTM cells to build our LSTM network. The
structure of a single LSTM cell is shown in Fig. 7 [39].
An LSTM cell has three input and two output parameters. The
cell and hidden states are the common parameters between
inputs and outputs. The other parameter is the current input.
The LSTM cell also contains three sigmoid layers and two
tanh layers involving some linear transformations as shown
in Fig. 7. Initially, random cell and hidden states are given
along with the input for the first LSTM cell. Then the two
outputs (hidden state, cell state) become the three inputs of
the next cell as shown in Fig. 7.
In this paper, we use an autoencoder having input and

output size of 128 and code size 8 followed by an LSTM
network having 128 input size, 64 hidden state size, and
3 recurrent layers. Finally, the output of the LSTM is passed
through a linear layer and a sigmoid layer to obtain the prob-
abilities of the preferred channels for each device. The state
space S is given as the input of our policy network. Initially,
the input is first embedded with dimension 128. It then passes
through the policy network to generate the channel assigning
probabilities, as shown in Fig. 5.
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FIGURE 7. An LSTM cell.

C. TRAINING
The proposed DNN is trained gradually with a set of train-
ing data Tdata = {S1, S2, . . . , S ins} per episode. For each
state space S, the device-channel pairs are selected using
ε-greedy policy according to the output probabilities from
the DNN. An episode terminates when all state spaces are
passed through the DNN. The policy to take action for each
device per state space can be expressed as

ali =

{
argmax Q(S i,Ali) if ε< εth; where εth∈ (0, 1]
random action [1,K ] otherwise

,

∀l = 1, 2, . . . ,N ∈ A,

∀i = 1, 2, . . . , ins. (14)

After taking the actions using (14), the agent gets the rewards
according to (13) and the next state space S i+1.
To train the DNN, we calculate the loss and optimize the

parameters of the DNN performing back-propagation. To
calculate the loss, we approximate the optimal Q∗-values for
each device-channel pair of S i+1 from a different DNN called
the target DNN [40]. The target DNN is identical to the policy
DNN and initialized by the parameters of the policy DNN.
The next state space S i+1 is given as an input to the target
DNN and from the outputs the optimal Q∗-values are chosen
greedily by the agent. Because assigning the channel is a
classification problem, we use the categorical cross-entropy
loss function to calculate the loss between the optimal
Q∗-values and normal Q-values [41]. After calculating
the loss, we optimize the policy DNN using the Adam
optimizer [42]. To estimate the optimal Q∗-values correctly,
we periodically update the target DNN with the parameters
of the policy DNN after certain episodes.

For a more stable convergence of the optimal policy,
we introduce the experience replay memory (ERM) to
the DQL [43]. Initially, the agent explores the environ-
ment and saves current states, actions, rewards, and next
states (S i,Ai, ri, S i+1) as a tuple in the ERM. Subsequently,
the agent takes a mini-batch of tuples from the ERM and
trains the policy DNN. The ERM continues to be updated

for each training data. Fig. 8 and Algorithm 1 summarize the
proposed DQL framework and the working flow.

Algorithm 1 Proposed Deep Q-Learning Algorithm
1: Initialize policy and target DQL network with random

parameters (p and p′).
2: Initialize experience replay memory (ERM).
3: Initialize ε.
4: for each episode do
5: for each instance do
6: for each device do
7: Select an channel and add to action space Ai

for present state space S i based on ε.
8: end for
9: Observe the immediate rewards ri and next state

space S i+1.
10: Insert (S i,Ai, rt , S i+1) in ERM.
11: Create a mini-batch with random sample of

(S i,Ai, rt , S i+1) from ERM.
12: for each tuple in mini-batch do
13: Obtain Q-values using policy DNN.
14: Approximate Q∗-values using target DNN.
15: Calculate the loss using Q an Q∗-values.
16: Optimize the parameters p of the policy DNN

using Adam optimizer.
17: end for
18: end for
19: p′← p after certain number of episodes.
20: end for

V. SIMULATION ANALYSIS
In this section, we perform multiple simulations to ana-
lyze the performance of the proposed DQL algorithm for
priority-based channel assignment and compare the proposed
priority-based joint resource allocation (priority-JRA) with
the joint resource allocation (JRA) method and dynamic
power allocation with fixed channels (DPA-FC) method pro-
posed in [1] and [27], respectively. Moreover, we compare
the priority-JRA NOMA system with the conventional OMA
system. Finally, we also analyze the system complexity and
system convergence varying different parameters.

A. SIMULATION ENVIRONMENT
For the simulation environment, we consider a 5G micro-cell
where 24 devices are randomly and uniformly distributed.
We only consider three types of devices, URLLC, eMBB,
and mMTC devices. We model the channel gain hki of the k

th

channel for each device based on the Rayleigh fading model,
where the path loss exponent, η = 3. Then we calculate
the CNR of each channel for each device using (4) where
σk =

BWt×N0
k for ∀k = 1, 2, . . . ,K with BWt = 5MHz and

N0 = −172 dBm/Hz.
To analyze the performance, simulation parameters similar

to [1], [27] are used as given in Table 1. The parameters
of proposed DNN such as weights and biases are initialized
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FIGURE 8. Proposed DQL framework.

TABLE 1. Simulation parameters.

randomly and uniformly. The input size of the DNN is N ×K
and the embedded size is 128. We generate 5000 instances
for training and 1000 instances for validation data-set ran-
domly for each episode. Each instance consists of N × K
user-channel information.

B. PERFORMANCE ANALYSIS
In this subsection, we compare the proposed priority-JRA
with JRA and DPA-FC in terms of system sum-rate, sum-rate
per channel, and energy-efficiency varying power, number of
users, and location.

Fig. 9 shows the sum-rate versus the BS power comparison
among priority-JRA, JRA, DPA-FC 3-device NOMA system.
It is also evident from the figure that the proposed scheme
outperforms the other two methods. In the JRA method,
the power allocation solution is derived first, and the channels
are then assigned using amatching algorithm [1]. By contrast,
in the DPA-FCmethod, power allocation is done dynamically
based on the channel response between the device and the BS
while assigning fixed channels to the devices [27]. Hence,

FIGURE 9. Sum-rate of 3-device NOMA system.

we can conclude that the priority-based channel assignment
technique is more efficient than the JRA, and DPA-FC meth-
ods. From Fig. 9, we can also observe that the sum-rate is
shown in bps/Hz which also reinforces the spectral efficiency
of the system. Moreover, due to the converging nature of (7),
the graph saturates when the BS power is extremely large.

Sum-rate for each channel comparison among priority-
JRA, JRA, and DPA-FC for 3-device NOMA is shown
in Fig. 10. It is evident from the figure that the proposed
priority-JRA achieves the highest sum-rate in most of the
channels while maintaining the proposed priority scheme.
In few channels, the sum-rate is low because of the trade-off
between the priority scheme and the maximum sum-rate.
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FIGURE 10. Sum-rate per channel of 3-device NOMA system where the
channel number, K = 8.

Our main target is to fulfill the QoS requirements of the
5G services while achieving the maximum possible sum-rate.

Fig. 11 shows the sum-rate achieved by the three schemes
for the 2, 3, 4-device NOMA system. For every NOMA sys-
tem, the proposed priority-JRA achieves the highest sum-rate
compared to the other methods. Moreover, we can also
observe that the sum-rate decreases when the number of
devices per channel increases. This is due to the increase in
system complexity and the division of the same amount of
power into more devices.

FIGURE 11. Sum-rate of 2, 3, 4-device NOMA systems.

In Fig. 12, we compare the conventional OMA systemwith
priority-JRA along with JRA and DPA-FC NOMA systems
in terms of the sum-rate with respect to power and number
of users, respectively for the 3-device NOMA system. The
sum-rate shown in the figure also represents the spectral
efficiency of the system. It is clear that all NOMA systems
outperform the traditional OMA system in terms of both
the sum-rate and spectral efficiency. Moreover, we can also

FIGURE 12. Sum-rate of 3-device NOMA system and OMA system with
respect to (a) power and (b) number of users.

conclude from the Fig. 12 that the proposed priority-JRA
outperforms all the other methods for any given power and
number of users.

In Fig. 13, we compare the energy-efficiency of the OMA
system with different methods of the NOMA system with
respect to number of users and power, respectively. Energy-
efficiency of a system represents the number of sent bits per
joule of energy. The graph shows that the energy-efficiency
decreases as the power increases because the energy effi-
ciency is inversely proportional to power. We can con-
clude from the figure that the NOMA system is more
energy-efficient than the conventional OMA system in any
scenario.Moreover, from Fig. 13, we can also observe that the
proposed priority-JRA is the most energy-efficient method
for channel assignment among all for any given power and
number of users. We calculated the energy efficiency graph
using the BS power and circuit power for each method [1].

Moreover, Fig. 14 shows the sum-rate comparison among
priority-JRA, JRA, DPA-FC 3-device NOMA system for
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FIGURE 13. Energy-efficiency of (a) 3-device NOMA system and OMA
system with respect to number of users and (b) 2, 3,and 4-device NOMA
systems and OMA system with respect to power.

different user-data instances considering perfect and imper-
fect CSI. As mentioned earlier, we generate 5000 and 1000
instances consisting of N × K user-channel information per
instance for training and testing the proposed priority-JRA
scheme, respectively. In every instance, the positions of the
users are randomly and uniformly generated within the trans-
mission range of the BS. From Fig. 14a, it is evident that the
proposed priority-JRA achieves the highest sum-rate for any
given positions of the users. By contrast, we consider ±30%
CSI error to evaluate the performance of the aforementioned
systems in Fig. 14b. It is noticeable from Fig. 14b that the
performance of the proposed priority-JRA remains almost
unchanged compared to the JRA, DPA-FC schemes.

C. COMPLEXITY AND PARAMETER ANALYSIS
The proposed priority-JRA scheme contains a DNN network.
To visualize the efficiency of the proposed DNN network,
we derive and analyze the time complexity. The proposed
DNN can be divided into three main elements for complexity

FIGURE 14. Sum-rate of 3-device NOMA systems for multiple validating
instances considering (a) perfect and (b) imperfect CSI.

FIGURE 15. Channel assignment policy convergence for different DNN
structures.

analysis, which are an auto-encoder, an LSTM, and two linear
layers as shown in Fig. 5.
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FIGURE 16. Channel assignment policy convergence for different
(a) learning rate, (b) batch sizes, and (c) number of user.

The proposed DNN has an input of (NK ) and two linear
layers of size de = 128. The time complexity can be writ-
ten as O(2Id2e (NK )), where I refers to the kernel size. The
auto-encoder has one code layer and two identical encoder
and decoder layers. According to [44], the time complexity

of the auto-encoder can be written as

O(2Id2e (1+
1
2
+

1
4
+

1
32

)(NK ))

= O(
55
16
Id2e (NK ))

' O(3Id2e (NK )) (15)

For the LSTM the time complexity can be calculated asO(I ).
Therefore, the overall time complexity of the proposed DNN
can be written as

O(3Id2e (NK ))+ O(2Id2e (NK ))+ O(I )

= O(5Id2e (NK ))+ O(I ) (16)

By contrast, for the JRA scheme, the time complexity
can be calculated as O(( I

2
−I
2 )

(N
n

)2
), which includes all

(N
n

)
combinations for each channel k . Therefore, the complexity
of the priority-JRA ismuch lower. However, DPA-FC scheme
has the lowest complexity and it does not outperform the
priority-JRA scheme.

To justify our proposed DNN structure, we compare it with
multiple DNN structures such as standard fully-connected
DNN, only LSTM, and only autoencoder in Fig. 15 for
72-devices and at a learning rate 0.01 and batch size of 24.
It is evident from Fig. 15 that the proposed DNN structure
achieves maximum cumulative reward and converges faster
among all. Furthermore, Fig. 16a shows the effect of dif-
ferent learning rates on the proposed DNN for 24-devices
and a batch size of 24. As shown in Fig. 16a, the proposed
DNN cannot learn the optimal channel assignment policy for
learning rates of 0.5, 0.1, and 0.001. However, for learning
rates 0.01 and 0.001, the proposed DNN reached the optimal
solution quickly in the same episode. Therefore, we can use
any one of them. Fig. 16b shows the effect of different batch
sizes on the proposed DNN for 24-devices and a learning
rate of 0.01. As shown in Fig. 16b, the batch size should be
greater than or equal to 24 to achieve optimality. However,
a larger batch size refers to more room for exploration and
slow convergence. Lastly, Fig. 16c represents the conver-
gence of the proposed DNN for different number of users
at a learning rate of 0.01 and batch size 24. The converging
graphs of Fig. 16c signify the high scalability and stability of
the proposed DNN for increasing number of users under the
BS. Finally, we can ensure from the analysis that the proposed
scheme can achieve a near-optimal performance with low
complexity and high efficiency.

VI. CONCLUSION
In this paper, we propose a priority-based resource allo-
cation scheme with deep Q-learning to fulfill the QoS
requirements of the 5G services, such as URLLC, eMBB,
and mMTC services, while maximizing the system per-
formance and fairness of the multi-carrier NOMA system.
We consider SISO-NOMA system architecture to derived
the power allocation and the channel assignment prob-
lems into optimization problems. To resolve these problems,
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we first formulated a near-optimal power allocation solution
using Lagrange multipliers under KKT optimality condi-
tions while incorporating different constraints of the NOMA
system. Then with the derived power allocation solution,
we formulated priority-based channel assignment with deep
Q-learning utilizing an autoencoder and LSTM in the DNN
model. After that we compared the proposed scheme with
JRA and DPA-FC schemes and proved that the proposed
priority-JRA performs better than other schemes under dif-
ferent conditions. We plan to extend our proposed solu-
tions consideringMIMO-NOMAwith beamforming in future
works, where the BS with multiple antennas will assign each
channel to multiple devices using beamforming utilizing a
machine learning algorithm. Finally, we can conclude that
our proposed priority-JRA method is less complex than other
optimal exhaustive search based solutions while achieving
near-optimal solution.
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