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ABSTRACT The due-date quotation is a key performance indicator for managing customer orders which
would influence customer acceptance and/or the future potential lateness penalty. The production cycle time
and allowance time are added and used as the due date of order. The objective is to maximize the hit rate
which is the percentage of the orders fulfilled within the time limit of quoted due date. Under the framework
of supervised machine learning, we explore the new developments in feature selection and the optimal
decision tree to predict cycle time by using mixed-integer optimization. Cycle time allowance could be
added to the predicted cycle time or incorporated in an optimization problem as a managerial decision
variable. Case studies are used to demonstrate the effectiveness of this approach, and their performances are
comparable to the other popular ensemble tree approaches, such as random forests and gradient boosting.

INDEX TERMS Allowance determination, cycle time prediction, gradient boosting, hit rate, local search in
a decision tree, mixed-integer optimization, optimal decision tree, random forests.

I. INTRODUCTION
The due-date quotation is a key performance index in com-
petitive manufacturing and service environments [21]. Those
companies with on-time deliveries of the orders have a com-
petitive edge. For due date management (DDM) policy, one
important performance index is the hit rate which is the
percentage of the orders that are fulfilled within the time limit
of quoted due date.

There are intensive researches in cycle time prediction due
to its importance and practicality. Tree-based methods are
popular due to their interpretability [7], [8]. Dunn [14] formu-
lated the search of the optimal decision tree as amixed-integer
optimization (MIO) problem and circumvented the subop-
timal solution of the traditional greedy approaches. In [2],
Bertsimas and Dunn reported recent amazing results in
optimized-based approaches to solving machine learning
problems. The sparse regression methods therein could be
used to select key features that will reduce the dimension-
alities of the MIO in the optimal tree search.

Our objective in this research is to maximize the hit rate of
a DDM policy. An allowance time is added to the cycle time
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which is used to negotiate with the customer as the due date of
order. We utilize the newly developed methodology in feature
selection and the optimal decision tree to predict cycle time
or maximize the hit rate based on MIO and explain in detail
in Section II.

A. LITERATURE REVIEW
In this section, we provide a literature review on different
approaches for cycle time management.

The first line of research is to predict the cycle time.
In [32], Sha and Hsu used a simulation package to gen-
erate the training data with 92 factors based on a wafer
fabrication factory in Taiwan which consisted of 53 work-
stations and 301 machines. In nine rules out of three
categories, the neural-network-based models have lower
tardiness than regression-based and conventional rules.
Based on data of 118 predictor variables collected from
a real factory, Baskus et al. [1] compared the perfor-
mance of clustering, K-nearest neighbors, and CART based
on four measures. By simulating a reduced-scale fab of
flash non-volatile memory using Autosched AP simulation
software, Meidan et al. [26] reduced 182 features to 50 by
conditional mutual information maximization algorithm and
then used selective naive Bayesian classifier for prediction
model which was comparable to that of a neural network,
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C5.0 decision tree, and multinomial logistic regression. Ver-
wer and Zhang [35] collected simulated raw data based on a
real wafer fabrication factory in Shanghai, and 108 factors
were selected from 774 candidates by a regression-based
factor selection model. A hybrid model of adaptive fuzzy
c-means algorithm and parallel back propagation network
was proposed to predict the cycle time and achieved better
performance than backpropagation network and multivari-
ate linear regression in terms of the mean absolute devi-
ation and the cycle time variance. Besides these methods,
the other popular approaches include fuzzy logic [11], hybrid
approach [10], LSTM [36], production simulation [19], and
queueing theory [13].

The second approach is to combine scheduling and the
due-date quotation. Keskinocak and Tayur [22] offered an
extensive survey on the DDM policy consisting of a due date
setting policy and a sequencing policy. They categorized the
problems into offline/online models for DDM, DDM with
service constraints, and DDM with price and order selection
decisions. Gordon et al. [16] surveyed the common due date
assignment and scheduling problems of the deterministic
models about single machine and parallel machines under
different performance criteria. Please refer to these two sur-
vey articles for further references. Kuo et al. [23] used neural
networks to predict the WIP levels of individual toolsets and
reduced 42.1% of the cycle time for a real fab in Taiwan
in about one year by identifying the key features in the
predictors and prioritizing them by sensitivity analyses.

The last line of research is to maximize the hit rate of
a policy. Wang et al. [38] considered production manage-
ment planning under the theory of constraint framework to
improve the hit rate and compared the performance of three
experimental scenarios of a job shop. Chen and Wang [12]
framed DDM as a supervised machine learning problem, that
is, a neural network was trained and predicted on training and
testing datasets, respectively, and demonstrated its effective-
ness over seven other policies in terms of hit rate.

The rest of the paper is organized as follows: Section II
describes the methodology, Section III presents the illus-
trative examples and results, and Section IV includes the
conclusion and further directions.

II. METHODOLOGY
Given a set of features x ∈ Rp in a manufacturing system
and its corresponding cycle time y, the regression machine
learning approach is to find a function ŷ = f (x) so that
the error between ŷ and y is small. The popular performance
measure for regression is the mean square root (MSE) or the
mean absolute error (MAE).

We apply the recent results in feature selection and optimal
decision trees to solve the problem of cycle time prediction
and allowance determination.

A. FEATURE SELECTION
For a problemwith a small number of samples or a large num-
ber of features, it is beneficial to find the important features

to speed up the training time and enhance the interpretability
of the model.

For a linear regression problem f (x) = βx, it is
NP-complete to find the sparsest number of important fea-
tures in the 0-pseudo norm, i.e., the number of non-zero
coefficients in β [28]. Instead, a convex l-1 norm penalty
on β, namely Lasso, is added and solved [18], [33].
Wang et al. [38] proved that Lasso regression is equivalent
to a robust regression problem with a feature-wise uncoupled
l2-norm uncertainty set.

Bertsimas and Van Parys [5] developed a cutting-plane
algorithm for the exact sparse regression problem and solved
the problems with 100-thousand sample sizes and features
within 10 minutes. In [4], the authors compared the out-
of-sample accuracy and false detection rate for five methods
under six noise/correlation scenarios. Based on extensive
experiments, they demonstrated that Lasso performs poorly
in low noise settings and is comparable with other methods as
noise increaseswhich explains the robustness aspect of Lasso.

B. OPTIMAL DECISION TREE
Decision trees are commonly used for regression and clas-
sification problems due to their nice interpretability [7], [8].
In CART [7], the stage-wise downward procedures are used to
find the splitting feature of one branch nodewhichmaximizes
its information gain of the Gini index instead of the direct
performance of prediction error for the regression problem.
The greedy approach would produce a tree that might not be
optimal.

Due to the tremendous improvement of hardware speedup
and software algorithms, commercial optimization solvers
could solve large problems within an appropriate timeframe.
Bertsimas and Dunn [2], [14] formulated the search of the
optimal decision tree as a mixed-integer optimization (MIO)
problem. Under this framework, they consider the possibil-
ity of hyperplane splits, i.e., many features are used in the
splitting consideration, and a linear prediction function for
each leaf when it is a regression problem. The optimal deci-
sion tree has different decision variables and constraints for
parallel/hyperplane splits and constant/linear predictions. For
optimal classification trees with hyperplane splits and opti-
mal regression trees with linear predictions [14], they have
20 and 13 sets of constraints, respectively. To save the space
and presentation, we will only explain the objective function,
key and new decision variables, and the main constraints, and
refer to the dissertation [14] for the full problem formulation.

1) MAXIMIZE THE HIT RATE INDIRECTLY
The first approach is to minimize the MAE of cycle time
prediction and use the optimal tree to compute the hit rate
afterward.

Taking Figure 1 as an example, the depth of the tree is 2,
and there are 3 branch nodes {A, B, C} and 4 leaf nodes
{1, 2, 3, 4}. The set of branch nodes and leaf nodes are
denoted by TB and TL , respectively, for any tree. The numbers
of sample size and features are n and p, respectively. We use
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FIGURE 1. A decision tree for illustration.

the notation [n] to denote the set {1, 2, . . . , n}. The symbol xi
represents the ith sample point, for all i ∈ [n].
At each branch node, the decision variables are the coeffi-

cients a ∈ Rp, and its corresponding threshold b. For parallel
and hyperplane splits, the decision variables ajts of a in the
branch nodes of Figure 1 are binary and in the range of
[−1, 1], respectively, where j ∈ [p] , t ∈ TB. To simplify
the discussion, we will limit ourselves to the case of parallel
splits in the remainder of this article. By adding an appro-
priate small number derived from the dataset [14], the strict
inequality in each branch node could be transformed into a
non-strict inequality so that the new optimization problem
does not violate the feasibility of the original problem and
is solvable by an optimization solver.

For the branch nodes, we consider the binary decision
variables {dt } and impose the following constraints:

dt =
p∑
j=1

ajt , ∀t ∈ TB (1)

At each branch, if dt is 1, then one of the coefficients {ajt }
is 1. Otherwise, the branch node becomes a leaf. That is,
the variables {dt } are used to control the complexity of the
tree.

At the leaves, a set of binary decision variables {zit } is used
to decidewhich data sample belongs towhich leaf. The binary
decision variable {zit } is 1 if the ith sample is assigned to the
tth leaf for i ∈ [n] , t ∈ TL . Each data sample is assigned to
only one leaf which is imposed as another constraint. Given a
hyper-parameter Nl , we could impose the constraint that the
minimum number of samples in each leaf is greater or equal
to Nl .

We use a linear prediction function at each leaf which takes
the form

y (x) = βTt x + β0t (2)

In this case, the prediction function for the ith sample is

fi =
∑
t∈TL

(
βTt xi + β0t

)
zit ,∀i ∈ [n] (3)

The equalities (3) are nonlinear due to the products of the
variables βt , β0t , and zit which could be linearized by using
the popular big-M argument as follows:

−Mf (1− zit ) ≤ fi − (βTt x + β0t )

≤ Mf (1− zit ),∀i ∈ [n] , t ∈ TL . (4)

If zit = 1, then the inequalities (4) become fi = βTt x + β0t .
If zit = 0, both inequalities hold and become unconstrained
because Mf is a big number. The number Mf could be deter-
mined beforehand based on the data [14].

The binary decision variables {rjt } in the inequalities (5)
control the complexity of the prediction function by imposing
the constraints with another big-M constant Mr . The inter-
pretation is the same as those in the inequalities (3). For data
with p features and the tree depth of D, the number of binary
decision variables

{
rjt
}
is p× 2D.

−Mrrjt ≤ βjt ≤ Mrrjt , ∀j ∈ [p] ,∀t ∈ TL (5)

The objective function (6) is to minimize the summation of
the prediction error

∑n
i=1 Li divided by the baseline error L̂,

the complexity of the decision tree in terms of the number of
branch decision nodes

∑
t∈TB dt , and the weighted number of

the linear prediction functions of all leaves
∑

t∈TL

∑p
j=1 rjt

in which the last two terms are used to regulate the model
from overfitting. The hyper-parameters α and λ are tuned in
the validation stage. The best parameters are then used in the
testing stage to compare the out-of-sample performance of its
policy.

min
1

L̂

n∑
i=1

Li + α
∑
t∈TB

dt + λ
∑
t∈TL

p∑
j=1

rjt (6)

If the objective is to minimize MSE, then the prediction
error Li is (fi − yi)2 for each data sample, and the baseline
error L̂ is the average number

∑
i yi/n. If the performance

criterion is the MAE, then the prediction error Li is |fi − yi|.
Its baseline MAE error L̂ does not have an analytical expres-
sion and could be obtained by solving another optimization
problem.

Once the optimal tree is determined, the hit rate is evaluated
by adding an allowance to each order, that is, the objective of
maximizing the hit rate is obtained afterward and indirectly.

2) MAXIMIZE THE HIT RATE DIRECTLY
In this subsection, the hit rate is maximized directly.

For the ith sample pair of real and predicted cycle time
(yi, ŷi) in the training set, respectively, if ŷi + al ≥ yi for
a given allowance parameter al, that is, the quoted due date
ŷi+al is greater than or equal to the real completion time yi,
then the target is achieved. If yi > ŷi + al, then the target is
missed. It makes the problem amenable for an optimization
solver to solve, a small positive constant ε based on the
dataset is added to the above strict inequality and it becomes
yi ≥ ŷi + al + ε. Next, a binary decision variable Hi and
a big number M are utilized to transform the above if/then
constraints into the usual constraints as follows.

M × Hi ≥ ŷi + al − yi + ε(1− H i)

≥ −M × (1− H i) (7)

If Hi = 1, then ŷi + al ≥ yi, and the order is on time.
Otherwise, yi ≥ ŷi + al + ε.
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For the ith sample pair, the hours of earliness Earlyi and
lateness Latei of an order are max(ŷi + al − yi, 0) and
max(yi − ŷi − al, 0), respectively.

min 1−
n∑
i=1

Hi
n
+ ef

n∑
i=1

Earlyi + lf
n∑
i=1

Latei (8)

The new objective function (8) is to maximize the hit rate
(
∑
Hi/n) or equivalentlyminimize themiss rate (1−

∑
Hi/n)

where the number n is the sample size. Even though the objec-
tive function is to minimize the miss rate, the weighted pre-
diction error and its corresponding constraints still need to be
included in the problem formulation. Otherwise, the solution
would produce a zero miss rate by assigning large numbers
of predicted cycle times which is not appropriate or even
unfavorable for the company to negotiate with the customers.

In the objective function (8), two weighting factors ef and
lf for earliness and lateness hours, respectively, are used
to balance the miss rate from overfitting. For this reason,
theweighted prediction error in the grid search for the optimal
parameter combination could not start from zero in which the
only objective would be the miss rate. Another interpretation
is to minimize the deviation errors from the real cycle time in
a just-in-time manner [21]. Please refer to the book [30] for
further discussions and implications of different performance
indexes.

The branch and leaf constraints in Section II-B.1 still need
to be imposed for this new objective function.

C. LOCAL SEARCH
For a sample size of n and the tree depth of D, the number
of binary decision variables {zit } for assigning the samples
to all leaves is n× 2D. The computational complexity of
the optimal decision tree grows rapidly with the number of
samples and the depth of the tree.

Ensemble methods, such as random forests [9] and gradi-
ent boosting [15], achieve state-of-the-art performance, but
ensembles of trees lack interpretability [8].

Bertsimas and Dunn [2], [14] utilize the benefits of random
forests and generate the initial trees by the training dataset.
For each tree in the random forests, a local optimal tree is
found by using similar local search methods as those algo-
rithms in [7], [27]. The algorithms search all possible split
locations which have polynomial time complexity [14]. The
best single local search tree out of the validation set is used
and then tested for out-of-sample prediction performance.
The performance results of this approach with one decision
tree are comparable to those of random forests and gradient
boosting in 26 real-world datasets for regression problems
[14, Table 5.1].

III. CASE STUDY
In [12], one of the case studies with 120 data samples with
detailed values was collected from a wafer fab located in the
Central Taiwan Science Park in Taichung, Taiwan. Six fea-
tures out of 12 candidates are chosen by backward elimination

TABLE 1. Parameter and performance for the training data.

TABLE 2. Parameter and performance for the testing data.

regression analyses. The features {x1, x2, . . . , x6} are job size,
work-in-process (WIP), queue length before the bottleneck,
queue length on the route, average waiting time, and factory
utilization, respectively. These predictors are used to estimate
its cycle time y.
In a stationary system, the cycle time is proportional to its

WIP by Little’s law [25]. For the above dataset, the rounded
correlation coefficient of cycle time and WIP is 0.66. The
minimum, maximum, mean, and standard deviation of the
ratio (cycle time / WIP) are 0.72, 1.31, 0.96, and 0.13,
respectively.

In the following, the simulation programs are written in
Python and Julia on a Windows 10 notebook with Intel Core
i7-10510U 2.3 GHz processor and 16 GB RAM.

A. COMPARISON WITH DIFFERENT METHODS
To keep consistent with the results in the paper [12], the raw
data are normalized into [0.1, 0.9] by linear min-max normal-
ization, and the first 90 and the last 30 data samples are used
for training and testing stages, respectively. In Tables 1 and 2,
eight methods in the paper [12] are listed for comparison in
the first three columns of each table. For example, the hit
rate (HR) of constant due date policy with an allowance
of 55 hours is 55% in Table 1.

By using feature selection software by Interpretable
AI [20] under programming language Julia 1.5.2 [6],
the rounded coefficients of the most important variables
x2, x4, and x6 are 0.4866, 0.4234, and 0.0890, respectively.
The summation of these coefficients should be 1 instead
of 0.9990 due to a round-off error. Next, we use a local
search (LS) decision tree with parallel splits in each branch
node and a linear prediction function of important features
in each leaf. The numbers in the parentheses denote the
used features in which LS(2) and LS(2, 4) represent x2 and
x2, x4, respectively. A grid search over the maximum depth
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TABLE 3. Parameters and performance results for the optimal decision tree.

FIGURE 2. The decision tree for LS(2) in Tables 1 and 2.

of {2, 3, 4} and λ of {0.0005, 0.001, 0.005} is used. The
hyper-parameter λ when fitting the linear prediction equa-
tions in each leaf is used to regularize the regression from
overfitting.

Figure 2 shows the final local search tree for the exper-
iment LS(2). For root node 1, the sample size (n) is
90 with a mean value of 1224.6 hours and the split vari-
able is x4 with a threshold of 676.5 units. If x4 < 676.5
and x6 < 0.8745, then it follows the left most deci-
sion path and reaches the leaf node 3. In the leaf nodes
{3, 4, 6, 7}, their corresponding prediction functions
are 0.7852x2+306.9, 3.288x2−2785.9, 1.747x2−987.1, and
1.961x2−1413.2, respectively. For example, if (x2, x4, x6) =
(1, 223, 670, 0.7), then its decision path is through the
node sequence 1→ 2→ 3 and its predicted cycle time is
0.7852× 1, 223+306.9 ∼= 1, 267 hours.
For the local search trees to make a fair comparison, we use

the same allowance hours for training and testing data as those

in each first column in Tables 1 and 2. Once a decision tree
is obtained, their predicted cycle times and the correspond-
ing hit rate are computed as shown in the last 2 columns
of Tables 1 and 2. For allowance hours in [43, 50] and
[55, 57], the hit rates of LS(2) are 70% and 73%, respectively,
in Table 2. That is, the hit rate is a non-decreasing func-
tion of the allowances. We will discuss another example in
Section III-B.3.

The local search methods perform better for the out-of-
sample testing in this simulation and show a smaller gap
between the training and testing data, while the other com-
pared methods are overfitting. For a moderate amount of
data points, it demonstrates that the decision tree methods
are more favorable than data-intensive methods like neural
networks. Another merit of a decision tree is its interpretabil-
ity and its decision paths are easily visualized as shown in
Figure 2.

B. OPTIMAL DECISION TREE
In this section, we construct the optimal regression tree
based on mixed-integer optimization (MIO). Ten randomized
datasets from the original dataset are drawn. For each exper-
iment, 50%, 25%, and 25% of the randomized dataset are
partitioned into training, validation, and testing sets, respec-
tively, and finally the statistical values of ten simulations are
computed. To utilize the approaches of [14], the raw data of
each feature are normalized into [0, 1] by linear min-max
normalization.
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We use Python version 3.7.6 [34] and Gurobi version
9.0.3 [17] to develop the simulation programs in this section.

The results in this section are provided in Table 3.

1) MAXIMIZE THE HIT RATE INDIRECTLY
Once the optimal tree is determined by solving the MIO
problems in Section II-B.1, the hit rate is evaluated after the
allowance is added. We use 74 hours for training and testing
stages as in Section III-A.

We run many simulations and provide some of them
in Table 3. Each row in Table 3 represents an experiment.
The first five parameters in each simulation are the sequence
number beginning with the letter I for indirect approach,
the number of features used, the depth of the decision tree,
the splitting rule at each branch node, and the upper limit of
computation time in seconds for each simulation. The next
three performance indexes are the statistics of 10 simulation
runs for each policy, that is, the mean hit rate, the mean hours
of earliness and lateness, and their corresponding standard
deviation (std) in the parenthesis. The last one is the average
training time in seconds.

We use a linear prediction function for every leaf for all
simulations. To find the best-validated hyper-parameters of
α and λ by a grid search, the parameters are varying from
[0, 0.02] with an increment of 0.01, that is, each randomized
dataset is run (3× 3 =) 9 times for the training stage and the
one with the optimal objective for the validation set is used
for out-of-sample prediction.

One could utilize warm starts to improve MIO perfor-
mance, e.g., CART for parallel splits and constant prediction.
It is unclear what constitutes a goodwarm start for hyperplane
splits and a linear prediction function. For the simulations
in Table 3, we solve all MIO problems without warm starts.

For experiment I1 in Table 3, it takes only an average
of 4 seconds to obtain the optimal decision tree. Its hit rate is
73%which is 3% lower than the optimal experiment I6 with a
1-hour computation time. Its standard deviation of HR is 6%.

For experiment I2, the depth of the tree is 3 and that is the
only difference from experiment I1, and its MIO solution is
far away from the optimal one so that its hit rate is zero even
after 1 hour of computation. This simulation illustrates the
complexity of a larger tree due to the exponential growth of
binary decision variables {zit }.

For the parameter settings of I3 and I4, the only difference
is their computational budget. Their performance results are
quite close to each other and their rounded average hit rates
have the same value of 0.75. Their worst-case prediction
accuracy of 10 decision trees happens to be the fifth data set
and has the same value of 0.633. The duality gaps of these
two optimization problems are 70% and 50%, respectively,
when the time limits are reached. In Figures 3 and 4, we only
draw the decision functions for the outer decision paths for
easier visualization. As seen from the figures, the sign of the
branching features and the features of the prediction function
in each leaf node might change. For example, the left path
of node B in Figures 3 and 4 are −0.114x2 + 0.313x4 < 0

FIGURE 3. The worst-case decision tree of I3.

FIGURE 4. The worst-case decision tree of I4.

and 0.059x2− 0.094x4 < 0.016, respectively. The prediction
function of node 1 in Figures 3 and 4 are 50x2 + 1410 and
50x4 + 1229, respectively. In [24], Li and Belfold provided
an example of the instability of the decision tree, proved the
cause of the instability problem, and proposed an improved
algorithm for classification problems.

For I5 and I6, we use 6 features instead of 2 in I3 and I4.
In this case, they have larger numbers of decision variables
and the duality gaps are larger than those of I3 and I4. Their
hit rates are comparable with those of I3 and I4, but their mean
hours and standard deviations of earliness and lateness are
larger than those of I3 and I4.

2) MAXIMIZE THE HIT RATE INDIRECTLY
In this subsection, the hit rate is maximized directly.

For the data set under investigation, the range of the real
cycle time is within the range of [849, 1810] hours, so
ε = 10−3 is chosen in the inequalities (7) and it does not
change the feasibility of the original problem.

We use 74 hours for training and testing stages as
in Section III-A. The MIO problems in Section II-B.2 are
solved, and the simulation results are shown in Table 3.

The first parameter in each simulation is the sequence num-
ber beginning with the letter D for the direct approach. For
D1 to D6, the simulation setups are the same as those in I1 to
I6, correspondingly. For the hyper-parameters in the objective
function (8), we set ef = 0.001 × i and lf = 0.003 × i for
i ∈ {0, 1, 2}. That is, the late order gets a larger penalty which
would keep it from happening and reach a hit of the target due
date.

The experiments D1 and D3 have higher hit rates and
lower mean hours of lateness than those of I1 and I3, but it
comes with a cost of higher mean hours of earliness. In the
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FIGURE 5. Allowance hours as a decision variable and their
corresponding performance indexes.

next subsection III-B.3, we will discuss another aspect of this
trade-off when the allowance is a decision variable.

The experiment D2 has the same problem as experiment I2.
For the experiments D5 and D6, the hit rates deteriorate as
compared with those of I5 and I6.

To understand the influence of the hyper-parameter,
we only vary the coefficient of lf from 0.003 in D1 to 0.001,
0.002, and 0.004 in D7 to D9, respectively, while keeping the
other parameters unchanged. Their performance results are
similar to each other.

3) THE ALLOWANCE AS A DECISION VARIABLE
We will treat the allowance as a managerial decision param-
eter, and explore its impact and tradeoff versus key perfor-
mance indexes. There are two main approaches based on the
methods in the previous two subsections. The first direction
is to find the best decision tree, and then use it to find the per-
formance measures for each varying number of allowances.
The second one is to solve the corresponding optimization
problem for each parameter change.We will focus on the first
method because it is computationally easier.

In terms of the relative better performances, we will take
experiment I3 as an example. Figure 5 shows the resulting
hit rate and hours of earliness and lateness when the range of
the allowance hours is changing within the interval [5, 150]
with an increment of 5 hours. The dot points represent the
simulation results, and the interpolation line is used for
easier visualization. In the upper picture, the hit rate is a
non-decreasing function of the allowance hours. In the lower
picture, the earliness and lateness hours are an increasing and
a decreasing function of the allowance hours, respectively.

Themanager could decide the allowance hour and its corre-
sponding impact on three performance indexes for each order.
For example, when the hit rate is 85%, its corresponding
earliness and lateness are 139 and 13 hours in Figure 5,
respectively. For the best HR policy D3 in Table 3, its hit rate,
hours of earliness, and hours of lateness are 0.85%, 160, and
11, respectively. It is worth further investigation to understand
the problem formulation of the objective function (8) and the
tuning of its hyper-parameters.

To understand the behavior of each performance index,
we consider the difference between them under two

FIGURE 6. Performance differences under two consecutive allowance
hours.

consecutive allowance hours. For all pictures in Figure 6,
each coordinate of the x-axes in [5], [145] represents the
left point of every two consecutive allowance hours. Taking
the top picture as an example, the first point of the y-axis is
0.023 hours, that is, HR(10) – HR(5) = 0.023 where HR(10)
is the hit rate when the allowance hours are 10. For the sets of
{105, 110} and {115, 120} hours, they have the same hit rates
of 0.83 and 0.84, respectively, and hence zero difference. The
lateness is a decreasing function of allowance hours, so the
differences are all negative in the bottom picture.

The performance indexes themselves are the first-order
differences of allowance hours and their derivatives are not
monotone as shown in Figure 6, so these three performance
indexes are neither concave nor convex functions in terms of
the allowance hours. In this case, one could not find the global
extremum.

C. LOCAL SEARCH
For larger problems, it takes a prohibitively long time to find
the optimal decision tree. If the training time is limited and
a decision needs to be made promptly, e.g., the changing
manufacturing environment, then its usage is limited. In this
section, we explore computationally efficient local search
approaches and compare their performances.

In this section, ten randomized datasets from the original
dataset are drawn. For each experiment, 75% and 25% of the
randomized dataset are partitioned into training and testing
sets, respectively, and finally, the statistical values of ten
simulations are computed. We run simulations with tuning
hyper-parameters with a validation dataset, but they do not
improve the performance. So we use the default values in the
software packages and there is no validation dataset in the
following results.

The allowance of 74 hours is used for the training and
testing stages in this section. We use Python for ensemble
learning and Julia for the local search tree. To make the com-
parisons consistent, we randomly shuffle the data 10 times
under Python and then partition the data into training and
testing datasets for each method accordingly.

We run many simulations in this section and some results
are provided in Table 4. We add a corresponding sequence
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TABLE 4. Parameters and performance results for ensemble methods and local search decision tree.

number in the first parameter after each method for easier
reference. To understand the overfitting problem, we provide
a column on the mean hit rate of the training stage and its
corresponding standard deviation.

1) LOCAL SEARCH WITHOUT FEATURE SELECTION
In this subsection, we use all six features to train the machine
learning models. The results are in the top 7 rows in Table 4.

We use ensemble methods of random forests (RF) and
gradient boosting (GB) under Python, and the version of
Scikit-learn is 0.22 [29]. The default values are used except
the criterion is theMAE and a random_state value is assigned
for reproducible results.

For RF(1), it is random forests with 6 features and the
depth is unconstrained, denoted by u. The larger gap between
the training and testing stages demonstrates the overfitting
of this (default) parameter setting and dataset. For its first
experiment out of 10 randomized datasets, the minimum,
the maximum, and the mean depths of 100 trees for random
forests are 9, 18, and 11.66, respectively.

For GB(1), the default value in Scikit-learn will pro-
duce 100 trees for each experiment. In this case study, all
1,000 trees in 10 randomized datasets have a depth of 3. But
some trees are degenerate and have less than 8 leaf nodes as

FIGURE 7. The 57th tree in the first experiment of gradient boosting.

shown in Figure 7. The Python language starts from the index
of 0, so X[5] is the 6th feature in the first branch node. Its
left branch is a leaf and it has only one sample with a value
of 29.151.

For the local search (LS), the default values are used except
a random_seed value is assigned for reproducible results.
For the experiment LS(1), a grid search for the allowable
depth of a tree is from 2 to 6 for each experiment. The mini-
mum, maximum, and mean depths of 10 locally optimal trees
are 2, 6, and 3.5, respectively.

After the mean depth of the local search trees is obtained,
we rerun the simulations of RF and GB and limit the max-
imum depth to be 4. It does increase the hit rate of ran-
dom forests from 0.73 to 0.74 in RF(2) and reduce the
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TABLE 5. Important features and their statistics.

overfitting problem. For gradient boosting, the original depth
is 3 and the overfitting problem becomes severe in GB(2)
when we force the depth to be 4.

For LS(2) and LS(3), we use 6 features and the second fea-
ture in the prediction function, respectively. The experiment
LS(3) achieves the highest hit rate in Table 4.

As shown in Table 4, the hit rates of the local search trees
are comparable with random forests and gradient boosting.
The merit of the local search method is a single tree that is
more interpretable.

2) LOCAL SEARCH WITH FEATURE SELECTION
To understand the behavior of important features, we ran-
domly shuffle the dataset 1,000 times and find its statistics
as shown in Table 5. The first feature appears 237 times with
an average weighting of 0.0424. The sum of the weightings
in each experiment is 1, so the sum of the products of the fre-
quency and its corresponding average weighting of 6 features
is 1,000. The most important features are 2 and 4. We will use
features 2 and 4 for this subsection and their results start from
the eighth row in Table 4.

For the local search (LS), a grid search over the maximum
depth and the hyper-parameter λ of {0.0005, 0.001, 0.005}
is used to find the optimal parameters. The mean depth
of 10 locally optimal trees in LS(4) is 3.

Themean depths of unconstrained RF andGB are 11 and 3,
respectively, so we only rerun the simulation for RF. The hit
rate of RF(4) is 0.74 and the gap between the training and
testing hit rate goes down from 0.21 in RF(3) to 0.03 in RF(4).
The feature selection procedure improves the HR of GB from
0.71 in GB(2) to 0.73 in GB(3), while the HR of RF stays the
same.

In LS(8) to LS(10), we use the second and fourth features
as the splitting hyperplanes. Since a hyperplane has greater
flexibility to partition the space, we reduce its maximum
search depth of the tree to be 4. For more complex structures,
they take longer to compute the tree. For these experiments,
their performance indexes do not improve.

In Table 4, the experiment LS(3) has the highest hit rate of
0.77 and its hours of earliness are 9 hours higher than that
of the second-best LS(7). The second-best policy is LS(7)
because it has lower earliness and lateness hours as compared
with those of RF(2) and RF(4) at a cost of larger training time.

IV. CONCLUSION
We use the optimal decision tree based on mixed-integer
optimization and the local search trees to predict the cycle
time and investigate the influence of the allowances on the hit
rate, hours of earliness, and hours of lateness for the due-date
quotation problem. From the results in the examples, our

approaches improve the performance of the neural network
approach in the cited work, the single decision tree is more
interpretable, and their performances are comparable to the
other popular ensemble tree approaches, such as random
forests and gradient boosting.

For future research, the complexity of the optimal deci-
sion tree and the stability of decision trees deserve further
investigation.

As mentioned before, the number of binary decision
variables {zit } depends on its sample size. In [35], Verwer
and Zhang provide an interesting integer programming for-
mulation for a classification tree that does not depend on its
sample size.

As seen in Figures 3 and 4, the decision trees are unstable.
In [31], Rudin viewed it as an advantage, and ‘‘the domain
expert can pick the one that is the most interpretable.’’ In [3],
Bertsimas et al. formulated and solved the robust classifica-
tion problems of support vector machines, logistic regression,
and decision trees, and improved the out-of-sample accuracy
for 75 data sets.
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